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Abstract
Affective computing solutions, in the literature, mainly rely on machine learning methods designed to accurately detect

human affective states. Nevertheless, many of the proposed methods are based on handcrafted features, requiring sufficient

expert knowledge in the realm of signal processing. With the advent of deep learning methods, attention has turned toward

reduced feature engineering and more end-to-end machine learning. However, most of the proposed models rely on late

fusion in a multimodal context. Meanwhile, addressing interrelations between modalities for intermediate-level data

representation has been largely neglected. In this paper, we propose a novel deep convolutional neural network, called CN-

Waterfall, consisting of two modules: Base and General. While the Base module focuses on the low-level representation of

data from each single modality, the General module provides further information, indicating relations between modalities

in the intermediate- and high-level data representations. The latter module has been designed based on theoretically

grounded concepts in the Explainable AI (XAI) domain, consisting of four different fusions. These fusions are mainly

tailored to correlation- and non-correlation-based modalities. To validate our model, we conduct an exhaustive experiment

on WESAD and MAHNOB-HCI, two publicly and academically available datasets in the context of multimodal affective

computing. We demonstrate that our proposed model significantly improves the performance of physiological-based

multimodal affect detection.

Keywords Multimodal affect detection � Deep convolutional neural network � Physiological-based sensors �
Data fusion

1 Introduction

Affective computing is an interdisciplinary field of

research grounded mainly in neuroscience, psychology and

computer science. One of the main purposes of affective

computing is to enable machines to better understand

humans emotional state and accordingly assist them in

different situations [1]. Given that, the direction of

research in affective computing has been conducted by

borrowing theories from neuroscience and psychology and

constructing a computational model of the human state of

mind. Common laboratory procedures in most affect

detection systems rely on stimulating individuals emotions

and recording their data using specific sensors. Research

has shown that when a stimulus is received, a cascade of

physiological processes (e.g., increased heart rate) occurs,

mobilizing the nervous system and body [2]. This is one of

the main rationales behind utilizing wearable sensors to

collect individuals’ responses (both physiological and

physical) and later investigate the relationship between the

measured signals and affective states.

Nowadays, physiological sensors are of great impor-

tance in different research communities [2]. The sensors on
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which our study focuses consist, primarily, of electrocar-

diogram (ECG), skin temperature (TEMP), electrodermal

activity (EDA) (also called galvanic skin response as

GSR), electromyogram (EMG) and respiration (RESP)

sensors. The reason for choosing ECG is the high corre-

lation between cardiac activity and affective states [3, 4].

Likewise, it has been argued that signals representing a

reaction of the autonomic nervous system have the poten-

tial to detect human mental states [5]. Since body tem-

perature is regulated by the human central nervous system,

TEMP sensor is also a convenient candidate for affect

detection. In addition to ECG and TEMP, EDA sensor

measures the flow of electricity through the skin, which is

strongly linked to emotional changes, inducing sweat

reactions. When sweat glands become more active, they

secrete moisture toward the skin surface, consequently

affecting its electrical current [6]. In addition to skin sur-

face, the electrical activity of skeletal muscles is also

recorded as EMG signals. It has been proven that the EMG

value of trapezius muscle activity increases under high

mental workload [2, 7]. The respiratory rate as RESP

values can also be influenced by the level of mental

stress [2], triggering upward or downward trends under

stressful or relaxing conditions, respectively. Apart from

the aforementioned physiological sensors, the wearable

sensors are often equipped with a three-axis accelerometer

(ACC) whose values contribute to the measurement of

body movements in response to affective stimuli such as

stress [8].

To explore the relationship between recorded signals

and affective states, a great number of machine learning

(ML) solutions have been proposed. These solutions range

from classical methods, including support vector machine

(SVM) [9–11], AdaBoost [12], simple neural net-

work [12–14], logistic regression (LR) [15], random forest

(RF) and decision tree [9], to more sophisticated deep

learning methods [16]. For instance, Kim, et al. [17] pro-

posed the extraction of the mean energy of subband spectra

as a frequency-domain feature of RESP signal based on

linear discriminant analysis (LDA). By contrast, the work

in [9] suggested the utilization of SVM to focus on time-

domain attributes, such as the standard derivation of GSR

signal. The most prominent drawback of classical approa-

ches is their reliance on handcrafted feature engineering,

requiring the considerable efforts of experts and domain

knowledge professionals to extract the features of modal-

ities (signals). Manual feature extraction approaches also

entail the risk of feature redundancy and low discriminative

power.

End-to-end deep learning models, however, are capable

of removing the manual feature extraction from the loop by

automating the process. Recently, models such as deep

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) have been shown to outperform the state-

of-the-art ML methods in the context of unimodal as well

as multimodal affect detection [16, 18–21]. In the multi-

modal context, most of the models rely on late fusion,

where multiple modalities are trained individually and

merged in a final-level decision-making to detect human

affective states. Such learning processes impede the

extraction of information about the interrelation of

modalities before decision-level fusion, specifically where

a large number of modalities are available. We address this

gap by providing a learning process for intermediate-level

data representation based on well-established concepts in

the domain of Explainable AI (XAI) [22]. As a result, the

hidden informative features between different modalities

are unveiled, allowing highly accurate decision-making.

More specifically, in this paper, we make the following

contributions:

• we propose a generic deep convolutional neural

network, called CN-Waterfall, applicable mainly to

affect detection problems based on multimodal physi-

ological data. Our model consists of two main modules:

Base and General. While the Base module focuses on

low-level data representation, the General module is

concerned with intermediate- and high-level data

representations.

• we introduce four fusions in our General module, based

on our previous results [23, 24] in the practice of

Contextual Importance (CI) and Contextual Utility

(CU) [22] concepts in the realm of XAI. These fusions

emphasize the hidden features of correlated and non-

correlated modalities.

• we compare our model with both the classical and deep

learning approaches. We also propose a derivative of

our model, called CN-Waterfall-D. All experiments are

performed on two publicly and academically available

datasets in the multimodal affect detection domain,

namely WESAD [25] and MAHNOB-HCI [26],

respectively. Extending our approach, we also conduct

a comprehensive set of experiments using different

configurations of the Base and General modules.

• we acknowledge that deeper networks do not necessar-

ily provide better performance than shallower ones in

either the Base or General module. In addition, the

proposed model is found to be insensitive to number of

convolution filters in WESAD, while sensitive to the

same setting in MAHNOB-HCI. We also conclude that

CN-Waterfall and its derivative model, CN-Waterfall-

D, are superior to other comparative approaches.

The rest of the paper is organized as follows. Section 2

discusses related works that have investigated affect

detection primarily by means of physiological sensors.

Section 3 provides details on the proposed model. We
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conduct our experiments in Sect. 4. Lastly, Sect. 5 presents

our conclusions and future works.

2 Related works

In the literature, affective computing has sometimes been

formulated as emotion recognition, as systems are

empowered to detect human emotions. Moreover, in the

previous works, one could find stress as an affective state,

since stress has been mapped [2, 27] in the prominent

circumplex model of Affect [27]. In the following, we

provide a brief overview of research works in both emotion

and stress detection, relying on wearable (bio) sensors.

2.1 Emotion detection with biosensors

In 2004, Haag et al. [13] proposed a data-driven emotion-

detection approach relying on different physiological

modalities such as EMG, EDA, TEMP, RESP, skin con-

ductivity (SC) and blood volume pulse (BVP). The afore-

mentioned set of data was gathered from a single subject to

verify emotion valence and arousal [27, 28] using a one

hidden-layer neural network. The results were nevertheless

unreliable due to the limited number of participants. Later,

in 2007, Regan et al. [29] increased the number of partic-

ipants to six subjects who were asked to play a computer

game. In this study, five emotional states relevant to

computer game play were detected, including boredom,

challenge, excitement, frustration and fun. By passing the

physiological data through a fuzzy logic model, the data

were transformed into arousal and valence values and

subsequently, by means of another fuzzy logic model, these

values were converted into the target affective states.

Likewise, with a focus on visual stimulation, Khalili

et al. [30] employed 30 trials evoking emotional-annotated

images. Different features of modalities such as EEG were

extracted for classification by Quadratic Discriminant

Analysis (QDA). However, due to the high number of

extracted features and thereby the curse of dimensionality,

the feature selection procedure was performed using a

method based on a genetic algorithm (GA). GA-based

methods as well as random forest recursive feature elimi-

nation were also examined in [9] to elicit informative

variables from physiological modalities. Unlike our

approach, the authors in [9] hypothesized that possible

dependencies between variables decrease the performance

of the classifier. They applied SVM to classify data into

three emotions of amusement, sadness and neutral. In

addition, some other recent studies have employed

SVM [10, 11] for the task of affect detection. The main

focus in [11] was selecting a set of low correlated features

from the GSR modality, whereas the work in [10] relied on

selecting low-cost and noninvasive biosensors. In two other

works [17, 31], physiological data were collected from

participants while they listened to a piece of music [17]

and engaged in social interaction with two experi-

menters [31]. The modalities investigated in the former

approach [17] were EMG, ECG, SC and RESP, while the

latter study [31] captured three modalities: ECG, GSR and

brain activity. In a recent work [32], the authors proposed a

method emphasizing the temporal sequence of emotions.

More specifically, the emotion recognition task was for-

mulated as a spectral–temporal sequence classification

problem, for which a deep learning-based model with a

temporal loss function was proposed as a solution for

computing affective scores.

In contrast to our work, all the aforementioned solutions

except [29] suffer from a delicate feature engineering

process requiring sufficient domain knowledge, such as

signal processing. In addition, the literature focuses on the

detection of affective states other than stress, while, in our

work, we address the detection of affective states including

stress.

2.2 Stress detection with biosensors

Focusing solely on detecting the stress state, [33] pre-

sented a statistical analysis of different EMG features over

five rest conditions and three interleaved stress statuses.

The main aim was to investigate whether the EMG

modality alone represented a promising device for the

ambulatory monitoring of stress level. The results of the

analysis showed that both EMG amplitude and frequency

features are potential candidates for discriminating stress

from non-stress (rest) conditions. Later, the authors trans-

formed their approach into a multimodal stress detection

system, by adding three other biosensors: ECG, RESP and

skin conductance [34]. However, a limitation of these

works was that they ignored the role of other factors than

stress in the variation of modalities. To overcome this

challenge, [35] decoupled respiration- and stress-induced

heart rate variability (HRV), proposing a new spectral

feature, while [36] isolated pressure-related variations of

ECG and SC from the features set.

Shifting the focus from the features potentiality to dif-

ferent applications, [37] recorded physiological data from

21 participants in an algorithmic programming contest and

characterized the data by several classical machine learning

algorithms. In [12], an in-vehicle driving setting accom-

panied by an unsupervised learning model was proposed.

The model consisted of an autoencoder block with a layer-

wise training procedure, followed by an AdaBoost block

for the purpose of stress classification. A comprehensive

review of this application can be found in [38]. In another

work [14], a stress recognition system was developed with
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metabolic syndrome (MES) patients. The system consisted

of 52 biomarkers identified from the participants which

were later reduced to 15 features by a principal component

analysis (PCA) module. Furthermore, a combination of a

neural network and rule-based decision-making was tai-

lored to detect four stress levels. In contrast to previous

works, the authors in [39] employed a novel physiological

signal, phonocardiography (PCG), to collect the stress-re-

lated data of students before an examination. To detect

stress, a least-square SVM with tenfold-cross-validation

was utilized. In another study, the effects of English and

Urdu music tracks on the stress levels of 27 participants

were examined [15]. The data were mainly recorded using

electroencephalograph (EEG) signals of participants, while

they were listening to different tracks. In this regard, four

classifiers including logistic regression, stochastic gradient

decent, sequential minimal optimization and multilayer

perceptron facilitated the stress detection process. The

models presented above nevertheless fell short on contin-

uous stress detection in the natural environment. Conse-

quently, the authors in [40] proposed a continuous

classifier to predict the perception of stress incorporating

prolonged physiological effects of stressors.

2.3 Affect-stress detection with biosensors

Although the detection of affective states other than stress

was discussed in Sect. 2.1, and the detection of stress was

scrutinized separately in Sect. 2.2, similar to our work,

some research has focused on the detection of multiple

affective states, including stress, based on physiological

sensors. Such research is discussed in this section.

Schmidt et al. [25] released WESAD (see Sect. 3.1), a

publicly available dataset with multimodal data and several

affective states including stress. Using this dataset as a

benchmark, [21] detected three states—neutral, stress and

amusement—by means of four separate modules. Each

module was subjected to different modalities, including

data collected using different sampling rates. To extract the

relevant features, an exclusive deep learning procedure was

assigned per module. Similarly, in [19] a feature extraction

procedure was performed with separate deep learning

models. However, in that study, the models were designed

to be homogeneous such that each model extracted the

features of a single modality. Moreover, different affective

states from those listed in [21], including neutral, stress,

amusement and meditation, were detected by fusing the

learned features in the final step. In other attempts,

[16, 18] focused on a multitask learning in an end-to-end

fashion. While in [16] four output branches were trained to

simultaneously classify four affective states, including

stress, in [18] multiple signal transformations were used to

create a self-supervised network intervening in the detec-

tion of neutral, stress, amusement and meditation states.

Adopting a different perspective from previous works,

[41] studied a real-time system equipped with complex

event processing (CEP), capable of preprocessing modali-

ties from different sources. To detect three affective

states—neutral, stress and amusement—an artificial neural

network with two hidden layers was created on the server

side. Such frameworks could improve the scalability of

affective systems in more realistic scenarios, when large

numbers of participant data streams are monitored in real

time. However, these frameworks’ lack of privacy and high

latency may be of concern. The work in [20] proposed a

scalable deep learning model to tackle these concerns by

manipulating the detection structure itself. Two concepts of

multiple instance learning and early stopping were

employed, emphasizing the fact that only a few sub-in-

stances contain the affective state signature. Moreover, if

the classifier predicted the states with reasonable proba-

bility, the model could stop iterating over the remaining

instances. Here, the focus was the elicitation of three

affective states: neutral, stress and amusement.

Generally, the literature either focused on the detection

of different affective states from those targeted in our

research or tailored the models to application-specific

systems. Furthermore, the models fail to address the

extraction of information on the interrelation of modalities

before any high-level decision-making fusion.

3 Materials and methods

Figure 1 provides an overview of our proposed frame-

work for classifying affective states primarily from multi-

ple physiological-based sensor data. As we explain in

Sect. 3.1, the multimodal data examined in the Data

component belong to the WESAD and MAHNOB-HCI

datasets. The data are first passed through a preprocessing

component (see Sect. 3.2) and then learnt by means of two

modules: the Base (see Sect. 3.3.1) and General modules

(see Sect. 3.3.2). These modules are the main components

of our proposed model, CN-Waterfall, introduced in

Sect. 3.3. In the following, we explain the details of each

component as well as the theory-based justification behind

the structure of our learning model.

3.1 Data

In this section, we describe the two datasets examined in

this study and their specifications in terms of modalities as

well as the data collection process.
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The first dataset, WESAD, was introduced by Schmidt

et al. as a publicly available dataset in the multimodal

affective computing domain [25]. WESAD was created to

address the laboratory-study gap in the collection of both

emotional and stress states by means of wearable sensors.

Chest- and wrist-worn sensors were two types of wearable

sensors employed in this dataset. In our work, we focus

solely on chest-worn sensors from a RespiBAN Profes-

sional device. The device was equipped with eight

modalities: three-axis ACCs (ACC0, ACC1, ACC2),

RESP, ECG, EDA, EMG and TEMP. Moreover, all the

chest-worn modalities were recorded at a 700 HZ sampling

rate.

WESAD was composed of different affective states—

neutral, amusement, stress and meditation—captured from

15 participants. The neutral state was evoked in situations

where the participants were equipped with sensors and

were asked to either sit or stand at a table or read some

materials for 20 minutes. The state of amusement was also

stimulated by showing 11 funny videos to the participants

for 392 seconds. Furthermore, in order to provoke stress,

the participants were asked to deliver a 5-minute public

speech in front of a three-person panel as well as to per-

form a 5-minute mental arithmetic task. Unlike the previ-

ous conditions, the meditation state was devised to de-

excite the subjects and bring them back to the neutral

mode [25]. For this, the participants were instructed to sit

in a comfortable position, close their eyes and perform a

breathing exercise for 7 minutes. To validate the study

protocols, the tests were supplemented with five self-re-

ports in the form of a questionnaire for each subject. In

total, the recorded data comprised around 60 million

samples.

The second multimodal dataset, MAHNOB-HCI, was

introduced by Soleymani et al. as an academically avail-

able dataset, in 2012 [26]. One of the goals of data col-

lection in MAHNOB-HCI was emotion recognition.

Focusing exclusively on emotion recognition, different

physiological sensors were employed to record data gath-

ered from 27 participants. These sensors included 32

electroencephalogram (EEG) channels placed on the

participants’ scalp using a head cap, two ECG electrodes

attached to the upper right (ECG1) and left (ECG2) corners

of the chest below the clavicle bones as well as one ECG

electrode placed on the abdomen below the last rib

(ECG3), two GSR sensors, namely EDA, placed on the

distal phalanges of the middle (GSR1) and index fingers

(GSR2), a RESP belt around the abdomen, and a skin

temperature (TEMP) sensor placed on the little finger. All

the modalities except EEG were sampled at 256 HZ. In the

case of EEG, four bands—theta, alpha, beta, and gamma—

were utilized, implying different sampling rates.

In MAHNOB-HCI, nine emotional states were stimu-

lated in participants by playing 20 video clips. The emo-

tional states consisted of sadness, joy, happiness, disgust,

neutral, amusement, anger, fear, surprise and anxiety.

After watching each clip, each participant completed a self-

assessment form containing five questions on a nine point

scale related to the emotional label, arousal, valence,

dominance, and predictability. Similar to WESAD, this

dataset also contained a considerable number of samples

and thus constituted big data.

3.2 Data processing

To prepare the data of both datasets for the learning pro-

cess, we pass the data through several preprocessing steps

including data selection, unification, downsampling, nor-

malization and segmentation (windowing).

3.2.1 Data selection

From the WESAD dataset, as mentioned before, we focus

on the modalities from all the chest-worn sensors -ACC0,

ACC1, ACC2, ECG, EMG, EDA, RESP and TEMP- and,

from the MAHNOB-HCI dataset, we choose seven physi-

ological modalities -ECG1, ECG2, ECG3, GSR1, GSR2,

RESP and TEMP- from the emotion recognition

experiment.

Regarding the subjects and states, in WESAD, we

consider the data from all the participants as well as the

four affective states: neutral, amusement, stress, and

Fig. 1 An overview of our

proposed framework on

primarily physiological-based

multimodal affect detection (the

image on the left refers to [25])
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meditation. However, in MAHNOB-HCI, we choose 7 out

of 30 participants and only take account of three emotional

states: amusement, happiness and surprise. As it is obvious,

WESAD includes stress as an affective state which is not

studied in the MAHNOB-HCI dataset.

3.2.2 Unification and downsampling

To reduce time complexity in the learning process, we

downsample the selected data. For both WESAD and

MAHNOB-HCI, we perform downsampling at a rate of 10

HZ. More specifically, we randomly sample data from

blocks of 700 instances in WESAD and 256 instances in

MAHNOB-HCI.

The data recorded for subjects are of different lengths.

We follow different unification processes for the two

datasets. In order to unify the length of data in WESAD, we

consider the minimum amount of data among participants

as the basis of data reduction. However, in MAHNOB-HCI

we focus on the amount of each emotional state in the

subject with minimum data samples as the basis of data

reduction. In MAHNOB-HCI, this unification process

results in balanced data records for three emotional states,

which is not the case for WESAD. It should be noted that,

in WESAD, we first perform the downsampling and then

follow the unification step, while, in MAHNOB-HCI, the

order of two latter steps are reversed. Table 1 shows the

number of samples for each emotional state after per-

forming downsampling and unification in both WESAD

and MAHNOB-HCI.

3.2.3 Normalization

To deal with varying data scales, we pass our downsampled

data through a normalization process. We apply the max-

min normalization as shown in Eq. 1, where xnorm stands

for normalized data ranges between 0 and 1. Moreover,

xmin and xmax are the minimum and maximum values of

data in each modality:

xnorm ¼
x� xmin

xmax � xmin
ð1Þ

3.2.4 Segmentation

Segmentation (windowing) is performed after data nor-

malization for both datasets. During the segmentation

process, the data are divided into several windows, con-

sidering an overlap between two consecutive windows. In

our standard setting, we use the window sizes of 3 seconds

with 1 second overlaps. Given the sampling rate of 10 HZ,

the 3-second window and 1-second stride result in 30 data

samples with 10 instances of overlapping. Using data

segmentation, we keep temporal relationships among the

data within a window.

3.3 CN-waterfall

In this section, we present the technical details of our

proposed learning model for affective computing: CN-

Waterfall. This model is inspired by recently published

works based on convolutional neural net-

works [16, 18, 19, 21] and is equipped with modules for

automatic feature extraction from physiological (e.g.,

ECG) as well as motion (e.g., accelerometer) modalities.

The CN-Waterfall model consists of two main compo-

nents: the Base and General modules. Similar to [19], the

Base module is used to separately extract features from

each modality. However, unlike [19], the features are

extracted automatically. In fact, the Base module provides

initial and specific information of each modality in the

hidden space. Since such information cannot be used to

identify and extract the interrelation of modalities, we

extend our learning process to the second module. The

design of the second module is based on our recent

research [23, 24] on the outcome explanation of fully

connected neural network (FCN) and linear discriminant

analysis (LDA) models in WESAD and MAHNOB-HCI. In

these studies, we examined the importance and utility of

modalities in the decision-making of FCN and LDA, using

two concepts of Contextual Importance (CI) and Contex-

tual Utility (CU) [22]. The concepts were coined by

Främling in 1996. Theoretically, CI and CU employ a

similar approach to explanation as that used by humans

when explaining or justifying a decision to other

humans [42]. Applying these concepts to our datasets, we

found that, the number of correlated modalities with high

importance values (CI) are fairly greater than their non-

Table 1 Number of affective

states in both WESAD and

MAHNOB-HCI

Dataset Affective states

WESAD Neutral Stress Amusement Meditation Total

176110 99661 55749 101830 433350

MAHNOB-HCI Amusement Happiness Surprised Total

4480 4480 4480 13440
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correlated counterparts. Nevertheless, this result could not

negate the impact of non-correlated modalities in the final

decision. Based on these findings, in our second module,

we design different fusion components to extract and learn

the joint information of both correlated and non-correlated

modalities. The components direct greater attention to the

former modalities primarily by learning their attributes in a

gradual process; by contrast, less attention is directed to

non-correlated modalities by learning their attributes in an

instantaneous process. Finally, we provide a high-level

representation component to aggregate decisions corre-

sponding to both correlated and non-correlated based

components. Using such procedure, we explicitly present

intermediate-level representations that connect the low-

level features of the Base module to the high-level deci-

sion-making. In the following, we present the Base and

General modules in detail.

3.3.1 CN-waterfall–Base module

The Base module is designed to extract and learn modality-

specific features. More concisely, after feeding the pre-

processed data of each modality as input, the module

consists of two main blocks. The blocks provide the low-

level features of each modality as signal representation

(SR). Later, SRs contribute in the intermediate-level data

representation in our General module (see Sect. 3.3.2).

Figure 2 depicts the architecture of the Base module,

explained further in the following.

As shown in Fig. 2, the first block is composed of a one-

dimensional convolutional neural network (Conv1D) fol-

lowed by a Relu activation function and a layer of one

dimensional max-pooling (MaxPool1D). This block, as

expressed in Eq. 2, accepts the preprocessed data of each

modality, (signalm 2 IRws�1) as input and produces the

extreme features of data as output (MPm;1
f 1

). Here, ws stands

for window size. In the following, we present the compu-

tational details of the first block.

convm;1
f 1
¼

X

k1

W1
f 1;k1 � signalm

 !
þ b1f 1

am;1
f 1
¼ rðconvm;1

f 1
Þ

MPm;1
f 1
¼ max

a

[
am;1
i;f 1

ð2Þ

As Eq. 2 indicates, Conv1D provides the sum of the

weighted elements of each piece of modality data consid-

ering biases. We show the results of this layer as convm;1
f 1

.

In fact, applying one-dimensional convolutions enables the

network to learn the time dependencies between the

examined elements within the segmented data of each

modality. In this convolution layer, b1 2 IRFl1 indicates the

first block biases and W1 2 IRFl1�K1

stands for the vector

weights of convolution in the first block with a k1 2
0; ::;K1 � 1
� �

shape as kernel size. Moreover, f 1 2
1; :::;Fl1
� �

refers to the number of times we impose dif-

ferent weights vectors as filters. The maximum number of

filters in the first block is represented by Fl1. We also set

Fl1 and K1 to 32 and 4, respectively. Experiments with the

number of filters are presented in Sect. 4.2.2.

Considering nonlinearity among extracted features and

providing an appropriate input for the MaxPool1D layer,

the output of Conv1D (convm;1
f 1

) is passed through a ReLu

activation function (r). We indicate the output of this

function as am;1
f 1

. Later, the process is followed by a

downsampling step in the MaxPool1D layer, extracting the

maximum values of elements in am;1
f 1

. Finally, the output of

the MaxPool1D layer is indicated as MPm;1
f 1
2 IRf no�Fl1 .

Due to the downsampling property of this layer, we rep-

resent the size of the extracted features as f no.

Moving to the next block of the Base module, we learn

the extracted features of all filters from the previous block

together. The second block, shown in Fig. 2, is also com-

posed of a one-dimensional convolutional neural network

(Conv1D) fed by the output of the max-pooling layer in the

first block (see Eq. 3). The Conv1D layer in the second

block, however, is equipped with a higher number of filters

than the first block and a reduced kernel size. This setting

allows us to explore more complex features at a more

granular level. The output of the Conv1D layer presents the

Fig. 2 CN-Waterfall: the Base
module architecture consisting

of two blocks

Neural Computing and Applications (2022) 34:2157–2176 2163

123



sum of the weighted elements of MPm;1
f 1

considering biases.

We refer to this output as convm;2
f 2

for each modality as

follows:

convm;2
f 2
¼

X

k2

W2
f 2;k2 �MPm;1

f 1

 !
þ b2f 2

am;2
f 2
¼ rðconvm;2

f 2
Þ

ð3Þ

where W2 2 RFl2�K2

refers to the vector weights of con-

volution in the second block with k2 2 0; ::;K2 � 1
� �

, as

the kernel size. Additionally, f 2 2 1; :::;Fl2
� �

shows the

number of filters in the convolutional layer of the second

block and Fl2 stands for the maximum number of filters in

the same layer. We consider Fl2 and K2 equal to 128 and 1,

respectively. Further discussion on the different number of

filters can be found in Sect. 4.2.2. We also identify b2 2
RFl2 as the second block biases.

Finally, the model is able to learn the nonlinear relations

of extracted features by passing the output of the convo-

lutional layer (convm;2
f 2

) through the ReLu activation func-

tion (r). We refer to am;2 as the result of this function,

applicable for further processing in the General module in

Sect. 3.3.2. Table 2 provides an overview of the Base

module specifications.

3.3.2 CN-waterfall–General module

The General module, depicted in Fig. 3, utilizes the fea-

tures extracted from the Base module and requires the

informative attributes between modalities, i.e., correlation-

and non-correlation-based information on these modalities.

The need for such information is highlighted by our pre-

vious work in the practice of the XAI-based concepts, as

described earlier. In order to quantify correlations between

each pair of modalities and also preserve generalization in

our model, we assume the distribution of modalities is non-

Gaussian and thus employ the Spearman rank correlation

coefficient [43]. In practice, this coefficient assesses the

relationship between two variables based on the rank val-

ues rather than real values. To this end, we employ the

Pearson correlation [44] method for these rank values.

Mathematically, the Spearman rank correlation coefficient

is calculated according to Eq. 4:

qrmi;rmj
¼ covðrmi; rmjÞ

rrmi
rrmj

ð4Þ

where qrmi;rmj
denotes the Spearman correlation coefficient

of the ranked modalities i and j. We represent the rank

modalities as rmi and rmj where i 6¼ j and i; j 2 1; :::;Mf g.
Here, the total number of modalities is shown as M.

Moreover, cov and r stand for covariance and the standard

deviations of the rank variables, respectively.

The next step involves calculating the average value of

the obtained correlation coefficients over the number of

participants examined, corr avgrmi;rmj
(see Eq. 5). This

calculation facilitates exploration of which modality sub-

sets should be integrated for further feature extraction in

the intermediate-level data representations. By this level of

representation, we refer to different fusion components,

which will be introduced later. We formulate this step as

follows:

corr avgrmi;rmj
¼
P

qrmi;rmj

N
ð5Þ

where N indicates the number of participants. If the

corr avg value is greater than 0.4, we assume that

modalities i and j are correlated and therefore incorporate

their Base module features into the correlation-based sub-

set, Scorr. By contrast, if the value is less than 0.4, we

consider the modalities as non-correlated and add their

Base module attributes to the non-correlated subset

Snon�corr. A summary of this procedure is provided in

Algorithm 1.

Table 2 The Base module

specifications in each layer of

the two blocks

Block Layer Specification

1st Block Conv1D Filter_size = 32, kernel = 4 , stride = 1, padding = ‘same’

Activation
ReLu (x) =

0 x� 0

x x[ 0

�

MaxPllo1D Pool_size = 4, kernel = 1 , stridep ¼ 2

2nd Block Conv1D Filter_size = 128, kernel = 1 , stride = 1, no padding

Activation
ReLu (x) =

0 x� 0

x x[ 0

�
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As mentioned earlier, the generated subsets are added to

different fusion modules to extract the interrelation infor-

mation between modalities. In this regard, we incorporate

three fusion modules, two of which gradually learn the

hidden attributes of Scorr while one learns the features of the

Snon�corr subset instantaneously. Integrating the information

from these three modules in terms of intermediate-level

representations, we employ a fourth fusion module

providing the final decision of our classification model.

Therefore, the latter fusion represents our high-level data

representation. In the following, we discuss the details of

each fusion model.

1st Fusion Module: In the first module, each pair of

modalities in the Scorr subset is concatenated, enabling our

model to learn their joint information in a fully connected

neural network. To concatenate the pairs, we employ the

Fig. 3 CN-Waterfall: General module architecture, consisting of four fusion components and one classification layer
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extracted features of the second block from our Base

module (am;2
f 2

). We define concatF1 2 Rf no�ð2�Fl2Þ as the

concatenation output of each pair in the first fusion module

as follows:

concatF1 ¼ ½acn;2
f 2

; acnþ1;2
f 2

� ð6Þ

where cn 2 1; :::; corr nof g refers to a modality in Scorr
and corr no indicates the total number of modalities in this

subset.

To learn the pair-wise concatenation features, we

employ a one-hidden-layer neural network with 64 neurons

and to detect nonlinearity, we apply ReLu as an activation

function. We formulate the output of this layer as

denseF1 2 IRf no�64 in Eq. 7:

denseF1 ¼ r
X

WF1 � concatF1

� �
þ bF1

� �
ð7Þ

where r represents the ReLu function. Here WF1 2
IR64�ð2�Fl2Þ and bF1 2 IR64�1 refer to the weights of hidden-

layer neurons and bias in the first fusion module (F1),

respectively.

2nd Fusion Module: In the second fusion module, we

further exploit all the pair-wised extracted features in an

additive fashion accompanied by a fully connected neural

network. In other words, we collect the outputs of the first

fusion module and add them together. This additive layer

reduces the dimensionality of the features and accordingly

the learning time. Later, the corresponding information is

learned by 64 neurons of one hidden-layer neural network

followed by a ReLu activation function. We formulate the

outputs of the additive layer, addF2 2 IRf no�64, and fully

connected layer, denseF2 2 IRf no�64, as following:

addF2 ¼ ½denseF1

1 þ denseF1

2 þ :::þ denseF1

ðcorr no�1Þ�

denseF2 ¼ r
X

WF2 � addF2

� �
þ bF2

� �

ð8Þ

where denseF1

i , i 2 1; :::; corr no� 1f g indicates the out-

puts of ith dense block in the first fusion module. More-

over, r, WF2 2 IR64�64, and bF2 2 IR64�1stand for the ReLu

activation function, weights of hidden neurons, and bias,

respectively. The elicited features of this module are fur-

ther used as the inputs of the 4th fusion module in high-

level decision-making.

3rd Fusion Module: Parallel to the first and second fusion

modules, the third fusion module is applied to the non-

correlated subset, Snon�corr. In line with the theoretically

grounded concepts discussed earlier, we employ an

instantaneous feature extraction and learning process for

the non-correlated-based modalities. To this end, an

additive layer and a fully connected layer are incorporated

as the building blocks of this fusion module. Here, addF3

and denseF3 refer to the outputs of the former and latter

layers, respectively, and are formulated as below:

addF3 ¼ ½a1;2
f 2
þ a2;2

f 2
þ :::þ anon cn;2

f 2
�

denseF3 ¼ r
X

WF3 � addF3

� �
þ bF3

� � ð9Þ

where ai;2
f 2
, i 2 1; :::; non cnf g indicates the output of the

Base module, regarding the non-correlated subset modali-

ties. We represent the total number of modalities in this

subset as non cn. Additionally, r, WF3 2 IRFl2�64, and

bF3 2 IR64�1 stand for the ReLu activation function, the

weights of hidden neurons and bias in the third fusion

module (F3), respectively.

4th Fusion Module: The fourth fusion module, represent-

ing the high-level features, integrates the information

extracted from the correlated and non-correlated subsets.

To this end, the outputs of the second and third fusions are

concatenated, enabling the model to classify the affective

states. For this, a one hidden-layer neural network with the

same number of neurons as the number of affective states is

employed. However, we first flatten the inputs of this

network to provide consistency with the number of affec-

tive states in the decision space. In the final step, the net-

work is followed by a Softmax activation function,

generating the probability of each affective state as the

final decision. To define this module, we formulate each

layer in the following way:

concatF4 ¼ ½denseF2 ; denseF3 �

flatF4 ¼ FlattenðconcatF4Þ

denseF4 ¼
X
ðWF4 � flatF4Þ þ bF4

out ¼ SoftmaxðdenseF4Þ

ð10Þ

where concatF4 2 IRf no�ð2�64Þ indicates the output of the

concatenation layer. In addition, flatF4 2 IRf no�2�64 and

denseF4 2 IRclass no represent the inputs and outputs of

hidden neurons in the neural network. Here, class no refers

to the number of affective states in the problem space. For

simplicity, we define FN ¼ f no� 2� 64 and, respec-

tively, show the weights and bias of the neural network in

the fourth fusion model (F4) as WF4 2 IRFN�class no and

bF4 2 IRclass no. Finally, out stands for the final outputs of

CN-Waterfall as human affective states.
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4 Experiments and results

In the following sections we compare the performance of

our proposed method, CN-Waterfall, with that of other

models including the classical and deep learning methods.

We also present technical details on the evaluation of the

CN-Waterfall model.

As mentioned earlier, we conduct our experiments on

two multimodal affective computing datasets: WESAD and

MAHNOB-HCI. Table 3 provides a summary of the stan-

dard parameter settings used to evaluate the CN-Waterfall

model.

As demonstrated in Table 3, the experiments are per-

formed 10 times with an epoch size of 20. We also ran-

domly split both datasets into training and test sets with an

80:20 ratio. In each epoch, we consider 50 windows of

3-second data fed into our model.

Finally, we calculate the average performance of the

model(s) in terms of accuracy, precision, recall and F1-

score. The optimizer used is Adam and the loss function is

based on the categorical cross-entropy (CE) as follows:

CE ¼
X

x

PðxÞ logQðxÞ ð11Þ

where x, P(x) and Q(x) refer to the class, probability of

class x in the target and probability of class x in prediction,

respectively.

4.1 Comparison of models

This section compares the performance of CN-Waterfall

with classical and deep learning models. For the classical

models, we choose linear discriminative analysis (LDA)

and AdaBoost and for the deep models we propose Mul-

tichannel-CNN and CN-Waterfall-D.

The architecture of the Multichannel-CNN model is

inspired by the work in [19] and is depicted in Fig. 4a. For

each modality, we assign a channel. The first two blocks

also resemble the Base module in CN-Waterfall, following

a fully connected neural network (dense) with 64 hidden

neurons. In the final step, Multichannel-CNN employs the

fourth fusion structure of the General module as well as the

last activation function in CN-Waterfall. Therefore, the

captured data representations are concatenated, flattened

and categorized using a dense layer, equipped with a

softmax activation function.

In addition, CN-Waterfall-D is a derivative of our pro-

posed model that preserves the main CN-Waterfall archi-

tecture. As illustrated in Fig. 4b, CN-Waterfall-D follows

each signal representation extracted from the Base module

as well as the four fusion components of the General

module in CN-Waterfall. However, two additional links,

concerned with the second and third fusions, are also

incorporated into the CN-Waterfall-D architecture, which

constitutes the main difference with CN-Waterfall. The red

arrows in Fig. 4b indicate these links.

As mentioned above, the Multichannel-CNN architec-

ture does not include the correlation and non-correlation

based fusions. Therefore, comparing CN-Waterfall with

Multichannel-CNN provides insights into how the fusions

contribute to the performance of CN-Waterfall. Moreover,

comparison between CN-Waterfall with CN-Waterfall-D

indicates how optimal the decision-level fusion inputs are

in the CN-Waterfall structure.

Comparing the results in WESAD, Table 4 shows that

CN-Waterfall outperforms all other models except CN-

Waterfall-D. The difference between the results of CN-

Waterfall and the classical models is around 28% on

average, whereas the difference between CN-Waterfall and

Multichannel-CNN is an average of roughly 4%. In the

case of CN-Waterfall-D, similar results to CN-Waterfall

are achieved, implying that feeding compound attributes to

the late fusion fail to provide the model with additional

information. This argument is also valid for the MAH-

NOB-HCI dataset (Table 5). According to this table, CN-

Waterfall again performs better than the classical approa-

ches and Multichannel-CNN in MAHNOB-HCI. Here, the

performance difference between CN-Waterfall and LDA is

around 40%, while CN-Waterfall outperforms AdaBoost

and Multichannel-CNN by around 9% and 6% respectively.

Comparing the results of the two datasets, we can

observe that AdaBoost performs much better in the

MAHNOB-HCI dataset than in WESAD, with around 15%

higher accuracy, precision, recall and F1-score. However,

the performance of LDA and Multichannel-CNN decreases

by an average of around 10% and 2%, respectively.

Regarding CN-Waterfall and CN-Waterfall-D, both models

Table 3 Standard parameter settings in WESAD & MAHNOB-HCI

datasets

Parameters WESAD MAHNOB-HCI

Window size 3 s (3*10 samples) 3 s (3*10 samples)

Window shift 1 s (1*10 samples) 1 s (1*10 samples)

Sampling rate 10 HZ 10 HZ

No. subjects 15 7

No. states (classes) 4 3

Data distribution Imbalanced Balanced

Batch size 50 50

Training epochs 20 20

Iterations 10 10

Optimizer Adam Adam
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perform quite similarly in both datasets in terms of the

aforementioned metrics.

4.1.1 Effects of different sampling rates in deep learning
models

In this section, we present our experiments on different

data sampling rates. The results indicate the sensitivity of

the models to the granularity of the data in terms of

accuracy. Due to the considerable superiority of the deep

learning models (see Tables 4 and 5), in this section we

exclude the classical models and only investigate the per-

formance of deep learning models at data sampling rates of

10 HZ, 100 HZ and 256 HZ.

Figure 5 illustrates the result of our experiments on both

datasets. As can be inferred from Fig. 5a–c, in WESAD,

CN-Waterfall and CN-Waterfall-D perform similarly for

the data of all sampling rates. However, the performance of

the CN-Waterfall family is clearly superior to Multichan-

nel-CNN. This superiority is an average of 4% in 10 HZ

data and 2% in both 100 HZ and 256 HZ data. At a more

granular level, the higher the sampling rate is, the higher

Fig. 4 a Multichannel-CNN and b CN-Waterfall-D architectures

Table 4 Comparison of deep vs.

classical models in WESAD
Models Accuracy Precision Recall F1-score

Linear discriminative analysis (LDA) 0.709 0.687 0.709 0.688

AdaBoost 0.740 0.723 0.740 0.721

Multichannel-CNN 0.952 0.944 0.939 0.952

CN-Waterfall 0.990 0.988 0.989 0.990

CN-Waterfall-D 0.990 0.988 0.988 0.990

Table 5 Comparison of deep vs.

classical models in MAHNOB-

HCI

Models Accuracy Precision Recall F1-score

Linear discriminative analysis (LDA) 0.597 0.597 0.597 0.595

AdaBoost 0.894 0.894 0.894 0.894

Multichannel-CNN 0.924 0.927 0.925 0.924

CN-Waterfall 0.987 0.988 0.987 0.987

CN-Waterfall-D 0.987 0.988 0.987 0.987
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the accuracy will be in the primitive epochs of all models.

CN-Waterfall and CN-Waterfall-D achieved an accuracy

of 80% within the 10 HZ data, rising to 92% and 95% for

the 100 HZ and 256 HZ data respectively, at the beginning

of learning. In case of Multichannel-CNN, the accuracy is

found to be around 75% for the 10 HZ data, and increasing

to 82% and 88% at 100 HZ and 256 HZ sampling rates,

respectively. Likewise, the results reveal that CN-Waterfall

and CN-Waterfall-D achieve an accuracy of around 95% at

the flattening point within the 10 HZ data, increasing to

97% and 98% at 100 HZ and 256 HZ sampling rates,

respectively. The same was found for Multichannel-CNN,

yet with lower accuracy than the two other models: around

90%, 95% and 96% are reported at the beginning of the

flattening point for 10 HZ, 100 HZ, and 256 HZ data,

respectively.

Regarding the results with MAHNOB-HCI datasets,

Fig. 5d–f shows the models performance at 10 HZ, 100 HZ

and 256 HZ sampling rates, respectively. Unlike in

WESAD, CN-Waterfall-D demonstrates clear superiority

over CN-Waterfall with 10 HZ data after six epochs.

However, this is no longer the case at 100 HZ and 256 HZ

sampling rates. In the latter experiments, a high overlap is

observed in the performance of CN-Waterfall-D and CN-

Waterfall. Although for 10 HZ data there are some fluc-

tuations in all three models performance, it is clear that

CN-Waterfall-D and CN-Waterfall perform better than the

Multichannel-CNN model overall. Moreover, the former

models preserve their superiority at 100 HZ and 256 HZ

sampling rates as well. The results show that while CN-

Waterfall-D and CN-Waterfall generate average accuracies

of around 98%, 99% and 99% for 10 HZ, 100 HZ, and 256

Hz data respectively, Multichannel-CNN underperforms,

with an average accuracy of around 92%, 97%, and 98%

for 10 HZ, 100 HZ, and 256 HZ data. We also see a slight

arc in the performance curves of the three models in the 10

HZ experiments. The curves, however, arc more deeply at

the 100 HZ and 256 HZ sampling rates, subsequent to the

consistent accuracy of the models in the early stages.

4.1.2 Effects of different windowing on deep learning
models

As mentioned before, we report our experiments on the

deep learning models due to their superiority over the

classical models. In this section, we investigate how dif-

ferent window sizes and overlapping data blocks influence

the performance of the three deep learning models. The

results indicate the duration of the physiological and

motion responses required to recognize the affective states.

As mentioned in Sect. 3.2 and shown in Table 3, in the

standard setting, we use a window size (ws) and shift size

(ss) of 30 and 10 samples, respectively. To demonstrate the

impact of windowing on the performance of the models, we

further examine the models with two more window sizes of

60 and 120 samples as well as shift sizes of 20, 40 and 80.

Fig. 5 Comparison of CN-Waterfall, CN-Waterfall-D and Multichannel-CNN performances with a 10 HZ, b 100 HZ and c 256 HZ sampling

rates in WESAD and d 10 HZ, e 100 HZ and f 256 HZ in MAHNOB-HCI
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Figure 6 shows the results of our experiments in

WESAD. As discussed before, the performance of CN-

Waterfall and CN-Waterfall-D overlaps in the standard

setting (see Fig. 6a). The same is true when ws ¼ 30 and

ss ¼ 20 as well as ws ¼ 60 and ss ¼ 20 (see Fig. 6b and c).

Although there are slight fluctuations in the performances

of CN-Waterfall and CN-Waterfall-D for ws ¼ 120 and

ss ¼ 40, their accuracy, on average, overlaps (see Fig. 6e).

In all the experiments, these two models considerably

outperform Multichannel-CNN. The largest difference

(about 8%) is when ws ¼ 60 and ss ¼ 40, as the average

accuracy of both CN-Waterfall and CN-Waterfall-D mod-

els is around 98% while the comparable accuracy of

Multichannel-CNN is around 90% (see Fig. 6d). In addi-

tion, all the models perform best with the standard setting,

with 99% accuracy for CN-Waterfall and CN-Waterfall-D

and around 95% accuracy for the Multichannel-CNN

model. Moreover, the lowest performance is when ws ¼
120 and ss ¼ 80 (see Fig. 6f), as the curve performs a

shallow arc in comparison with the other experiments. In

addition, the fluctuations in the models performance

increase when the window size is enlarged. The highest

variations among all the models are evident in the last

experiment (Fig. 6f).

Regarding the MAHNOB-HCI dataset, Fig. 7 indicates

the effects of windowing on the performance of the

aforementioned models. As can be seen, a high fluctuation

over 20 epochs is evident in all the experiments except the

standard setting (see Fig. 7a). These fluctuations impede

arc-shaped curves and thereby convergent accuracies. We

also find the three models achieve their best performance

with ws ¼ 30 and ss ¼ 10 (standard setting) compared to

the other settings. Similar to the WESAD result, the models

perform worst when ws ¼ 120 and ss ¼ 80 (see Fig. 7f). In

this experiment, the average accuracy of Multichannel-

CNN, CN-Waterfall and CN-Waterfall-D are around 66%,

71% and 77%, respectively. Focusing on the three models,

CN-Waterfall and CN-Waterfall-D demonstrate superior

accuracy over Multichannel-CNN in all the experiments.

Moreover, the former models perform rather similarly in

the standard setting despite small fluctuations in both

models performance. It should also be noted that given the

same window size, as the difference between the window

and shift sizes decreases, the accuracy of all three models

decreases. For instance, the accuracy achieved by the

models for the ws ¼ 60 and ss ¼ 40 settings is consider-

ably lower than for ws ¼ 60 and ss ¼ 20.

4.2 Base module experiments

Here, we investigate the Base module with a different

number of blocks and convolutions filters.

Fig. 6 Comparison of the performance of CN-Waterfall, CN-Waterfall-D and Multichannel-CNN with window and shift sizes of a 30 and 10,

b 30 and 20, c 60 and 20, d 60 and 40, e 120 and 40, f 120 and 80, respectively, in WESAD
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4.2.1 Effects of deep layers

To examine CN-Waterfall with respect to the number of

layers in the Base module, we use three different settings:

one shallow layer and two deeper layers than the Base

module standard setting. The shallow network encom-

passes only the second block of the Base module, whereas

the deeper ones contain the first block of the Base module

repeated two and three times, with three and four blocks in

total, respectively. Figure 8 illustrates the aforementioned

settings.

With the structure mentioned above as the Base module,

the performance of CN-Waterfall is evaluated in terms of

accuracy, precision, recall and f1-score for the two data-

sets. According to the results shown in Fig. 9, there is

almost no difference in accuracy, f1-score, and precision

values for the Base module with the shallow and deeper

networks applied to WESAD. A trivial 0:7% difference

Fig. 7 Comparison of CN-Waterfall, CN-Waterfall-D and Multichannel-CNN performances with different window and shift sizes of a 30 and 10,
b 30 and 20, c 60 and 20, d 60 and 40, e 120 and 40, f 120 and 80, respectively, in MAHNOB-HCI

Fig. 8 The architecture of the shallow Base module with one block, the standard Base module with two blocks and deeper Base modules with

three and four blocks
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between the recall values of the Base module with two and

four blocks can be observed. This difference, however,

increases considerably to 4% for MAHNOB-HCI. In fact,

in the latter dataset, the performance of the deepest Base

module decreases significantly compared to the standard

Base module. What we conclude from the results is that

deeper networks, in particular on balanced data, do not

necessarily perform better than shallower networks.

4.2.2 Effects of the convolutions filter number

Here, we report the results of CN-Waterfall in terms of

accuracy with a different number of convolution filters in

the Base module with two-blocks. Figure 10 shows the

results of our model applied to the two datasets, with 128,

64, 32 and 16 convolution filters in the two blocks of the

Base module.

As demonstrated in Fig. 10, in WESAD, regardless of

the number of convolution filters in both blocks, accuracy

increases smoothly over epochs. However, in MAHNOB-

HCI, we observe slight fluctuations in all the settings.

Moreover, in WESAD, accuracy rises to more than 95%
after just four epochs, preserving the high performance

from the primitive stages of learning, while in MAHNOB-

HCI the same accuracy is only achieved in the late stages

of learning.

Given the results, we can conclude that the CN-Water-

fall model is insensitive to the number of convolution fil-

ters in WESAD. However, in MAHNOB-HCI, the model

with 128 filters in the second block of the Base module

shows, on average, better accuracy than with 16 and 32

filters in the same block (Fig. 10d). Therefore, the same

conclusion is not valid for the second dataset.

4.3 General module experiments

This section evaluates the General module of the CN-

Waterfall model in terms of modality correlation and

deeper fusions.

4.3.1 Modality correlation

Following Algorithm 1, we calculate the Spearman rank

correlation coefficient between 8 and 7 modalities in

WESAD and MAHNOB-HCI, respectively. Then, the

average of the correlations over the number of participants

is calculated. In WESAD, the results reveal that 4 out of 8

modalities meet the requirements of Scorr in the algorithm

and the rest are included in the Snon�corr subset. More

precisely, the ACC0 and ACC2 modalities show a corre-

lation of 0.84, and EDA and TEMP have an average cor-

relation of 0.44. Therefore, we follow Scorr and Snon�corr in
WESAD as below:

Scorr  fACC0;ACC2;EDA; TEMPg ð12Þ

Snon�corr  fACC1;RESP;EMG;ECGg ð13Þ

Regarding the MAHNOB-HCI dataset, the ECG1 and

ECG2 modalities have a 0.52 correlation, and the ECG2

and ECG3 modalities show a correlation of 0.6. We add

these modalities to the Scorr subset and the rest of the

modalities to the Snon�corr subset in the following:

Scorr  fECG1;ECG2;ECG3g ð14Þ

Snon�corr  fTEMP;GSR1;GSR2;RESPg ð15Þ

4.3.2 Effects of deep fusions

In this section, we discuss how fusions with deeper layers

in the General module (Fig. 3) influence CN-Waterfall

Fig. 9 The performance of CN-Waterfall with different Base modules architecture (Fig. 8) on a WESAD and b MAHNOB-HCI
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performance. For this, we connect one hidden-layer fully

connected neural network to the fusion components. We,

then, examine the impact of 16, 32, 64 and 128 hidden

neurons on CN-Waterfall performance.

As shown in Fig. 11, in WESAD, regardless of the

number of hidden neurons, the accuracy values of all

deeper fusions are closely inline with the accuracy value of

the model in the standard setting (Table 4). In other words,

CN-Waterfall performance is not influenced by deeper

intermediate- and high-level representations in the General

module.

In MAHNOB-HCI, the deeper networks of the first and

second fusions with 32 hidden neurons (dense_32) perform

quite similarly to the standard setting (Table 5) in terms of

accuracy. This finding is also valid in the case of the net-

works with 64 and 128 hidden neurons (dense_64 and

dense_128, respectively) in the second fusion. However,

other deeper networks of the first and second fusions

underperform the standard setting, with a rather tangible

difference in accuracy. The largest difference, of around

2%, is observed in the network with 128 neurons

(dense_128) in the first fusion. This difference also indi-

cates that model performance is a function of the number of

hidden neurons in the deeper layers of the first and second

fusions.

Fig. 10 The performance of CN-Waterfall with a different number of convolution filters number in the a first block and b second block of the

Base module in WESAD and the c first block and d second block of the Base module in MAHNOB-HCI

Fig. 11 The performance of CN-Waterfall with deeper fusions of General module by adding one hidden-layer neural network to each fusion

component and examining different settings of 16, 32, 64 and 128 hidden neurons in a WESAD and b MAHNOB-HCI

Neural Computing and Applications (2022) 34:2157–2176 2173

123



Regarding the third fusion, the model seems rather

insensitive to the number of hidden neurons in the deeper

layers. Moreover, all the networks of this fusion perform in

a fairly similar manner to the standard setting in terms of

accuracy.

In the high-level representation, the fourth fusion,

accuracy is improved stepwise with respect to the number

of hidden neurons. The difference between the lowest step

(dense_16) and the highest step (dense_128) is around 2%,

demonstrating the model sensitivity to the number of hid-

den neurons. In addition, the network with 128 neurons

outperforms the standard setting by about 0:5%. This

implies that the model explores more informative attributes

at the intersection of both correlated- and non-correlated-

based features. However, since the latter difference is not

significant, one could argue that the deeper layer’s

increased complexity outweighs any gains in accuracy.

In general, none of the aforementioned networks con-

siderably outperforms the standard setting on MAHNOB-

HCI. Thus, we can conclude that, as with the WESAD

dataset, CN-Waterfall with the standard setting performs

rather optimally.

5 Conclusions and future works

In this paper, we proposed a novel deep convolutional

neural network, CN-Waterfall. The model was designed as

a solution to the problem of autonomous multimodal affect

recognition, using mostly physiological-based sensors. One

of the major characteristics of our proposed model was its

provision of intermediate-level data representation, based

on our findings for two theoretically grounded concepts, CI

and CU, in the XAI domain. To this end, CN-Waterfall was

composed of two major components, the Base and the

General modules where the former dedicated to learning

representations of each single modality, and the latter

concerned with learning joint information of multiple

modalities. We focused on four fusion components in the

General module to fuse the features extracted from the

correlated and non-correlated modalities. To validate our

model, we utilized WESAD and MAHNOB-HCI, two

publicly and academically available datasets in the domain

of multimodal affect detection, respectively. Through rig-

orous experimental procedures on different layers and

parameter settings, we demonstrated the superiority of CN-

Waterfall over developed approaches. Due to the promising

results achieved, we believe that the application of our

model could be wide; i.e., it may be capable of managing

fusions in deep neural networks in general, rather than

being exclusive to the domain of affect detection.

Future extensions of CN-Waterfall will deal with the

limitations of the current work. First, despite our

comprehensive experiments, deep learning models are

known as black-boxes due to their complex nature. There is

no bright map in this study identifying why a specific

affective state has been selected. In this sense, recent

breakthroughs in the field of explainable AI could provide

valuable insights for better understanding the model’s

outcome. Second, the datasets we examined were not

designed for studying the relationships between context-

aware specifications and affective states. Therefore, the

validity of the proposed model for such datasets requires

further investigation. Third, in the present study, we did not

investigate the sensitivity of model to the degree of cor-

relation between modalities. Additional experiments are

thus required to scrutinize this aspect of the model. Finally,

the CN-Waterfall Base module represents a homogeneous

feature learning process for all modalities. As each physi-

ological modality shows its own characteristics, it would be

useful to focus on heterogeneous feature extraction and

learning processes instead.
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22. Främling K (1996) Explaining results of neural networks by

contextual importance and utility. In: Proceedings of the AISB’96

conference, Brighton, UK, 1–2

23. Fouladgar N, Alirezaie M, Främling K (2020) Decision expla-
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