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Abstract
Accurate fault diagnosis and prognosis can significantly reduce maintenance costs, increase the safety and availability of

engineering systems that have become increasingly complex. It has been observed that very limited researches have been

reported on fault diagnosis where multi-component degradation are presented. This is essentially a challenging Complex

Systems problem where features multiple components interacting simultaneously and nonlinearly with each other and its

environment on multiple levels. Even the degradation of a single component can lead to a misidentification of the fault

severity level. This paper introduces a new test rig to simulate the multi-component degradation of the aircraft fuel system.

A machine learning-based data analytical approach based on the classification of clustering features from both time and

frequency domains is proposed. The scope of this framework is the identification of the location and severity of not only

the system fault but also the multi-component degradation. The results illustrate that (a) the fault can be detected with

accuracy[ 99%; (b) the severity of fault can be identified with an accuracy of almost 100%; (c) the degradation level can

be successfully identified with the R-square value[ 0.9.
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1 Introduction

One of the vital problems of the modern aviation industry

is planning maintenance in a way that will ensure machine

reliability and passengers safety. Major airlines spent over

$40 billion each year on these operations including among

others servicing, troubleshooting, equipment and spare

parts warehousing, labour and technicians training [1]. The

MRO (Maintenance, Repair and Overhaul) in the aviation

market cost $64.3 billion in 2015 and is expected to reach

almost 100 billion with a 4.1% growth rate after a decade

[2, 3]. This raises the urgent need for efficient, robust fault

detection and identification tools which will be able to

detect anomalies at early stages to prevent fatal failure.

Raising awareness of this matter led to the development of

new approaches for maintenance operations such as Inte-

grated Vehicle Health Management (IVHM) or Condition

Based Maintenance (CBM) [4–6]. Instead of scheduled

parts replacement based on operating time or performed

cycles, systems are monitored to perform diagnosis tasks to

check their current condition and take action when the need

arises or assess the remaining useful lifetime of compo-

nents [7, 8].

It has been found that data-driven solutions are useful,

especially in the cases where it is over-sophisticated to

develop numerical models of real-life multi-component

machinery [9]. For a case study of the monitoring condition

of military aircraft [10], the developed Prognosis and

Health Management framework was divided into three

levels. Initially, the member level stands for the condition

of acquiring and processing the significant information

monitored using multiple types of sensors [11], which can

be represented as oil tanks or gear modules. Then based on

the knowledge and feature extracted from these data, the

& Yifan Zhao

yifan.zhao@cranfield.ac.uk

1 School of Aerospace, Transport and Manufacturing,

Cranfield University, College Rd, Wharley End, Cranfield,

Bedford MK 430AL, UK

123

Neural Computing and Applications (2023) 35:2973–2989
https://doi.org/10.1007/s00521-021-06531-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2383-5724
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06531-4&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06531-4


health status of subsystems was diagnosed at the following

regional level, which can be represented by avionics or

electromechanical system. Finally, on the last platform

level, which is similar to a whole advanced military air-

craft, the comprehensive health status is assessed and

reported to the operator, and decisions about maintenance

are made and a historical database was created and stored

[12]. By this strategy, the information and uncertainty

within multiscale are included and the knowledge of how

the fault of a single component can propagate and affect

the whole system can be developed. It set an effective

analysis architecture and guidance for diagnosis in com-

plex systems [13].

Starting from the above foundation, different approaches

assessing the remaining useful lifetime of engine systems

was presented in [14], where data from sensors was col-

lected and processed to analyse the trends and symptoms of

different, predefined types of faults. The condition moni-

toring of safety–critical complex systems in [15] applied

the combination of smart sensing and fast diagnostic soft-

ware, supported by a model-based reasoning system,

working together for mitigating anomalies as they occur.

To efficiently monitor the condition of system components

and predict the remaining useful lifetime, it is wise to

combine high-quality knowledge from different sources

which will foster good decision making [16]. These high-

quality sources come from the pre-conducted maintenance,

numerical simulations, multi-type sensing and maintenance

history. For example, Klingelschmidt et al. [17] presented

an approach using different types of sensing data captured

on various parts of machinery for condition monitoring.

This type of sensing combination and accompanying

complex diagnosis and prognosis system can be solved

using Input–Output Hidden Markov Model architecture

[18, 19]. Therefore, the abovementioned strategy can be

addressed to provide better input information for multi-

component fault and degradation diagnosis.

The aircraft fuel system is one of the most complex

subsystems, consisting of multiple cross-linked mechanical

and electro-hydraulic elements [20, 21]. Current fault

diagnostic methods employ the information from adjacent

or nearby sensors as reinforcement. However, they only

work well when assuming that the rest untargeted com-

ponents are healthy, but fails in the realistic scenario with

multiple degraded components. Lin et al. [22] proposed a

probabilistic framework to incorporate multi-component

degradation information for the aim of fault diagnosing in

aircraft fuel systems, but the identification of degradation

has not been addressed. According to the above-stated

diagnosis architecture, how to reveal the mist from the

whole faulty status and then break through to find the

specific degraded component is quite challenging and

related studies are limited. The identification strategy of the

multi-component degradation and degradation severity for

this type of complex system is critical and demanded [23].

Addressing the above challenges, this paper aims to

develop an efficient data-driven framework to detect and

identify faults and degradation within multi-components in

the aircraft fuel system. The application is experimentally

simulated on a test rig that allows replicating failure modes

of different real-life components. Then, the decision-mak-

ing of fault identification is implemented by a clustering

method in cooperation with time and frequency feature

analysis. It can not only detect the severity level of fault but

also accurately estimate the severity of degradation for

multiple components.

2 Materials and methods

2.1 Experiment setup

The aircraft fuel system has a great impact on flight safety

since most of the accidents associated with the fuel system

lead to hazardous and even catastrophic events [24]. The

deployment of fault diagnosis into the fuel system can

improve not only the aircraft safety and reliability but also

the turn-around time to increase the aircraft’s availability.

This section provides a comprehensive description of the

experimental fuel rig which includes the hydraulic system,

the control and measuring system, and the fault injection

mechanism.

2.1.1 Hydraulic system

Figure 1 illustrates the layout of the fuel rig, which consists

of three fuel tanks, three gear pumps, five shut-off valves

and six direct proportional valves (DPVs). All the com-

ponents are connected using the pipe and mounted on an

aluminium optical breadboard (1.8 m 9 1.1 m 9 5 cm)

which is above a drip tray to catch any unintended leak in

the system. Two main tanks act as the left-wing tank and

right-wing tank, respectively, and a sump tank represents

the engine that receives the fuel from the aircraft fuel

system. Each gear pump is driven by an external motor

drive and has a pressure-relief valve inside to prevent

overstressing the gears. A list of the hydraulic system

specifications is shown in Table 1. More specifically, the

fuel test rig can be divided into three lines:

• As illustrated in Fig. 1, the engine fuel feed line

consists of the Shut-off valve 1, a non-return sticking

valve (emulated by the DPV1), two gear pumps (Gear

pump 1 and Gear pump 2), a pressure-relief valve (a

shut-off valve), a clogged filter (emulated by the
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DPV3), a flow metre (emulated by the DPV4) and a

clogged nozzle (emulated by the DPV5).

• The cross-feed line includes the shut-off valve 2, Gear

pump 3 which transfers the fuel from the right-wing

tank to the left-wing tank to keep maintaining the

central gravity of the aircraft during flight, and a cross-

feed valve (a shut-off valve).

• The spill line includes a spill valve (a shut-off valve)

which is used to return the fuel when the engine

requires less fuel from the aircraft fuel system, an

engine throttle valve (emulated by the DPV6) which is

used to generate the backpressure when the spill valve

is opened.

2.1.2 Control and measuring system

The control and measuring system (CMS) includes ten

pressure sensors (marked with P-x in), five flow metres

(marked with F-x), three laser sensors, three AC inverters

(ABB ACS150), nine National Instruments (NI) module

cards that installed in two NI CDAQ-9172 8 slots USB

chassis and a LabVIEW-based software. A snapshot of

CMS is illustrated in Fig. 2. National Instruments (NI)

Fig. 1 Layout of the fuel rig system

Table 1 List of specifications of

the hydraulic system
Item Description

Gear Pump Oberdorfer-N999R, Bare shaft, 150 PSI max, RPM range: 0–600 rpm, 12 teeth

Motor 3-Phase, 0.37 kW, 4 pole, 230/400 V, 50 H

Shut-off valve Orifice: 4.5 mm, power supply: 24 V DC, 5.0 MPa max

DPV Orifice: 3 mm, power supply: 24 V DC, 25 bar max

Pipe Polyurethane, 4 mm internal diameter and 6 mm outside diameter
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LabView software 2014 was used to customise the control

for the entire system. The NI modules used in the control

and measuring system are chosen for their customisable

and accurate features compared with other tools. More

specifically, the nine NI module cards selected for the

control and measuring system are NI 9485, NI 9205, NI

9264, three NI 9401 and three NI 9472. The specifications

of the sensors are summarised in Table 2. The NI 9485

module is an 8-channel solid-state relay sourcing or sinking

digital output module. It allows direct connection to a

variety of industrial devices such as valves and motors. The

NI 9485 module is chosen to control the open/close status

of the five-solenoid shut-off valves in the hydraulic by

providing access to the solid-state relay for switching the

voltage applied to the shut-off valve. The NI 9205 module

is a 250 kS/s, 32-channel voltage input module. It is chosen

to receive the analogue voltage output from the ten pres-

sure sensors and five flow metres, and convert this infor-

mation using the calibration forms into digitised

information readable on the developed software. The

sampling rate is 1 kHz within the LabVIEW environment.

The NI 9264 is a 25 kS/s, 16-channel module simultane-

ously updating the analogue output module which is cho-

sen to enable the implementation of the six DPVs position

control. The DPV position is modified by varying the

voltage applied to the solenoid and is an open circuit. The

NI 9401 module is a configurable digital I/O interface. It is

chosen to receive the output from the laser sensor and

convert them into a frequency for calculation of the pump

speed. The NI 9472 module is an 8-channel 24 V logic,

sourcing digital output module which is chosen to provide

the signals to the pump inverter to implement the pump

controls (start the pump, stop the pump, increase speed,

maintain speed, decrease speed). The pump speed input

from the control system is 0–5 V to the inverter drive,

whereby the inverter drive determines the 3-phase motor

control.

Dedicated software was developed using LabVIEW for

controlling the system and collecting the data. The user has

control over shut-off valves position, pump speed/volu-

metric flow rate, and direct proportional valves position

(manually or automatically). For DPVs control, the user

has two options: to set the opening percentage of the DPVs

manually through the knobs or to set a couple of parame-

ters (time, opening percentage) to control the DPVs

through a defined profile. It should be noted that the control

system is ready to accommodate all planned failure modes

in a plug and play manner, in terms of both hardware and

Fig. 2 A snapshot of the

laboratory scale testing rig

Table 2 Specifications of the sensors

Sensor Description

Absolute pressure

sensor

Measurement range: 0–5 bar, output signal: 0–5 V, quoted accuracy: ± 0.25% (full scale), power supply: 12.8 V DC

Gauge pressure

sensor

Measurement range: 0–4 bar, output signal: 0–5 V, quoted accuracy: ± 0.25% (full scale), power supply: 12.8 V DC

Flow meter Measurement range: 0–2 L/min, output signal: 0–5 V, quoted accuracy: ± 3% (full scale), temperature

sensitivity: ± 0.2% per �C, reference temperature: 23 �C, power supply: 12.8 V DC

Laser sensor Sensing range: 0–10 m, power supply: 10–30 V DC
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software. The data file, provided by the control and mea-

suring system, contains the time of the experiment, the

atmospheric pressure and temperature in the lab, the

readings from the ten pressure sensors, five flow metres and

three laser sensors, the status of the shut-off valves, and the

opening percentage of the DPVs. For each sensor, the

sample frequency was chosen as 1000 Hz considering the

sensor specification and dynamics of this test rig.

2.1.3 Fault types

For an aircraft fuel system, the common hardware faults

can be classified into three different types, namely process

faults, actuator faults and sensor faults, according to the

type of faulty hardware. Process faults include faults that

affect the operational ability of the system itself such as a

leaking pipe or cracked joint. Actuator faults include faults

that affect the actuated parts of the system such as pump

malfunction or a sticking valve, and sensor faults include

faults that affect the sensor operation. The degradation of

components causes most faults in the aircraft fuel system

due to fouling, erosion, or corrosion. Table 3 defines the

simulated faults corresponding to the designed test rig.

To inject various faults, with different degrees of

severity into the fuel test rig, five DPVs were used. The

failure of the shut-off valve (being stuck in amid range

position) is implemented by using DPV1 that is initially

fully open. fully opened DPV1 is equivalent to a healthy

valve status while the partially closed DPV1 is equivalent

to a sticking valve with a certain degree of fault severity.

Different degrees of severity can be emulated by varying

the opening percentage of the DPV which is controlled

through the developed software and can be varied from 0 to

100%. DPV2 is used to emulate a leaking pipe fault into

the system and set to be initially fully closed. The fully

closed DPV2 is equivalent to a healthy pipe while the

partially opened DPV2 is equivalent to a leaking pipe with

a certain degree of severity. DPV3 is used to inject a

clogged filter fault into the system. The fully opened DPV3

is equivalent to a healthy filter while the partially closed

DPV3 is equivalent to a clogged filter with a certain degree

of severity. DPV4 is used to inject a blocked flow metre

fault into the system. The fully opened DPV4 is equivalent

to a healthy flow metre while the partially closed DPV 4 is

equivalent to a blocked flow metre with a certain degree of

severity. DPV5 is used to inject a clogged nozzle fault into

the system. The fully opened DPV5 is equivalent to a

healthy nozzle while the partially closed DPV5 is equiva-

lent to a clogged nozzle with a certain degree of severity.

2.2 Severity of fault and degradation

In this study, DPV2 was used to simulate the leaking pipe,

as a system fault. The severity of this fault is simulated by

varying the opening percentage of this valve with values of

0% (healthy), 30%, 40%, and 50%. It should be noted that

in this study, the opening percentage of DPV2 less than

30% is not considered as a fault. This study aims to detect

and identify the fault when the severity level is just above

the threshold between fault and degradation (30%), which

allows for preventing further development and propagation

of the damage at the earliest possible stage. Additionally,

faults with a severity level exceeding 50% are significantly

easier to be detected and identified than the lower ones,

therefore ignored.

For each fault severity of DPV2, the leaking percentage

of four valves (Sticking valve, Clogged filter, Blocked flow

meter, Clogged nozzle shown in Fig. 1) was changed from

0%, 10% to 20%, respectively, to simulate a multi-com-

ponent degradation. The leaking percentage was used to

simulate the degradation level. In other words, for each of

these four valves, there are 3 possible states or degradation

levels. There are 34 = 81 possible combinations of multi-

component degradation for each fault severity level. The

corresponding between the combination index and per-

centage value of each of the four valves is shown in

Table 4. The combination index presents an exclusive

location and severity of this multi-component degradation.

Therefore, the identification of this complex degradation

problem is now simplified to the estimation of the combi-

nation index with associated faulty severity.

2.3 Data analysis

Due to the complexity of this system, applying a model-

based approach to monitor the system condition is difficult

due to the challenge to establish an analytical or numerical

model to effectively represent this system. Even each

component can be modelled successfully, at the system

level, different components may interact simultaneously

and nonlinearly, which leads that the modelling of the

whole system is almost impossible. Additionally, any

change of system design will require the model to be re-

estimated, so the universality of such an approach is

Table 3 The faults injected into the test rig

Fault type Fault

Process fault Leaking pipe

Actuator fault Sticking valve

Clogged filter

Clogged nozzle

Sensor fault Blocked flow meter
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limited. This paper proposes to use a model-free clustering

analysis based on two features extracted from the time and

frequency domains, respectively, incorporated with

machine learning classifiers for fault detection, classifica-

tion and identification, as well as degradation

identification.

The proposed methodology of data analysis can be

illustrated in Fig. 3. There are four objectives (illustrated

by four colour blocks) including (a) fault detection:

determining if the system is faulty or healthy, (b) fault

classification: dividing the sampled data into a number of

groups using an unsupervised approach, which mainly

evaluates how well the selected features differentiate

severity levels of fault, (c) fault identification: determining

the severity level of fault, and (d) degradation identifica-

tion: determining the severity level of each degradation and

combination, which is simplified to the determination of

the combination index. Initially, all pressure sensors are

considered, and the used sensors are then narrowed down

gradually through three steps of channel selection or

reduction (illustrated by red colour) to identify an optimal

channel eventually. The details of each process are

described below.

2.3.1 Feature extraction

Assuming that the system is stationary under a specific

severity level of fault and degradation combination, the

mean amplitude of each channel (P1, P2, …, P8 in Fig. 1)

is calculated by

Pl ¼
1

N

XN�1

n¼0

Pl nð Þ ð1Þ

where l is the index of the channel and N is the number of

sampling data. The channels P9 and P10 are not considered

because they are in a different branch with the components

that have fault and degradation. It has been observed that

the amplitude of pressure measurements changes for dif-

ferent severity levels of fault, this value is therefore con-

sidered as the first feature from the time domain. The

second feature is represented by the peak frequency with

the maximum power of frequency response or Power

Spectrum Density (PSD) of each channel. The frequency

response for a considered channel Pl is given by

Xl kð Þ ¼
XN�1

n¼0

Pl nð Þe�i2pkn
N ð2Þ

where k ¼ 0; . . .;N � 1. The peak frequency fl is written as

Table 4 The combination of leaking percentage of each valve to simulate multiple-component degradation

Faulty severity (leaking pipe)

(%)

Degradation level

Combination

index

Sticking valve

(%)

Clogged nozzle

(%)

Blocked flow meter

(%)

Clogged filter

(%)

0 1 0 0 0 0

2 0 0 0 10

3 0 0 0 20

4 0 0 10 0

5 0 0 10 10

6 0 0 10 20

7 0 0 20 0

… … … … …
81 20 20 20 20

30 1 0 0 0 0

… … … … …
81 20 20 20 20

40 1 0 0 0 0

… … … … …
81 20 20 20 20

50 1 0 0 0 0

… … … … …
81 20 20 20 20
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Fig. 3 The pipeline of the

proposed methodology of data

analysis

Fig. 4 A raw measurement comparison for 8 considered channels where the black indicates the case with no fault and no degradation and the red

indicates the case with 30% fault severity and no degradation
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Fig. 5 A comparison of PSD for

8 considered channels where the

black indicates the case with no

fault and no degradation and the

red indicates the case with 30%

fault severity and no

degradation

Fig. 6 Clustering visualisation for all 8 considered channels, where each case with a fault has 81 combinations of degradation
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fl ¼
fs
2N

arg max
s� k�N�1

Xl kð Þj j ð3Þ

where s the left bound for the searching and fs denotes the

sample rate.

2.3.2 Fault detection and classification

Cluster analysis or clustering is the task of grouping a set of

objects in such a way that objects in the same group (called

a cluster) are more similar (in some sense or another) to

each other than to those in other groups (clusters). The

most commonly used method is k-means clustering. It is an

unsupervised categorisation of samples (features) into

separate classes in a way that the similarity inside the class

is maximised while the similarity outside the class is

minimised. Given a set of observations x1; x2; . . .; xnð Þ,
where each observation is a d-dimensional real vector, the

k-means clustering aims to partition the n observations into

k � nð Þ sets S ¼ S1; S2; . . .; Skf g to minimise the within-

cluster sum of squares. The objective can be written as

argmin
S

Xk

i¼1

X

x2Si
x� uik k ¼ argmin

S

Xk

i¼1

Sij jVarðSiÞ ð4Þ

where ui is the mean of points in Si. In this study, the

observation is a two-dimensional vector Pl; fl
� �

and sam-

pled number (n) is 4� 81 ¼ 324; which include four-fault

severity levels (0%, 30%, 40%, and 50%), and each level

includes 81 combinations of degradation.

For the task of fault detection, assuming a Gaussian

distribution of features, a 95% confidence ellipse in the

two-dimensional feature space is calculated based on the

healthy data. An ellipse can be written as

x� cxð Þ2

a2
þ

y� cy
� �2

b2
¼ 1 ð5Þ

where ðcx; cyÞ is the centre, and a and b are two radiuses of

horizontal and vertical directions. To extend the equation

to a more general case where the ellipses could be rotated,

the Principle Component Analysis is applied to calculate

the 2 by 2 coefficients PC. If a feature vector ðv1; v2Þ is

located inside the ellipse or determined as healthy, the

following condition must be satisfied in Eq. (6). Otherwise,

this vector is located outside the ellipse or determined as

faulty.

v1 � cxð Þ � PC0ð Þ2

a2
þ

v2 � cy
� �

� PC0� �2

b2
\1 ð6Þ

For the task of fault classification, the number of group k

is chosen as 4 and the unsupervised k-means method is

applied. Given the knowledge of the ground truth of clas-

ses, the performance of classification can be evaluated by

the Adjusted Rand Index (ARI) [19], Mutual Information

(MI) [25], Silhouette Coefficient (SC) [26]. Adjusted Rand

Index is a function that measures the similarity of the two

assignments, ignoring permutations and with chance nor-

malisation. Given a set S of n elements, and two groupings

or clustering of these elements, namely X ¼
X1;X2; . . .;Xrf g and Y ¼ Y1; Y; . . .; Ysf g, the overlap

between X and Y can be summarised in a contingency

table nij
� �

where each entry nij denotes the number of

objects in common between Xi and Yj:nij ¼ Xi \ Yj
�� ��, the

Adjusted Rand Index is described by

ARI ¼

P
ij

nij

2

	 

�
P

i

ai

2

	 
P
j

bj

2

	 
� �
=

n

2

	 


1
2

P
i

ai

2

	 

þ
P

j

bj

2

	 
� �
�
P

i

ai

2

	 
P
j

bj

2

	 
� �
=

n

2

	 


ð7Þ

where ai ¼
Pr

q¼1 niq; bi ¼
Pr

q¼1 nqj and
n
2

	 

is calcu-

lated as n n� 1ð Þ=2.

Fig. 7 An example of fault detection based on the channels P3, where

the ellipse represents the 95% confidence level of healthy behaviour

Table 5 Performance quantification of fault detection

Channel False positive number ACC (%)

P1 4 97.86

P2 2 99.38

P3 2 99.38

P4 2 99.38

P5 2 99.38

P6 3 99.07

P7 3 99.07

P8 4 97.86
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Mutual information is another function to measure the

agreement of the two clusterings, and it can be written as

I X; Yð Þ ¼
X

i

X

j

p Xi; Yj
� �

log
p Xi; Yj
� �

p Xið Þp Yj
� �

 !
ð8Þ

where p Xi; Yj
� �

is the joint probability function of X and Y ,

and p Xið Þ and p Yj
� �

are the marginal probability distribu-

tion functions of X and Y respectively. The Silhouette

Coefficient can be used when the ground truth labels are

not known and it represents the degree of isolation. A

higher Silhouette Coefficient score relates to a model with

better-defined clusters. Let a ið Þ be the average distance

between i and all other data within the same cluster, b ið Þ be
the lowest average distance of i to all points in any other

cluster, the Silhouette Coefficient is defined as

s ið Þ ¼ b ið Þ � a ið Þ
max a ið Þ; b ið Þf g ð9Þ

Fig. 8 Classification results of fault severity level using the k-means approach (k = 4)

Table 6 Performance

quantification of fault

classification

Channel Amplitude ? PSD Amplitude PSD

ARI MI SC ARI MI SC ARI MI SC

P1 0.960 1.892 0.765 0.482 1.086 0.823 0.680 1.471 0.770

P3 1.000 2.000 0.955 1.000 2.000 0.959 0.603 1.407 0.868

P7 0.960 1.915 0.870 0.573 1.318 0.892 0.686 1.485 0.701

P8 0.984 1.958 0.893 0.511 1.271 0.804 0.594 1.411 0.822
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From the above definition, it is clear that s ið Þ 2 �1; 1½ �.
An s ið Þ close to 1 means that the data is appropriately

clustered. For the task of fault identification, one approach

is to establish the 95% confidence ellipse for each level of

fault (healthy, 30%, 40% and 50%). Another approach is to

use the supervised learning approaches, such as K-Nearest

Neighbors (KNN), Support Vector Machine (SVM),

Complex Tree and Boosted Tree. The confusion matrix is

used to measure the identification results and help select

the optimal channels for monitoring regarding the experi-

ments conducted in this paper. A confusion matrix is a

table that is often used to describe the performance of a

classification model (or ‘‘classifier’’) on a set of test data

for which the true values are known. Each row of the

matrix represents the instances in a predicted class while

each column represents the instances in an actual class (or

vice versa). Typical derivations from a confusion matrix

include True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). To describe the

percentage of the correctly classified samples, the accuracy

of classification is given by

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
ð10Þ

2.3.3 Degradation identification

Considering the large number of the possible state of

combination index representing the degradation location

and level, this paper proposes to use a parametric mod-

elling approach to establish the relationship between the

extracted features and the combination index. Given a set

of observations x1; x2; . . .; x81ð Þ under different combina-

tion indexes, denoted by y y 2 1; 81½ �ð Þ, for each severity

level of fault, a model can be identified and written as

ŷ ¼ f xð Þ ð11Þ

with the least square errors. If there is only one feature

selected, the linear representation of Eq. (11) can be writ-

ten as

ŷ ¼ axþ b ð12Þ

This model can then be used to predict the combination

index based on the observed feature. The model

Fig. 9 The result of fault identification using the 95% confidence ellipse
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performance can then be evaluated by calculating the Root

Mean Square Error and R-Squared between the ground

truth y and the predicted ŷ.

3 Results

To demonstrate the effectiveness of the proposed frame-

work, the case study where the leaking pipe is faulty has

been tested.

3.1 Fault detection

For each channel, a total of 4 s of data were sampled with a

sample rate of 1000 Hz. An example of raw healthy data

and data with a fault is shown in Fig. 4, where no degra-

dation is introduced (combination index = 0). It can be

observed that the amplitudes for most of the channels are

different between the healthy case and the cause with a

fault, particularly for P2, P3, P4 and P5. For P1, P6, P7 and

P8, although the amplitude difference can be observed if

the means are taken into account, they are not suitable for

real-time fault detection due to the overlap of amplitude. It

Table 7 Identified parameters

of 95% confidence ellipses for

the fault identification

Level cx cy a b PC

P1

Healthy 0.9635 243.06 0.0027 9.33 �2:34e� 5 1

1 2:34e� 5

	 


30% 0.9424 292.99 0.0051 16.74 �4:68e� 4 1

1 4:68e� 4

	 


40% 0.9363 277.62 0.0030 12.37 �1:74e� 4 1

1 1:74e� 4

	 


50% 0.9402 253.91 0.0037 17.78 �3:61e� 4 1

1 3:61e� 4

	 


P2

Healthy 0.4677 383.53 0.0345 10.66 �3:81e� 4 1

1 3:81e� 4

	 


30% 0.1893 453.75 0.0257 32.86 �3:96e� 4 1

1 3:96e� 4

	 


40% 0.0896 420.79 0.0114 15.54 1:20e� 3 1

1 �1:20e� 3

	 


50% 0.0442 379.68 0.0125 18.31 5:53e� 4 1

1 �5:53e� 4

	 


P7

Healthy 0.1776 243.83 0.0077 6.92 2:11e� 4 1

1 �2:11e� 4

	 


30% 0.2394 310.72 0.0029 15.90 8:04e� 5 1

1 �8:04e� 5

	 


40% 0.2377 292.28 0.0022 14.01 5:51e� 5 1

1 �5:51e� 5

	 


50% 0.2492 248.16 0.0151 9.83 �5:28e� 5 1

1 5:28e� 5

	 


P8

Healthy 0.1482 391.72 0.0068 10.65 �8:92e� 6 1

1 8:92e� 6

	 


30% 0.2034 326.04 0.0025 17.08 �3:23e� 5 1

1 3:23e� 5

	 


40% 0.2027 345.51 0.0022 13.61 �2:28e� 5 1

1 2:28e� 5

	 


50% 0.2131 388.47 0.0124 9.14 4:79e� 4 1

1 4:79e� 4
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can be seen that the discrepancy between the amplitude for

P1, P2, P6, P7 and P8 to distinguish healthy and fault

scenario is no more than 6% (1.7%, 4.2%, 3.0%, 3.6%,

5.1% respectively), but the discrepancy between the

amplitude for P3, P4 and P5 is more than 40% (42.1%,

44.8%, 66.7% respectively). So, moving away from the

fault location will decrease the discrepancy of the pressure

amplitude.

Using the same data, Fig. 5 shows the results of PSD for

the 8 channels. It can be observed that there are significant

peaks for both healthy and faulty data for all channels

except P4. The peak frequency is different for different

channels, as highlited by the blue circles. It can be

observed from all channels, except P4, that there is a shift

of the location of peak frequency for the same channel

between the healthy case and the case with a fault (e.g.,

P3), which is used as the second feature for clustering.

The clustering results using the mean amplitude and

peak frequency are shown in Fig. 6, where different col-

ours indicate different severity levels of fault, and each

level of fault includes 81 cases. It is suggested from visual

inspection that P1, P3, P7 and P8 have good performance

to separate these four groups while the features in the other

4 channels are partially overlapping. Considering P3 for

example, the mean amplitude can separate them into 4

groups but the groups of 30%, 40% and 50% are not very

well separated. The peak frequency can separate 30%, 40%

and 50%, but healthy and 50% are overlapped. The degree

of isolation is significantly improved if both features are

considered.

Through the visual inspection, P3 was selected for fault

detection. The 95% confidence ellipse for the healthy group

was calculated and illustrated in Fig. 7. The estimated

parameters in Eq. (6) are described by

cx ¼ 0:4677; cy ¼ 383:53; a ¼ 0:0345; b ¼ 10:66

PC ¼
�3:81e� 4 1

1 3:81e� 4

	 


ð13Þ

If a tested vector locates inside this ellipse, the system is

determined as healthy, otherwise the system is faulty. A

similar approach can be applied to the other 7 channels and

the fault detection results are shown in Table 5. All 8

channels produce a sound performance with the false

positive number less than 5 of 324 (1.54%), although P2,

P4, P5 and P5 are not appropriate to distinguish the four

groups.

Table 8 The confusion matrix of the fault severity level identification

using the 95% confidence ellipse

Predicted Total

Healthy 30% 40% 50% Unknown

P1 actual

Healthy 77 0 0 0 4 81

30% 0 78 0 0 3 81

40% 0 0 79 2 0 81

50% 0 0 0 80 1 81

Total 77 78 79 82 8

P3 actual

Healthy 79 0 0 0 2 81

30% 0 76 0 0 5 81

40% 0 0 79 0 2 81

50% 0 0 0 81 0 81

Total 79 76 79 81 9

P7 actual

Healthy 78 0 0 0 3 81

30% 0 78 18 0 3 99

40% 0 25 79 0 2 106

50% 0 0 0 78 3 81

Total 78 103 97 78 11

P8 actual

Healthy 77 0 0 0 4 81

30% 0 76 5 0 5 86

40% 0 16 78 0 3 97

50% 0 0 0 78 3 81

Total 77 92 83 78 15

Table 9 The accuracy of the

fault severity level identification

using 95% CI ellipse

Channel ACC (%)

P1 96.9

P3 97.2

P7 85.3

P8 89.6

Table 10 The accuracy of the

fault severity level identification

using selected supervised

learning-based approaches

Channel KNN (%) Linear SVM (%) Complex tree (%) Boosted tree (%)

P1 99.1 99.1 96.0 87.3

P3 100 100 100 100

P7 97.5 98.1 97.8 69.4

P8 98.8 99.1 98.5 74.7
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3.2 Fault classification

Base on the above results, the channels P1, P3, P7 and P8

were selected for the fault classification and identification.

The k-mean approach was applied to the data shown in

Fig. 6, where k was chosen as 4. The classification results

are shown in Fig. 8. Since it is an unsupervised approach,

the correspondence between the colour and severity level is

still unknown. Comparison of Figs. 6 and 8 suggests that

P3 produces a 100% classification result while the other

three channels produce slightly lower accuracy. To quan-

tify the performance, Table 6 shows the results of ARI, MI

and SC between the true tags and the produced tags from

the k-means method for these four channels. It can be

observed that P3 has the best performance for all three

criteria. P8 has the second-best performance, and P1 and

P7 have slightly worse performance. Table 6 also compares

the performance between a single feature and two features.

For P3, the amplitude itself produces the perfect results.

While for the other three channels, the performance is

significantly improved when two features are used than a

single feature. This observation suggests that multiple

features can increase the robustness of the proposed

method in terms of channel selection.

3.3 Fault identification

To identify the severity level of fault, the 95% confidence

ellipse was estimated for each group in P1, P3, P7 and P8,

and the results are shown in Fig. 9. It can be observed that

P3 produces the best result where there is no overlap

between ellipses. For P1, there is a small region of overlap

between 40 and 50%; for P7 and P8, there is a small region

of overlap between 30 and 40%. The estimated parameters

of 95% confidence ellipses for the fault identification are

shown in Table 7, which can be used to determine which

severity of fault from the given features. The detailed

performance of this approach can be described by the

confusion matrix shown in Table 8. The total accuracy of

fault identification for each considered channel is shown in

Table 9, which again proves that P3 produces the best

performance of fault identification.

Other supervised learning-based approaches, namely

KNN, SVM, Complex Tree and Boosted Tree, have also

been applied to identify the fault level and results are

shown in Table 10. The channels P3 still has the best

performance. It should be noted that although the perfor-

mance of some of these methods is better than the 95%

confidence ellipse, the models lack transparency and can-

not be written down.

3.4 Degradation identification

Figure 10 shows the relationship between the mean

amplitude and the combination index for the 4 groups using

the best channel P3. For the healthy group, there is no

significant association observed. For the severity level

30%, 40% and 50%, although the correlation looks

promising, it is difficult to use a continuous function to

describe their relationship. Therefore, although the mean

amplitude is a good feature for fault detection and identi-

fication, it is not an appropriate feature for degradation

identification. Figure 11 plots the relationships between the

peak frequency and combination index, and the results are

more promising. A strong linear relationship for each group

and each considered channel has been observed. The

clusters can be well fitted using a linear model, as shown in

Eq. (9). The linear fitting for each group is also plotted in

Fig. 11. It can be observed that the channels P3, P7 and P8

have the best performance. The identified parameters of the

linear fitting models for the group of healthy, 30%, 40%

and 50%, respectively, for each considered channel are

shown in Table 11, where the corresponding model per-

formance based on RMSE and R-squared is also shown.

The model of channel P7 produces the best degradation

identification for the healthy and 40% group with an R-

squared value of 0.657 and 0.888, respectively. The model

of channel P3 produces the best degradation identification

Fig. 10 The relationship between the mean amplitude and combination index for different groups using P3
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for the 30% and 50% group with an R-squared value of

0.938 and 0.878, respectively.
4 Conclusions

To address the challenge of faulty and degradation diag-

nosis of a complex engineering system where the multi-

component degradation is presented, this paper has pre-

sented a test rig and a corresponding data analytical

Fig. 11 The relationship between the combination and peak frequency for different levels of fault
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approach for four tasks: fault detection, fault classification,

fault identification and degradation identification. The

results suggest the following conclusions:

• The discrepancy of the pressure amplitude between

healthy and faulty scenario depends on the fault

location. P3–5 have more than 40% amplitude discrep-

ancy while other sensors have less than 6% amplitude

discrepancy when the fault is emulated between P3 and

P4. Observing the change of amplitude of certain

channels is sufficient to detect, classify and identify the

fault.

• For the cases where the severity level of fault is the

same while the degradation level increases, there is no

regular pattern of amplitude change, which suggests the

amplitude cannot be used for degradation identification.

The shift of the frequency peak, showing a linear trend

of decrease following the increment degradation level,

is an effective feature to identify the degradation level.

• By clustering two features including amplitude and

peak frequency, the fault can be detected with an

accuracy[ 97%; the severity of fault can be identified

with an accuracy[ 99%; the degradation can be

successfully identified with the R-square value[ 0.9.

A limitation of this approach is that it only works on

stationary systems where the fault or degradation severity

level does not change when shifted in time. To widen its

applications, future study will focus on its extension on

dynamical systems. The time when the system behaviour

changes will then be resolved.
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