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Abstract
The concept of domination is one of the most significant topics in graph theory to handle unpredictable phenomena. In this

study, an unprecedented idea of domination is introduced in m-polar interval-valued fuzzy graph (m-PIVFG). Domination

number (DN), isolated vertex, total dominating set, independent set of domination on m-PIVFG are discussed. Some

algebraic properties of domination on m-PIVFG are investigated. Weak domination, strong domination, split and non-split

domination, cototal and global dominating sets on m-PIVFG are investigated with some fundamental hypotheses and

models. We explore the concept of domination in m-PIVFG by solving a case study of locating new facilities to handle a

catastrophe reaction activity due to the ‘‘COVID-19 pandemic’’ in West Bengal, India. Ultimately, conclusions and

avenues of future scopes are placed at the end of this study.

Keywords m-PIVFG � Domination in m-PIVFG � Total dominating set � Independent dominating set on m-PIVFG �
Split dominating set on m-PIVFG

Abbreviations
FS Fuzzy set

FG Fuzzy graph

DS Dominating set

DN Domination number

IVFS Interval-valued fuzzy set

IVFG Interval-valued fuzzy graph

m-PFS m-polar fuzzy set

m-PFG m-polar fuzzy graph

m-PIVFS m-polar interval-valued fuzzy set

m-PIVFG m-polar interval-valued fuzzy graph

1 Introduction

Initially, graph theory plays an important role in various

fields of mathematics as well as computer science such as

group theory, topology, diagram representation, probabil-

ity, numerical analysis, matrix theory and so on. Later day

by day it has spread its branches in various fields of phy-

sics, biochemistry, biology, engineering field, operations

research, astronomy, management science and most

importantly in computer science. Graphs are the pictorial

portrayal that connects the objects and features their data.

To signify a real-world issue, this connection is most

important. The fuzzy concept deals with haziness in

operation research, human thinking, pattern recognition,

expert systems, computer science, management science,

control engineering, artificial intelligence, robotics, clus-

tering analysis, and so on. Watching the immense utiliza-

tion of graph theory, a numerical structure characterized as

G ¼ ðV;EÞ along with a great deal of vertices V and edges

E was introduced. When there is a case of uncertainty and

ambiguity in connection in either vertices or edges or both

then the corresponding graph can be transferred to the

fuzzy graph.
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1.1 Motivation

Fuzzy graph theory has wide range of applications in

decision-making problems, facility location problems,

covering problems. The fuzzy graph theory is tracking

down an expanding number of uses for demonstrating

continuous frameworks where the degree of data innate in

the framework relies upon various levels of exactness.

These days, scientists have two primary issues. From one

perspective, people depend upon basic frameworks like a

few basic infections, transportation, power, and sewage

systems, water supply. Fuzzy graph can be used in different

facility problems which are listed following:

• Health issue (Hospitals, ambulance)

• Electricity transmission and distribution

• Oil, gas and minerals production, transport and

distribution

• Networking systems

• Water supply and drainage system

• Financial areas (Post office, Bank)

• Transport systems (Bus, rail, airports, ship).

Second issue is discovering optimal solution. It is found in

numerous spaces of current science, innovation and finan-

cial aspects. After observing these two types of problems,

location routing problems have been introduced in this

paper. The world is now facing most dangerous COVID-19

pandemic situation. As, the decision making is the main

piece of our life, which has a markable importance during

this COVID-19 pandemic and it will profoundly influence

our day by day life; so this paper is of deep significance to

examine and make fundamental strategies to beat the pre-

sent circumstance.

1.2 Literature review

The classical set theory introduced by Cantor cannot be

dealing with this haziness and ambiguity. In 1736, Euler

displayed the concept about Graph from the Konigsberg

bridge problem. For taking care of different dynamic issues

in real life, fuzzy set along with fuzzy relation have been

applied. Based on Zadeh’s conception on the fuzzy set,

Kauffman [20] initiated the idea about the fuzzy graph.

Later on, Rosenfeld [31] discussed this concept and

developed definitions of various fuzzy notions like fuzzy

vertex and edges, fuzzy paths, fuzzy cycles and so on

which have been successfully implemented in medical

diagnosis, engineering and manufacturing science etc.

Afterwards, Bhattacharya [8] incorporated a few com-

ments on fuzzy graphs in 1987. The opinion of a fuzzy set

and bipolar fuzzy sets were extended by Zhang [41, 42] in

1994. Mordeson and Peng [23] explored the idea about

complement on fuzzy graph and shown a couple of

properties and operations on it. Shanon and Atnassov [34]

incorporated the idea of intuitionistic fuzzy graphs and

some properties on it. Afterwards, this concept was

depicted by Sunitha and Kumar [37, 38]. Nagoorgani and

Radha [26] presented a regular fuzzy graph to discover the

density of fuzzy graph in 2008. Nagoorgani and Malar-

vizhu [25] studied on isomorphic properties and defined

self-complementary fuzzy graphs. A deeper study on IVFG

was done by Hongmei and Lianhua [18] in 2009 and by

Akram and Dudek [1] in 2011. The ideas of bipolar fuzzy

set and m-PFS were detailed by Chen et al. [9] in 2014. A

couple of properties identified with isomorphism and sup-

plement of IVFG were focused by Talebi and Rashman-

lou [39]. Afterwards, Ghorai and Pal [14–17] examined

several belongings on m-PFGs such as isomorphism, den-

sity and some other operations on it. Pramanik and pal [29]

investigated different kinds of planar graphs. In fact, var-

ious extensions of fuzzy graphs are incorporated to handle

the dubiousness of this present reality issue. Fuzzy graphs

are used several models to tackle different dynamic issues

in this uncertain environment. Various sorts of examination

on summed up fuzzy graphs were handled by Samanta and

Pal [32, 33]. Recently in 2019, radio fuzzy graphs were

discussed by Mahapatra et al. [21]. Most recently in 2020,

Jana et al. [19] studied on bipolar fuzzy dombi prioritized

aggregation operators.

During the 1850s, an investigation of DSs in graph

theory began simply as an issue in the round of chess.

Chess devotees in Europe observed the issue of deciding

the minimum number of queens that can be put on a

chessboard with the goal that all the squares are either

assaulted by a queen or involved by a queen. In 1962, the

idea of domination in graphs was presented by Ore [27]

and Berge [7], and thereafter concentrated by Cockayne

and Hedetniemi [10, 11]. Utilizing effective edges Soma-

sundaram [35, 36] explored domination in fuzzy graphs.

Afterwards, utilizing strong arc segments domination in the

fuzzy graph was talked about by Nagoorgani and Chan-

drasekaran [24]. In the fuzzy graph, the concept of strong

and weak domination was initiated by Gani and

Ahamed [13]. The idea of 2-DS and secure DSs were

investigated by Merouane and Chellali [22] in 2015.

Motivating from different types of research on domination

in fuzzy graphs [28], we focus on exploring domination in

m-PIVFG. A more detailed classification of some related

research is presented in Table 1.

1.3 Novelties

The primary commitment of this investigation is as per the

following:

746 Neural Computing and Applications (2022) 34:745–756

123



• A novel conceptualization of domination on m-PIVFGs

is introduced.

• Definitions of effective edges, size, degree, and isolated

vertex in m-PIVFG with their examples are presented.

• Several types of domination on m-PIVFG are defined

with suitable examples.

• Results on various kinds of domination of m-PIVFG are

described.

• Real-life application examples of domination on m-

PIVFG are discussed.

1.4 Organization of the paper

The remainder of the paper is sorted out as follows: The

first section describes the historical backgrounds of graph

theory. Our point and inspiration are additionally noted

down in Section 1. Some preliminary basic ideas regarding

FGs, m-PFGs, IVFGs with suitable examples are explained

in Sect. 2. In Sect. 3, order, size, cardinality, and domi-

nation in m-PIVFG are discussed with examples. DN,

isolated vertex, total DS, independent set of domination on

m-PIVFG are also illustrated with some examples. Some

important results related to domination on m-PIVFG are

also discussed here. Definitions of different types of

domination on m-PIVFG are investigated with supportive

examples in Sect. 4. A few hypotheses and suggestions

identified with these definitions are talked about with their

comparing proofs. Section 5 incorporated a real-world

problem regarding domination on m-PIVFG. Here we set

up a disaster management problem with the algorithm.

Section 6 delineates a synopsis of this article alongside

avenues of future scopes.

2 Preliminaries

In this piece of this paper, we quickly concentrate some

essential phrasings of FS, FGs, m-PFS and m-PFGs which

are utilized here. The essential meaning of IFGs is addi-

tionally illustrated.

In 1965, fuzzy sets, augmentation of the old style idea of

the set were suggested by Zadeh [40]. We recall the defi-

nitions of m-PFG and IVFG from [5]. For more clarifica-

tion, one can visit that manuscript thoroughly. All through

this article, we utilize the documentation G� as an old style

classical graph and G ¼ ðV;A;BÞ as an m-PIVFG.

Definition 1 [6] An m-PIVFG G ¼ ðV ;A;BÞ consists of a
non-empty set V with two IVFSs (i) A : V ! ½0; 1�m an m-

FS in V and (ii) B : V � V ! ½0; 1�m an m-PFR on V and

l : V � V ! ½0; 1�m with underlying conditions pi �
lAðxÞ ¼ ½pi � llAðxÞ; pi � luAðxÞ� , 0� llAðxÞ� luAðxÞ� 1 and

pi � lBðxyÞ ¼ ½pi � llBðxyÞ; pi � luBðxyÞ�;
0� llBðxyÞ� luBðxyÞ� 1 and for every i ¼ 1; 2; . . .;m; sat-

isfying pi � llBðxyÞ� minfpi � llAðxÞ; pi � llAðyÞg , pi �
luBðxyÞ� minfpi � luAðxÞ; pi � luAðyÞg , 8x; y 2 V :

Definition 2 [6] The complement G ¼ ðV ;A;BÞ of G is

also an m-PIVFG where pi � lBðxyÞ ¼ ½pi � llBðxyÞ; pi �
lu
B
ðxyÞ�; pi � llBðxyÞ ¼ minfpi � llAðxÞ; pi � llAðyÞg� pi �

Table 1 Characteristics of some

related research
References Year FG IVFG m-PFG Domination m-PIVFG

Ore [27] 1962 � � � U �
Kauffman [20] 1973 U � � � �
Cockayne and Hedetniemi [10] 1977 � � � U �
Cockayne et al. [11] 1980 � � � U �
Somasundaram and Somasundaram [36] 1998 U � � U �
Nagoorgani and Chandrasekaran [24] 2006 U � � U �
Gani and Ahamed [13] 2007 U � � U �
Akram and Dudek [1] 2011 U U � � �
Ghorai and Pal [14] 2015 U � U � �
Akram and Waseem [2] 2016 U � U � �
Ghorai and Pal [16] 2017 U � U � �
Akram et al. [4] 2017 U U � U �
Akram and Waseem [3] 2017 U U � U �
Rashmanlou et al. [30] 2018 U U � � �
Bera and Pal [6] 2019 U U U � U

This study 2020 U U U U U
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llBðxyÞ; and pi � luBðxyÞ ¼ minfpi � luAðxÞ; pi � luAðyÞg �
pi � luBðxyÞ for every i and x; y 2 V:

Definition 3 [36] A dominating set S in G ¼ ðV;EÞ is

defined as for every x 2 V � S dominates some y 2 S;

where S 	 V :

In the next section, domination on m-PIVFG is defined

with suitable examples. Some basic terminologies related

to domination are also explained.

3 Domination in m-PIVFG

Herein, the concept of domination in m-PIVFG is explored

with examples. In this section, various terms related to

domination on m-PIVFG are also discussed. Also, in this

part we described minimal domination, maximal domina-

tion and total domination in m-PIVFG with suitable exam-

ples. Some significant outcomes are likewise clarified with

their proofs.

Definition 4 An edge B(xy) for an m-PIVFG G ¼
ðV;A;BÞ is effective if pi � llBðxyÞ ¼ pi �
minfllAðxÞ; llAðyÞg , pi � luBðxyÞ ¼ pi �minfluAðxÞ; luAðyÞg ,

for x; y 2 V:

Definition 5 The lower sum of the membership values of

all effective edges incident at x of an m-PIVFG G ¼
ðV;A;BÞ is lower effective degree of x and is represented

by dlBðxÞ and is given by dlBðxÞ ¼
P

i pi � llAðxÞ:

Definition 6 The upper sum of the membership values of

all effective edges incident at x of G ¼ ðV;A;BÞ is upper
effective degree of x and is represented by duBðxÞ and is

given by duBðxÞ ¼
P

i pi � luAðxÞ:

Definition 7 The order ~p and size ~q of G ¼ ðV ;A;BÞ is

defined as ~p ¼
P

x2V
1þ
P

i
pi�llAðxÞþ

P
i
pi�luAðxÞ

2
and ~q ¼

P
xy2E

1þ
P

i
pi�llBðxyÞþ

P
i
pi�luBðxyÞ

2
; 8x 2 V and 8xy 2 E:

Definition 8 Let ~S 	 V : Then cardinality of ~S;

Nð ~SÞ ¼
P

x2 ~S

1þ
P

i
luAðxÞ�

P
i
llAðxÞ

2
:

Definition 9 Two vertices x and y are neighbors to each

other in an m-PIVFG if for each i, for x; y 2 V; either one

of the accompanying hold

i. pi � llBðxyÞ[ 0; pi � luBðxyÞ[ 0:

ii. pi � llBðxyÞ ¼ 0; pi � luBðxyÞ[ 0:

iii. pi � llBðxyÞ[ 0; pi � luBðxyÞ ¼ 0:

Definition 10 We define x dominates y for an m-PIVFG

G ¼ ðV;A;BÞ if for x; y 2 V ; pi � llBðxyÞ ¼ minfpi �

llAðxÞ; pi � llAðyÞg; pi � luBðxyÞ ¼ minfpi � luAðxÞ; pi �
luAðyÞg; for i ¼ 1; 2; . . .;m: Let ~S 	 V: ~S is a DS in G ¼
ðV;A;BÞ if for every y 2 V � S; 9 x 2 S so that x domi-

nates y.

The domination number � ðGÞ means the minimum

cardinality of all DS in G and

� ðGÞ ¼ min ~S2V
P

x2 ~S

1þ
P

i
luAðxÞ�

P
i
llAðxÞ

2
:

Example 1 Let G ¼ ðV ;A;BÞ be an m-PIVFG (Fig. 1),

where

A ¼
�

a

h½0:1; 0:5�; ½0:4; 0:7�; ½0:3; 0:8�i ;
b

h½0:2; 0:6�; ½0:4; 0:5�; ½0:2; 0:5�i ;

c

h½0:1; 0:3�; ½0:6; 0:7�; ½0:3; 0:5�i ;
d

h½0:1; 0:5�; ½0:4; 0:7�; ½0:3; 0:8�i ;

e

h½0:0; 0:4�; ½0:5; 0:8�; ½0:2; 0:6�i

�

:

B ¼
�

ab

h½0:1; 0:5�; ½0:4; 0:5�; ½0:2; 0:5�i ;
bc

h½0:1; 0:3�; ½0:6; 0:7�; ½0:3; 0:5�i ;

cd

h½0:1; 0:3�; ½0:4; 0:7�; ½0:3; 0:5�i ;
de

h½0:0; 0:3�; ½0:3; 0:6�; ½0:1; 0:5�i ;

ea

h½0:0; 0:4�; ½0:4; 0:7�; ½0:2; 0:6�i ;
be

h½0:0; 0:4�; ½0:4; 0:5�; ½0:2; 0:5�i
bd

h½0:1; 0:5�; ½0:4; 0:5�; ½0:2; 0:5�i

�

:

Here, DSs are fb; cg; fbg; fa; bg; fa; cg; fa; b; cg:

Definition 11 A minimal DS ~S of an m-PIVFG is a DS

where there does not exist any DS which is proper subset of
~S:

Definition 12 Lower and upper DN of an m-PIVFG is

denoted by ~dðGÞ and ~DðGÞ; respectively, and defined by

minimum cardinality and maximum cardinality of all

minimal DS of that m-PIVFG, respectively.

Example 2 From Example 1, Fig. 1, minimal DS is fbg:

Note 1

1. For G ¼ ðV ;A;BÞ; x dominates y ) y dominates

x. That means domination is a symmetric relation.

2. If pi � llBðxyÞ\minfpi � llAðxÞ; pi � llAðyÞg and pi �
luBðxyÞ\minfpi � luAðxÞ; pi � luAðyÞg; 8x; y 2 V and

for i ¼ 1; 2; . . .;m; then V is the only DS in an m-

PIVFG G ¼ ðV ;A;BÞ:

Definition 13 For G ¼ ðV;A;BÞ; a vertex x is an isolated

vertex if for each i, pi � llBðxyÞ\minfpi � llAðxÞ; pi �
llAðyÞg and pi � luBðxyÞ\minfpi � luAðxÞ; pi � luAðyÞg 8v 2
V�fxg so that NðxÞ ¼ /; i.e., there is an edge between

x&y: That means an isolated vertex does not dominate any

other vertex in G.
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Example 3 Let us assume an m-PIVFG G ¼ ðV ;A;BÞ
(Fig. 2), where

A ¼
�

a

h½0:1; 0:7�; ½0:4; 0:6�; ½0:3; 0:8�i ;
b

½0:4; 0:5�; ½0:3; 0:9�; ½0:6; 0:7� ;
c

½0:1; 0:7�; ½0:5; 0:8�; ½0:3; 0:6�
d

h½0:3; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;
e

h½0:2; 0:6�; ½0:4; 0:9�; ½0:2; 0:5�iÞ:

B ¼
�

ab

h½0:0; 0:4�; ½0:2; 0:5�; ½0:3; 0:6�i ;
bc

h½0:1; 0:5�; ½0:3; 0:8�; ½0:3; 0:6�i ;

cd

h½0:1; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i
de

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;
ea

h½0:0; 0:5�; ½0:3; 0:4�; ½0:1; 0:2�i ;

ec

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i

�

:

Here, ‘a0 is an isolated vertex as pi � llBðabÞ\minfpi �
llAðaÞ; pi � llAðbÞg and pi � luBðabÞ\minfpi � luAðaÞ; pi �
luAðbÞg and also pi � llBðacÞ\minfpi � llAðaÞ; pi � llAðcÞg
and pi � luBðacÞ\minfpi � luAðaÞ; pi � luAðcÞg: Therefore,

‘a’ does not dominate any other vertex in G.

Definition 14 Let us suppose G ¼ ðV;A;BÞ has no iso-

lated vertices. A set ~D from V be a total DS on G ¼
ðV;A;BÞ if for each vertex y 2 V ; 9 x 2 ~D; x 6¼ y so that

x dominates y.

Definition 15 Lower (upper) total DN ~tðGÞ ( ~TðGÞ) is the
minimum (maximum) cardinality of a total DS on an m-

PIVFG G ¼ ðV;A;BÞ:

Example 4 From Example 1, Fig. 1, minimal DS is fbg
and Nfa; cg ¼ 1:85; Nfa; b; cg ¼ 2:75; Nfb; cg ¼ 1:65;

Nfa; bg ¼ 2:0; Nfbg ¼ 0:9: Hence, ~tðGÞ ¼ 0:9
~TðGÞ ¼ 2:75

Theorem 1 For an m -PIVFG G ¼ ðV ;A;BÞ; ~tðGÞ þ
~tðGÞ� 2~p; where ~tðGÞ and ~tðGÞ are total DN of G and its

complement G; respectively, and the equality holds iff

Fig. 1 DS in a 3-PIVFG G

Fig. 2 Isolated vertex of an 3-PIVFG G
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0\pi � llBðxyÞ\minfpi � llAðxÞ; pi � llAðyÞg and 0\pi �
luBðxyÞ\minfpi � luAðxÞ; pi � luAðyÞg 8x; y 2 V :

Proof ~tðGÞ ¼ ~p iff pi � llBðxyÞ ¼ minfpi � llAðxÞ; pi �
llAðyÞg and pi � luBðxyÞ ¼ minfpi � luAðxÞ; pi � luAðyÞg for

all x; y 2 V : Again since ~tðGÞ ¼ ~p iff pi � llBðxyÞ ¼
minfpi � llAðxÞ; pi � llAðyÞg � pi � llBðxyÞ and pi � luBðxyÞ ¼
minfpi � luAðxÞ; pi � luAðyÞg � pi � luBðxyÞ for all x; y 2 V;

these two results conclude that pi � llBðxyÞ[ 0& pi �
luBðxyÞ[ 0: Therefore, ~tðGÞ þ ~tðGÞ ¼ 2~p iff 0\pi �
llBðxyÞ\minfpi � llAðxÞ; pi � llAðyÞg and 0\pi �
luBðxyÞ\minfpi � luAðxÞ; pi � luAðyÞg for all x; y 2 V : h

Theorem 2 Iff one of the below mentioned criteria holds

then a DS ~D be minimal.

i. NðxÞ \ ~D ¼ /

ii. There is a vertex y 2 V � ~D such that NðyÞ \ ~D ¼ x;

for each x 2 ~D:

Proof For a minimal DS ~D of an m-PIVFG G ¼ ðV;A;BÞ;
for every vertex x 2 ~D; no proper subset of ~D that is ~D1 ¼
~D� x is DS. Therefore, any vertex in ~D1 cannot dominate

any vertex y 2 V � ~D1: If y ¼ x; then x cannot dominate

any vertex in ~D1: If y 6¼ x; then y is not dominated by ~D1

but is dominated by ~D: Thus y can dominate only x in ~D

that means NðyÞ \ ~D ¼ x:

Conversely, let ~D holds one of the two given criterias. If
~D is not a minimal DS, then 9 x 2 ~D so that ~D1 ¼ ~D� fxg
is dominating. That means atleast one vertex in ~D1 can

dominate x hence (i) does not hold. Again if ~D1 is a DS,

then atleast one vertex in ~D1 can dominate every vertex in

V � ~D that implies (ii) also does not hold, which contradict

our assumption. ) ~D must be a minimal DS. h

Definition 16 Let G ¼ ðV;A;BÞ be an m-PIVFG. A set

I 	 V is called an independent set of G if pi �
llBðxyÞ\minfpi � llAðxÞ; pi � llAðyÞg; pi � luBðxyÞ\min

fpi � luAðxÞ; pi � luAðyÞg for all x; y 2 I and for each i.

Definition 17 An independent set I of an m-PIVFG G ¼
ðV;A;BÞ is called maximal independent set of G if for

every vertex x 2 V � I; the set I [ fxg is not independent.

Definition 18 For an m-PIVFG G ¼ ðV ;A;BÞ; the lower

and upper independence number mean the minimum car-

dinality and maximum cardinality among all maximal

independent sets, respectively, and represented by ~iðGÞ and
~IðGÞ; respectively.

Definition 19 The upper independence number of an m-

PIVFG G ¼ ðV;A;BÞ denoted by is defined as the maxi-

mum cardinality among all maximal independent sets of G.

Example 5 Let us consider G ¼ ðV;A;BÞ (Fig. 3), where

A ¼
�

a

h½0:4; 0:6�; ½0:3; 0:9�; ½0:1; 0:7�i ;
b

h½0:3; 0:7�; ½0:4; 0:8�; ½0:2; 0:7�i ;
c

h½0:2; 0:6�; ½0:4; 0:7�; ½0:1; 0:5�i ;

d

h½0:5; 0:8�; ½0:6; 0:9�; ½0:2; 0:4�i ;
e

h½0:2; 0:7�; ½0:4; 0:5�; ½0:1; 0:6�i

�

:

B ¼
�

ab

h½0:2; 0:5�; ½0:2; 0:6�; ½0:0; 0:5�i ;
ac

h½0:1; 0:4�; ½0:2; 0:6�; ½0:0; 0:3�i ;

ad

h½0:3; 0:5�; ½0:2; 0:8�; ½0:0; 0:2�i ;

ae

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;
bc

h½0:0; 0:5�; ½0:3; 0:4�; ½0:1; 0:2�i ;

bd

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i
be

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;
cd

h½0:1; 0:4�; ½0:2; 0:5�; ½0:0; 0:2�i ;
ce

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i
de

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i

�

Here, independent sets are M1 ¼ fa; dg;M2 ¼
fa; cg;M3 ¼ fa; bg;M4 ¼ fc; dg;M5 ¼ fa; c; dg: Maximal

independent sets are M3 ¼ fa; bg;M5 ¼ fa; c; dg: Thus,

NðM3Þ ¼ 2:35 and NðM5Þ ¼ 3:15: Therefore, ~iðGÞ ¼
2:35 and ~IðGÞ ¼ 3:15:

Proposition 1 For any m -PIVFG, � ðGÞ� ~iðGÞ:

Example 6 By direct calculation from (Fig. 3), the set feg
is a minimal DS and maximal independent sets are fa; c; dg
and fa; bg: Nfeg ¼ 1:05: Hence, � ðGÞ ¼ 1:05 Again,
~iðGÞ ¼ 2:35: Thus clearly, � ðGÞ� ~iðGÞ:

Corollary 1 For a complete m -PIVFG G ¼ ðV ;A;BÞ;
� ðGÞ\~iðGÞ:

Theorem 3 A set I 	 V is a maximal independent set of an

m -PIVFG G ¼ ðV ;A;BÞ iff it is independent and DS of G.

Proof let us consider a maximal independent set I. Then

from the definition, for every x 2 V � I; the set I [ fxg is

not independent. Hence, for every vertex x 2 V � I; 9y 2 I

so that y can dominate x which implies I is a DS. ) I is both

independent and dominating. Conversely if we suppose

that I is not maximal independent set then 9 x 2 V � I such

that I [ fxg is independent. Thus x cannot dominate an y in

I. That implies, I is not a DS, which contradict our

assumption. ) I is a maximal independent set. h

Theorem 4 Every maximal independent set of an m -

PIVFG G ¼ ðV ;A;BÞ is a minimal DS.

750 Neural Computing and Applications (2022) 34:745–756

123



Proof For a maximal independent set I of G ¼ ðV ;A;BÞ; I
is DS. If we consider I being not minimal DS of G, then

for atleast one vertex x 2 I so that I � fxg is dominating

that means I � fxg dominates V � ðI � fxgÞ: Thus, there
exists atleast one vertex in I which dominates x. This

contradict our assumption. ); I is a minimal DS of

G ¼ ðV;A;BÞ: h

4 Other dominations in m-PIVFG

Herein, various types of domination in m-PIVFG with

reasonable models are characterized and a few hypotheses

identified with that are portrayed.

4.1 Strong and weak dominations in m-PIVFG

Definition 20 For x; y 2 V of an m-PIVFG G ¼ ðV ;A;BÞ ,
x strongly dominates y if pi � llBðxyÞ ¼ minfpi � llAðxÞ; pi �
llAðyÞg; pi � luBðxyÞ ¼ minfpi � luAðxÞ; pi � luAðyÞg and

duBðxÞ
 duBðyÞ and dlBðxÞ
 dlBðyÞ for 1 6 i 6 m: Similarly,

x weakly dominates y if pi � llBðxyÞ ¼ minfpi � llAðxÞ; pi �
llAðyÞg; pi � luBðxyÞ ¼ minfpi � luAðxÞ; pi � luAðyÞg and

duBðxÞ� duBðyÞ and dlBðxÞ� dlBðyÞ; for 1 6 i 6 m; :

Definition 21 A set ~D 	 V is a strong DS of an m-PIVFG

G if for every y 62 ~D; 9x 2 ~D so that x strongly dominates y.

Definition 22 A set ~D 	 V is a weak DS of an m-PIVFG

G if for y 62 ~D; 9x 2 ~D such that x weakly dominates y.

Definition 23 Strong DN � sðGÞ of an m-PIVFG G is the

minimum cardinality of all strong DS of an m-PIVFG G.

Weak DN �wðGÞ of G is the minimum cardinality of all

weak DS of an m-PIVFG G.

Example 7 Consider a 3-PIVFG G ¼ ðV ;A;BÞ (shown in

Fig. 4), where

A ¼
�

a

h½0:1; 0:7�; ½0:4; 0:6�; ½0:3; 0:8�i ;
b

h½0:4; 0:5�; ½0:3; 0:9�; ½0:6; 0:7�i ;
c

h½0:1; 0:7�; ½0:5; 0:8�; ½0:3; 0:6�i ;

d

h½0:3; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i

�

:

B ¼
�

ab

h½0:0; 0:4�; ½0:2; 0:5�; ½0:3; 0:6�i ;
bc

h½0:1; 0:5�; ½0:3; 0:8�; ½0:3; 0:6�i ;

cd

h½0:1; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;

da

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i

�

For the edge ab, ‘b’ weakly dominates ‘a’ or we can say

‘a’ strongly dominates ‘b’ as duBðaÞ[ duBðbÞ and

dlBðaÞ[ dlBðbÞ; similarly ‘c’ strongly dominates ‘d.’ Here

we consider the DS fa; cg: By calculation, we find it to be a
strong DS. Hence, � sðGÞ ¼ 2:2:

4.2 Split domination in m-PIVFG

Theorem 5 For a complete m -PIVFG, �wðGÞ 6 � sðGÞ:

Definition 24 A DS ~D of G ¼ ðV ;A;BÞ is split DS if the

induced subgraph hV � ~Di of G be disconnected. The split

Fig. 3 Independent sets of

3-PIVFG G
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DN � sp be the minimum cardinality of all split DS of that

m-PIVFG.

Example 8 From (Fig. 4), Example 7, we consider a DS

fa; cg: Thus hV � ~Di ¼ fb; dg is disconnected. Therefore,

fa; cg is split DS on this 3-PIVFG G ¼ ðV ;A;BÞ:

Corollary 2 Split DS exists if the graph is not complete and

either complete contains a non-complete component or at

least two non-trivial components.

Corollary 3 Every split DS in an m -PIVFG is DS, i.e.,

� ðGÞ 6 � spðGÞ:

Theorem 6 A split DS ~D of an m -PIVFG G is minimal for

each vertex x 2 ~D; one of the accompanying holds:

i. 9y 2 V � ~D so that NðyÞ \ ~D ¼ fxg:
ii. x 2 ~D be isolated.

iii. hV � ~D [ fxgi being connected.

Proof Suppose for an minimal split DS ~D of an m-PIVFG

9x 2 ~D so that X doesn’t satisfy any of the above-men-

tioned conditions. Thereafter from i. & ii., ~D1 ¼ ~D� fxg
be DS. Again from the condition iii. hV � ~Di being dis-

connected implies ~D1 as a split DS, which is a contradic-

tion. h

Definition 25 A strong split DS ~D of G ¼ ðV;A;BÞ is a

DS where the induced subgraph hV � ~Di is totally dis-

connected with at least two vertices. The split DN � ssp

means the minimum cardinality of all strong split DS.

Example 9 From Example 7, (Fig. 4) we consider a DS

fa; cg where the induced subgraph hV � ~Di ¼ fb; dg being

disconnected with two vertices. Therefore, fa; cg is strong

split DS on this 3-PIVFG.

Theorem 7 A DS ~D of G ¼ ðV ;A;BÞ be strong split DS iff

the followings are satisfied.

i. V � ~D has at least two vertices.

ii. For any x; y 2 V � ~D; every x� y path consists at

least a vertex of ~D:

Proof Proof of this theorem is straight forward. h

Theorem 8 A strong split DS of G ¼ ðV;A;BÞ be minimal
iff for each vertex v 2 ~D; any of the accompanying con-

dition is fulfilled.

i. 9x 2 V � ~D so that x is adjacent to y 2 ~D:

ii. y 2 ~D be an isolated vertex.

4.3 Non-split domination in m-PIVFG

Definition 26 A DS ~D of G ¼ ðV ;A;BÞ is said to be non-

split DS if the induced subgraph hV � ~Di is connected.
The non-split DN � nsðGÞ of an m-PIVFG G ¼ ðV ;A;BÞ

be minimum cardinality of all non-split DS. Since every

non-split DS of an m-PIVFG being DS of that m-PIVFG,

then � ðGÞ�� nsðGÞ:

Example 10 From (Fig. 1) Example 1, the DS fbg be non-

split. hV � fbgi ¼ fa; c; d; eg being connected implies

� nsðGÞ ¼ 0:9: In this case � ðGÞ ¼ � nsðGÞ: And also if we

take fa; b; cg as DS then hV � fa; cgi ¼ fb; d; eg is con-

nected & � nsðGÞ ¼ 1:85: That imply, � ðGÞ\� nsðGÞ:
)� ðGÞ�� nsðGÞ:

Theorem 9 A non-split DS ~D of an m -PIVFG G is

minimal iff for each vertex y 2 ~D one of the following is

satisfied.

i. 9x 2 V � ~D so that NðxÞ \ ~D ¼ fyg
ii. y being isolated vertex

iii. NðxÞ \ hV � ~Di ¼ h/i:

Proof Let ~D be minimal DS of an m-PIVFG G ¼
ðV;A;BÞ: Suppose there exist a vertex y 2 ~D so that y

satisfy none of the above three conditions. Then by theo-

rem ~D1 ¼ ~D� fvg be a DS. By third condition hV � ~D1i is
connected. This indicate ~D1 is a non-split DS of G ¼
ðV;A;BÞ; a contradiction. Hence, our assumption was

wrong. h

Definition 27 A DS ~D of G ¼ ðV;A;BÞ is a strong non-

split DS if the induced subgraph hV � ~Di is complete. The

Fig. 4 Strong DS on a 3-PIVFG G
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strong non-split DN � sns is the minimum cardinality of

strong non-split DS.

Since every strong non-split DS of G ¼ ðV;A;BÞ is a

non-split DS, � nsðGÞ�� snsðGÞ: Thus for any m-PIVFG,

� ðGÞ�� nsðGÞ�� snsðGÞ:

Definition 28 A DS ~D of a connected m-PIVFG is a cycle

non-split DS if the induced subgraph hV � ~Di is a cycle.

The cycle non-split DN � cns is the minimum cardinality of

cycle non-split DS.

Example 11 Lets consider Example 1 (Fig. 1). Here, if we

consider the DS fa; cg then the set fb; d; eg is a cycle.

Henceforth, it is a cycle DS on this 3-PIVFG.

Definition 29 A DS ~D of a connected m-PIVFG is a path

non-split DS if the induced subgraph hV � ~Di is a path.

The path non-split DN � pns is the minimum cardinality of

path non-split DS.

Example 12 Lets consider Example 1 (Fig. 1). Here, if we

consider the DSs

fa; dg; fbg; fd; eg; fc; eg; ; fb; a; egfb; c; dg then the sets

are path non-split DS.

Proposition 2 For any non-trivial connected m -PIVFG,

� pns �� pns:

4.4 Cototal domination in m-PIVFG

Definition 30 A DS ~D of an m-PIVFG is a cototal DS if

the induced subgraph hV � ~Di has no isolated vertices. The

cototal DN � ct defined by the minimum cardinality of a

cototal DS.

Definition 31 The condition for a DS ~D of an m-PIVFG to

be a global non-split DS is ~D being non-split DS of both G

and G: The global non-split DN � gns means the minimum

cardinality of a global non-split DS.

5 Case study

Domination in m-PIVFG can be applied in a wide variety

of several practical problems such as emergency response

operations, logistics systems, covering problems, and

location-routing problems. Herein, a case study of the

domination in m-PIVFG is incorporated in order to validate

our proposed concept.

5.1 Disaster response operations

Disasters are remarkable circumstances that require note-

worthy logistical management to distribute essential

humanitarian products so as to help and give alleviation to

casualties. A productive response assists with diminishing

social, financial, and ecological effects. In recent times,

Fig. 5 Zones of West Bengal. Red zones indicate the areas where

Covid affected mostly and where lockdown is very necessary. Orange

zones mean the areas where Covid affected less and green zones mean

Covid free areas (color figure online)

Table 2 Value given to each DC

p(i) a b c d e f g h i j

p(1) [0.1, 0.4] [0.1, 0.3] [0.2, 0.4] [0.2, 0.5] [0.2, 0.5] [0.4, 0.5] [0.4, 0.6] [0.2, 0.3] [0.2, 0.3] [0.2, 0.4]

p(2) [0.4, 0.7] [0.3, 0.5] [0.6, 0.9] [0.4, 0.7] [0.2, 0.4] [0.1, 0.2] [0.1, 0.3] [0.3, 0.4] [0.1, 0.4] [0.4, 0.6]

p(3) [0.5, 0.7] [0.6, 0.7] [0.2, 0.4] [0.3, 0.4] [0.4, 0.6] [0.3, 0.6] [0.2, 0.5] [0.5, 0.8] [0.4, 0.7] [0.2, 0.7]
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various natural calamities are cataclysmic the whole World

such as Tsunami (2004), Haiti earthquake (2010), earth-

quake in Nepal (2015), floods in Chennai (2015), Kerala

flood (2018), Cyclone Fani in Bangladesh, Sri Lanka,

Odisha, East India (2019). Recently, the ‘‘COVID-19

pandemic’’ is an ongoing outbreak which affects more than

3.84 million people in all over World (see https://en.wiki

pedia.org/wiki/COVID-19_pandemic, 7 May 2020).

Such type of circumstances can be only handled by

providing essential services such as medical aid, feeding

operation, sanitation services, distribution of humanitarian

items, etc. So as to give these products and ventures to the

influenced locales, and to have the option to rapidly react if

there should arise an occurrence of crises, an effective and

adaptable flexible framework is necessary. In this regard,

the covering problem plays a vital role to manage such kind

of situations. The affected regions are addressed as the

demand points and considered to be covered only if at least

a facility is accessible to supply all the necessary services

within a given distance. The main aim of the problem is

maximizing the coverage demand points with the minimum

number of facilities. Now, due to the ‘‘COVID-19 pan-

demic,’’ Department Of Health and Family Welfare, West

Bengal, India is announced that the whole state is divided

into 04 Red Zones (see Fig. 5, marked by red color) which

means the regions are mostly affected. The entry and exit

of individuals will be seriously limited. Movement of

people will only be allowed for the supply of essential

goods and services. Nearly everything will stay shut. In

these circumstances, the government wishes to locate some

distribution centers (DC) so that each Red Zone will be

covered with maximizing the effecting region, minimum

logistics cost and conveyance time. In fact, the government

aims to set up the minimum number of DC to reduce the

opening cost of DC. This scenario can be prevented by a 3-

PIVFG, G ¼ ðT ;RÞ; where T is the 3-polar interval-valued

fuzzy vertex set of Red Zones (Table 2) and R is the 3-

polar interval-valued fuzzy edge set of the relation between

zones depending on these criteria such as the effecting

region, logistics cost and conveyance time. These criteria

are taken as pole, respectively, in the form of some interval

taken from [0, 1]. Here, we have taken 10 number of DC

fa; b; c; d; e; f ; g; h; i; jg in which we have to find minimum

number of DC that means minimal domination (Fig. 6).

B ¼
�

ab

h½0:2; 0:5�; ½0:2; 0:6�; ½0:0; 0:5�i ;
bc

h½0:1; 0:4�; ½0:2; 0:6�; ½0:0; 0:3�i ;

bd

h½0:3; 0:5�; ½0:2; 0:8�; ½0:0; 0:2�i ;
cd

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;

ce

h½0:0; 0:5�; ½0:3; 0:4�; ½0:1; 0:2�i ;
df

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i ;

ef

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;
eg

h½0:1; 0:4�; ½0:2; 0:5�; ½0:0; 0:2�i ;

fg

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i ;
gi

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i ;

gh

h½0:1; 0:4�; ½0:2; 0:5�; ½0:0; 0:2�i ;
hi

h½0:1; 0:6�; ½0:4; 0:8�; ½0:2; 0:5�i ;

hj

h½0:2; 0:5�; ½0:3; 0:7�; ½0:0; 0:4�i

�

:

Here p(i) indicates the membership value of ith pole. By

direct calculation, we find the minimal DS as fb; g; hg:
fb; f ; hg and fb; g; jg are also minimal DS. But finding the

DN, we observed that fb; f ; hg is the minimum DS and the

DN � ðGÞ ¼ 2:25: Hence b, f and h are, respectively, taken

DC so that all the criteria fulfilled by the Govt.

5.2 Algorithm

The steps are given for determination of the best potential

facilities in our case study, which are as per the following:

Step 1 Firstly, the vertex set T of V and the edge set R of

E are chosen in our m-PIVFG.

Step 2 Then, the m-PIVFG, G ¼ ðT;RÞ is calculated.

Now, we find the vertices xj like pi � llBðxjxkÞ ¼ pi �

Fig. 6 Pictorial diagram of the application
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minfllAðxjÞ; llAðxkÞg; pi � luBðxjxkÞ ¼ pi �minfluAðxjÞ;
luAðxkÞg; for j 6¼ k:

Step 3 The set ~Tj 	 Y of vertices xj is formulated. If

[kxk ¼ Y � ~Tj then ~Tj is a DS, else it’s not a DS.

Step 4 Afterwards, we repeat the same steps (Steps 2–3)

to seek all the DSs ~Tj of V.

Step 5 Thus, we get all the DSs ~Tj of Y; Stop.

6 Conclusion and future research direction

This article has been incorporated the hypothesis of dom-

ination with the idea of m-PIVFG and explored a few

graph-theoretic concepts. Each of these types of ideas has

been proposed by suitable examples. We have also inves-

tigated the definitions of order, size, cardinality in m-

PIVFG. We have explained DN, isolated vertex, total DS,

independent set of domination in m-PIVFG with suit-

able examples. Various important results regarding these

dominations have been illustrated. Weak and strong dom-

ination, split and non-split domination, strong non-split

domination, cycle and path non-split domination, co-total

and global non-split domination in m-PIVFG have been

explained with supporting examples and important results.

An illustrative example from the field of disaster man-

agement problem has been described for demonstrating the

real-world example of domination on m-PIVFG shows our

approach.

We should feature that regarding this investigation,

there are distinctive developing regions that we need not

demonstrate here as they are outside of our feasible region.

In any case, there can be interesting points for future

research; for example, one may examine the m-PIVFG with

various kinds of environments, e.g., Pythagorean graph, q-

rung fuzzy graph, fuzzy soft graph, competition graph [12].

Such huge numbers of research bearings stay open; thus,

researchers can investigate the problem by the various

fuzzy graphs. Later on, we will examine different outcomes

of m-PIVFG and expand them to describe various dynamic

issues and covering problems under different uncertainties.
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