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Abstract
Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are

nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly controlled without

additional regularization. In this paper, we investigated the nonnegative CANDECOMP/PARAFAC (NCP) decomposition

with the sparse regularization item using l1-norm (sparse NCP). When high sparsity is imposed, the factor matrices will

contain more zero components and will not be of full column rank. Thus, the sparse NCP is prone to rank deficiency, and

the algorithms of sparse NCP may not converge. In this paper, we proposed a novel model of sparse NCP with the proximal

algorithm. The subproblems in the new model are strongly convex in the block coordinate descent (BCD) framework.

Therefore, the new sparse NCP provides a full column rank condition and guarantees to converge to a stationary point. In

addition, we proposed an inexact BCD scheme for sparse NCP, where each subproblem is updated multiple times to speed

up the computation. In order to prove the effectiveness and efficiency of the sparse NCP with the proximal algorithm, we

employed two optimization algorithms to solve the model, including inexact alternating nonnegative quadratic pro-

gramming and inexact hierarchical alternating least squares. We evaluated the proposed sparse NCP methods by exper-

iments on synthetic, real-world, small-scale, and large-scale tensor data. The experimental results demonstrate that our

proposed algorithms can efficiently impose sparsity on factor matrices, extract meaningful sparse components, and out-

perform state-of-the-art methods.

Keywords Tensor decomposition � Nonnegative CANDECOMP/PARAFAC decomposition � Sparse regularization �
Proximal algorithm � Inexact block coordinate descent

1 Introduction

1.1 Background

Nonnegative tensor decomposition is a powerful tool in

signal processing and machine learning [10, 35]. Nonneg-

ative CANDECOMP/PARAFAC (NCP), as an important

decomposition method, has been widely applied to pro-

cessing multiway data, such as hyperspectral data [39],

electroencephalograph (EEG) data [11], fluorescence

excitation-emission matrix (EEM) data [13], neural data

[46], and many other multiway tensor data [30]. In many

cases, the extracted components by NCP are not only

nonnegative but also sparse. For example, the spectral

components from EEG tensor decomposition are usually

very sparse, representing the narrow-band frequencies of

some brain activities [11]. For another example, after

decomposing EEM tensor, a component in the sample

mode denotes the concentrations of a compound in all

samples [5], which is sometimes also sparse. The non-

negative constraint in NCP will naturally lead to sparse

results. However, this sparsity is only a side effect, which

cannot be controlled to a certain level [18]. Without

properly controlling the sparsity, the intrinsic components

in the data cannot be extracted precisely, especially in low

signal-to-noise ratio conditions. Therefore, in order to

extract meaningful and accurate sparse components, addi-

tional sparse regularization is necessary for NCP tensor

decomposition.

The design of NCP decomposition with explicit sparse

regularization (sparse NCP) will benefit a lot from the

methods in nonnegative matrix factorization (NMF) cases.
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On the one hand, an early study of NMF [18] proposed the

method of projecting components into sparse vectors at

some sparsity level. However, this method keeps all com-

ponents at the same fixed sparsity level, which is not in line

with the true sparsity of different components in the data.

On the other hand, incorporating sparse regularization

items into the optimization model is a popular method. The

l1-norm is a conventional and effective regularizer to

impose sparsity for signal processing [6]. The reason is

that, for most underdetermined linear equations, the opti-

mization problem with l1-norm regularization can yield

strong sparsity [12]. More information about the sparse

regularization can be found in [2, 34, 50].

Many works have been devoted to the tensor decom-

position with sparse regularization, but only a few can be

found for NCP. The works of [1, 21] and [29] studied the

sparse regularization for tensor decomposition using l1-

norm and trace norm, but they only focused on the

unconstrained CP model without the nonnegative con-

straint. The works of [14, 28, 31] and [47] proposed the

methods of imposing sparsity by the l1-norm on nonnega-

tive Tucker decomposition. However, these methods are

not suitable for large-scale problems [47], and their

effectiveness is unknown to NCP. Kim et al. considered

solving sparse NCP using ANLS [23]. Nevertheless, ANLS

seriously suffers from rank deficiency caused by high

sparsity or zero components in the factor matrices.

Recently, Huang et al. have proposed an alternating opti-

mization-based ADMM (AO-ADMM) method, which can

handle the l1-norm regularization item in NCP [19]. Nev-

ertheless, there is no experimental evaluation on the sparse

NCP in [19]. The work [32] proposed a sparse NCP

algorithm, which is targeted at the multiway co-clustering.

In practical applications, the sparse NCP may face the

following two major challenges.

One challenge is that when the tensor data are highly

sparse or strongly sparse regularization is imposed on the

decomposition, more and more zero components will

appear in the factor matrices. Thus, the factor matrices are

not of full column rank, which will cause the rank defi-

ciency problem. The rank deficiency will further cause a

poor convergence of the tensor decomposition algorithm. It

is introduced that the proximal algorithm is an excellent

method to improve the convergence of a mathematical

optimization method [4]. In an optimization problem by

iterations, the proximal algorithm is constructed by adding

a proximal regularization item to the original model. This

proximal item is the squared Frobenius norm of the dif-

ference between the current variable and its value in pre-

vious iteration [4]. The proximal algorithm can naturally be

incorporated into tensor decomposition [26].

The other challenge is that, for large-scale tensor data,

the process of sparse NCP decomposition might be

inefficient. It is reported that the inexact block coordinate

descent scheme could accelerate the convergence and is

very beneficial to the large-scale problem [15, 40]. Hence,

the inexact scheme can be employed in the sparse NCP

problem.

1.2 Contribution

Firstly, in this paper, we propose a novel sparse NCP

method with the l1-norm and the proximal algorithm. The

proposed sparse NCP will overcome the rank deficiency

and guarantee the decomposition to converge to a station-

ary point. The block coordinate descent (BCD) is one of

the main techniques for tensor decomposition, especially

the constrained one [24]. In BCD framework, each factor

matrix is updated as a subproblem alternatively while other

factor matrices are fixed. By the proximal algorithm, the

proximal regularization item can make the subproblems

strongly convex [26] and can provide a full column rank

condition for the sparse NCP.

Secondly, we develop an inexact BCD scheme for the

novel sparse NCP model. The inexact scheme will speed up

the computation of the sparse NCP, especially in large-

scale cases. Specifically, in the inexact BCD scheme, the

subproblem of the sparse NCP is iterated multiple times for

updating a factor matrix.

Thirdly, in order to prove the viability of the sparse NCP

model with the proximal algorithm and the inexact scheme,

we employ two efficient optimization algorithms to solve

the model, including inexact alternating nonnegative

quadratic programming and inexact hierarchical alternating

least squares. We evaluate the proposed sparse NCP

methods on synthetic, real-world, small-scale and large-

scale tensor data. By properly selecting and tuning the

sparse regularization, the effectiveness and efficiency of

the sparse NCP methods are demonstrated to impose

sparsity on factor matrices.

1.3 Organization

The rest of this paper is organized as follows. Section 2

introduces some preliminaries. In Sect. 3, we describe the

mathematical model of sparse NCP with the proximal

algorithm and inexact BCD scheme. Section 4 elucidates

the solutions to the sparse NCP model using the opti-

mization methods. Section 5 describes the detailed exper-

iments on synthetic and real-world datasets. Some critical

observations are discussed in Sect. 6. Finally, we conclude

our paper in Sect. 7.
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2 Preliminaries

In this paper, operator � represents the outer product of

vectors, � represents the Khatri-Rao product, * represents

the Hadamard product that is the elementwise matrix pro-

duct, h i represents the inner product, [ ] represents

Kruskal operator and [ ]? represents nonnegative projec-

tion. jj jjF denotes Frobenius norm, and jj jj1 denotes l1-

norm. Basics of tensor computation and multi-linear alge-

bra can be found in review papers [25, 35].

2.1 Nonnegative CP decomposition

Given an Nth-order nonnegative tensor X 2 RI1�I2�����IN

and a positive number R, nonnegative CANDECOMP/

PARAFAC (NCP) is to solve the following minimization

problem:

min
Að1Þ;...;AðNÞ

1

2
jjX � sAð1Þ; . . .;AðNÞtjj2F

s.t. AðnÞ > 0 for n ¼ 1; . . .;N;

ð1Þ

where AðnÞ 2 RIn�R for n ¼ 1; . . .;N are the estimated

factor matrices in different modes, In is the size in mode-n,

and R is the initial number of components. We use

Ftensor

�
A
�
¼Ftensor

�
Að1Þ; . . .;AðNÞ

�
to denote the objec-

tive function in (8). The estimated factor matrices in

Kruskal operator can be represented by the sum of R rank-1

tensors in outer product form:

sAð1Þ; . . .;AðNÞt ¼
XR

r¼1
Yr ¼

XR

r¼1
að1Þr � � � � � aðNÞr ; ð2Þ

where a
ðnÞ
r represents the rth column of AðnÞ.

Let XðnÞ 2 R
In�
QN

~n¼1; ~n 6¼n I ~n represent the mode-n unfolding

(matricization) of original tensor X . The mode-n unfolding

of the estimated tensor in Kruskal operator sAð1Þ; . . .;AðNÞt

can be written as AðnÞ
�
BðnÞ

�T
, in which

BðnÞ ¼
�
AðNÞ � � � � � Aðnþ1Þ � Aðn�1Þ � � � � � Að1Þ

�
2 R

QN

~n¼1; ~n6¼n I ~n�R

. In BCD framework, factor AðnÞ is updated alternatively by

a subproblem in every iteration, which is equal to the

following minimization problem:

min
AðnÞ

F
�
AðnÞ

�
¼ 1

2
jjXðnÞ � AðnÞ

�
BðnÞ

�T jj2F

s.t. AðnÞ > 0:

ð3Þ

The partial gradient (or partial derivative) of F
�
AðnÞ

�
with

respect to AðnÞ is

o

oAðnÞ
F
�
AðnÞ

�
¼ AðnÞ

��
BðnÞ

�T
BðnÞ

�
� XðnÞB

ðnÞ: ð4Þ

In (4), the item XðnÞB
ðnÞ is called the Matricized Tensor

Times Khatri-Rao Product (MTTKRP) [35]. The item
�
BðnÞ

�T
BðnÞ can be computed efficiently by

�
BðnÞ

�T
BðnÞ ¼

��
AðNÞ

�T
AðNÞ

�
� � � �

�
��
Aðnþ1Þ

�T
Aðnþ1Þ

�
�
��
Aðn�1Þ

�T
Aðn�1Þ

�

� � � � �
��
Að1Þ

�T
Að1Þ

�
:

ð5Þ

2.2 Sparse regularization with l1-norm

In order to impose sparsity to the factor matrices, it is

natural to incorporate the sparse regularization items using

l1-norm [9, 47] into the objective function in (1), which

leads to the following basic sparse NCP problem:

min
Að1Þ;...;AðNÞ

1

2
jjX � sAð1Þ; . . .;AðNÞtjj2F þ

XN

n¼1
bn
XR

r¼1
jjaðnÞr jj1

s.t. AðnÞ > 0 for n ¼ 1; . . .;N;

ð6Þ

where bn are positive sparse regularization parameters in

parameter vectors b 2 RN�1. The subproblem can be

written as the following optimization problem

min
AðnÞ

F0

�
AðnÞ

�
¼ 1

2

���XðnÞ � AðnÞ
�
BðnÞ

�T���
2

F
þ bn

XR

r¼1

���aðnÞr

���
1

s.t. AðnÞ > 0:

ð7Þ

In the objective function of the subproblem, the sparse

regularization is imposed on the factor matrix AðnÞ by the

l1-norm.

3 The proposed sparse NCP model

3.1 Sparse NCP with proximal algorithm

The basic sparse NCP in (6) has a serious drawback. When

strongly sparse regularization is imposed in (6), many zero

columns will appear in the factor matrices AðnÞ. Thus, both

AðnÞ and BðnÞ cannot guarantee to be of full column rank.

Therefore, the basic sparse NCP model in (6) will suffer

from rank deficiency and cannot guarantee to converge.

In order to overcome the above drawback, we propose

the following sparse NCP model with proximal algorithm
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(a proximal regularization item using squared Frobenius

norm):

min
Að1Þ;...;AðNÞ

�
1

2

���X � sAð1Þ; . . .;AðNÞt
���
2

F

þ
XN

n¼1

an
2

���eAðnÞ � AðnÞ
���
2

F
þ
XN

n¼1
bn
XR

r¼1

���aðnÞr

���
1

�

s.t. AðnÞ > 0 for n ¼ 1; . . .;N;

ð8Þ

where eAðnÞ is the value of the factor AðnÞ in previous iter-

ation during updating and an are positive regularization

parameters in vectors a 2 RN�1.
In BCD framework, the subproblem of model (8) can be

written in the following minimization problem:

min
AðnÞ

FPROX

�
AðnÞ

�
¼
�
1

2

���XðnÞ � AðnÞ
�
BðnÞ

�T���
2

F

þ an
2

���eAðnÞ � AðnÞ
���
2

F
þ bn

XR

r¼1

���aðnÞr

���
1

�

s.t. AðnÞ > 0:

ð9Þ

The objective function FPROX

�
AðnÞ

�
can be further repre-

sented by the following form:

FPROX

�
AðnÞ

�
¼ 1

2

XT
ðnÞ

ffiffiffiffiffi
an
p �eAðnÞ

�T

0

@

1

A�
BðnÞ

ffiffiffiffiffi
an
p

IR

 !
�
AðnÞ

�T
������

������

2

F

þ bn
XR

r¼1

���aðnÞr

���
1
:

ð10Þ

In (10), it is clear to see that the item
BðnÞffiffiffiffiffi
an
p

IR


 �
must be of

full column rank even though BðnÞ is not of full column

rank. Thus, the proposed sparse NCP with the proximal

algorithm can successfully overcome the rank deficiency

problem in the objective function.

3.2 Inexact block coordinate descent scheme

The BCD is a main framework to solve tensor decompo-

sition. It is reported that the inexact BCD scheme could

accelerate the computation [15, 40]. Specifically, the factor

matrices AðnÞ; n ¼ 1; . . .;N, are updated alternatively in

outer iterations; meanwhile, in the subproblem (9), the

factor AðnÞ is also updated several times in inner iterations.

The procedures of the inexact scheme are listed in Algo-

rithm 1.

3.3 Convergence analysis

The proposed sparse NCP method in (8) can guarantee to

converge to a stationary point.

Proposition 1 Every limit point of the sequence

A
ð1Þ
k ; . . .;A

ðNÞ
k

n o1

k¼1
generated by the sparse NCP in

Algorithm 1 is a stationary point of (6).

Proof The objective function FPROX

�
AðnÞ

�
in (9) with the

proximal regularization item is strictly convex [4]. More-

over, FPROX

�
AðnÞ

�
is a proximal upper bound [17, 33] of

the objective function F0

�
AðnÞ

�
in (7). Using the inexact

block coordinate descent scheme, the subproblem in

Algorithm 1 is updated by a finite number of inner itera-

tions. According to the Theorem 2 in [49], every limit point

of the sequence A
ð1Þ
k ; . . .;A

ðNÞ
k

n o1

k¼1
generated by the

sparse NCP in Algorithm 1 is a stationary point of (6). h

4 Optimization methods for solving sparse
NCP

In order to prove the viability and effectiveness of the

novel sparse NCP with the proximal algorithm and inexact

scheme, we employ the following two optimization meth-

ods to solve the model.

4.1 Alternating nonnegative quadratic
programming

First, we utilize a method that is based on a general form of

the alternating nonnegative least squares (ANLS). The

classical ANLS is an important tool for NMF and NCP

[24]. Many efficient optimization algorithms were pro-

posed to solve the nonnegative least squares (NNLS)

subproblems, such as active-set (AS) [20] and block prin-

cipal pivoting (BPP) [22]. However, there are two limita-

tions to the application of ANLS to sparse NCP. The first

limitation is that ANLS is very prone to rank deficiency.

The proximal algorithm can tackle this limitation in our

sparse NCP model. The second limitation is that the
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subproblem of our proposed sparse NCP model cannot be

represented in a least squares form due to the l1-norm

regularization, which can be clearly seen in (10). There-

fore, some new forms of the objective function in (8)

should be considered.

Inspired by [27], the subproblem of the proposed sparse

NCP in (9) can be represented in the nonnegative quadratic

programming (NNQP) form as the following problem:

min
AðnÞ

XIn

i¼1

�
1

2

�
AðnÞ

�
ði;:ÞM

�
AðnÞ

�T
ði;:Þ þ Nði;:Þ

�
AðnÞ

�T
ði;:Þ

þ 1

2

�
XðnÞ

�
ði;:Þ
�
XðnÞ

�T
ði;:Þ þ

an
2

�eAðnÞ
�
ði;:Þ
�eAðnÞ

�T
ði;:Þ

�

s.t. AðnÞ > 0;

ð11Þ

where
� �
ði;:Þ represents the ith row of a matrix,

M ¼
�
BðnÞ

�T
BðnÞ þ anIR, N ¼ bnE� XðnÞB

ðnÞ � aneAðnÞ and
E is a matrix of all ones. In fact, NNQP is a general form of

NNLS.

The above-mentioned optimization methods for NNLS

can also be used to solve NNQP problem. In this study, we

only use block principal pivoting (BPP) [22] as the NNQP

solver, which has been proven to be a very efficient method

[22, 24]. The solver of BPP contains multiple inner itera-

tions. We limited the inner iterations by several times in the

inexact scheme. We name the method of solving tensor

decomposition using NNQP as alternating nonnegative

quadratic programming (ANQP). Furthermore, we abbre-

viated the method of solving the sparse NCP with the

proximal algorithm using ANQP as PROX-ANQP. Algo-

rithm 2 explicates the PROX-ANQP method.

4.2 Inexact hierarchical alternating least squares

Second, we employ an inexact hierarchical alternating least

squares (iHALS) method for solving the sparse NCP with

the proximal algorithm. The conventional HALS is an

efficient method of updating each factor column by column

[7, 9]. However, the HALS method has two major draw-

backs to solving the sparse NCP.

First, HALS is also very prone to rank deficiency.

Specifically, if a column of the factor matrix AðnÞ becomes

a zero vector, the HALS will break down [22]. One prac-

tical remedy is to replace the zero elements with a small

positive value [9], such as 10�16. However, by this modi-

fication, the obtained factor matrices are not sparse

anymore.

Second, HALS suffers from the caveat problem (see

Section 5.2 in [22]). Specifically, the unbalanced scales

will appear in different columns and factors. For example,

one column in the first factor might have a scale of 10�8

and the corresponding column in the second factor might

have a scale of 108. At the same time, another column in

the first factor might have a scale of 1016 and the corre-

sponding column in the third factor might have a scale of

10�16. One common method of controlling the unbalanced

scales is to normalize all columns to unit vectors in the

factors [9]. However, by factor normalization, the factor

columns will never become zeros vectors. Hence it is

impossible to impose sparsity efficiently.

The proximal algorithm in our sparse NCP will over-

come the above drawbacks. We have mentioned that the

proximal will guarantee the full column rank in the model.

Moreover, the proximal regularization item in sparse NCP

can keep all columns in factors on a balanced scale.

Next, we will introduce the solution of the model in (8)

using the iHALS method. For the sake of simplification, we

use ar and br instead of a
ðnÞ
r and bðnÞr in this part, which are

the rth column of AðnÞ and BðnÞ, respectively. We also use
�
AðnÞ

�
ð:;rÞ ¼ ar 2 RIn�1 to represent the column of a matrix,

and
�
AðnÞ

�
ði;rÞ ¼ a

ðnÞ
ir to represent an element in a matrix.

The objective function in (9) can be further represented

as

F
�
AðnÞ

�
¼ 1

2

���XðnÞ �
XR

r¼1
arb

T
r

���
2

F

þ an
2

XR

r¼1
jjar � earjj22 þ bn

XR

r¼1
jjarjj1;

ð12Þ

where ear is the rth column of eAðnÞ. The minimization

problem for (12) can be solved iteratively by columnwise

subproblems:
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min
ar

Fr ¼
1

2

���Zr � arb
T
r

���
2

F
þ an

2
jjar � earjj22 þ bnjjarjj1

s.t. ar > 0;

ð13Þ

for r ¼ 1; . . .;R, in which

Zr ¼ XðnÞ �
XR

~r¼1;~r 6¼r
a~rb

T
~r : ð14Þ

The partial derivative of Fr with respect to ar is

oFr

oar
¼
�
arb

T
r � Zr

�
br þ anar � anear þ bn1;

¼
�
bTrbr þ an

�
ar �

�
Zrbr þ anear � bn1

�
;

ð15Þ

where 1 2 RIn�1 is a vector with all elements equal to 1.

When oFr

oar
¼ 0, nonnegative column vector ar can be

updated as

ar  
Zrbr þ anear � bn1

bTr br þ an

" #

þ

; ð16Þ

which is a closed form solution of (13) according to the

Theorem 2 in [24].

A fast HALS method was utilized to solve the large-

scale problem [7, 24]. We use the same idea to solve the

sparse NCP problem. Zr in (14) can also be represented as

Zr ¼ XðnÞ �
XR

~r¼1
a~rb

T
~r þ earbTr : ð17Þ

Replacing Zr in (16) by (17), we obtain the new update rule

for ar as shown in (18).

ar  
� �

XðnÞ �
PR

~r¼1 a~rb
T
~r þ earbTr

�
br þ anear � bn1

bTr br þ an



þ

¼
�
ear þ

XðnÞbr �
PR

~r¼1 a~rb
T
~r br � bn1

bTr br þ an



þ

¼
"

ear þ
�
XðnÞB

ðnÞ�
ð:;rÞ � AðnÞ

��
BðnÞ

�T
BðnÞ

�
ð:;rÞ � bn1

��
BðnÞ

�T
BðnÞ

�
ðr;rÞ þ an

#

þ

ð18Þ

We implement the above procedures using the inexact

scheme. We use PROX-iHALS to denote the inexact

hierarchical alternating least squares method for solving

the sparse NCP with the proximal algorithm. The PROX-

iHALS is illustrated in Algorithm 3.

4.3 Stopping conditions

4.3.1 Stopping condition for outer loop

We terminate the outer loop according to the change of

relative error during iteration. Relative error is related to

data fitting. In the kth outer iteration, the relative error [48]

of tensor decomposition is defined by

RelErrk ¼
kX � sA

ð1Þ
k ; . . .;A

ðNÞ
k tkF

kXkF
: ð19Þ

Based on the relative error, we terminate the outer loop

using the following stopping condition

jRelErrk�1 � RelErrkj\e: ð20Þ

The threshold of e can be set by a very small positive value,

such as 1e� 8.

In addition, we also set a maximum running time for the

outer loop.

4.3.2 Stopping condition for inner loop

In the lth inner iteration, we define the relative residual of

the nth factor matrix AðnÞ as

r
ðnÞ
l ¼

��AðnÞl � A
ðnÞ
l�1
��
F��AðnÞl

��
F

: ð21Þ

For the PROX-iHALS, we terminate the inner loop by the

stopping condition of r
ðnÞ
l \dðnÞ, where dðnÞ is a dynamic

positive threshold. If there is only one iteration in the inner

loop, we update dðnÞ by dðnÞ ¼ dðnÞ=10. We set the initial

value by dðnÞ ¼ 0:01. For the PROX-ANQP, the inner loop

is terminated according to the columns in the feasible

region of the BPP algorithm [22].
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Since we employ the inexact BCD framework, we also

set a maximum number of inner iterations (MAX_-

INNER_ITER) to terminate the inner loop.

We summarize the stopping conditions for both of the

outer and inner loop in Algorithm 4.

4.4 Remarks on convergence

The PROX-ANQP and PROX-iHALS methods in the

inexact BCD framework have outstanding convergence

properties. In Sect. 3.3, we have mentioned that proposed

sparse NCP using the proximal algorithm and inexact BCD

scheme can guarantee to converge to a stationary point.

The subproblem with the proximal algorithm in (9) is

strongly convex, which can yield a unique minimum [4].

Furthermore, the optimization methods of ANQP and

iHALS can stably decrease the subproblem. According to

the Proposition 3.7.1 in [4], both the PROX-ANQP and

PROX-iHALS can converge to stationary points.

5 Experiments and results

We carried out the experiments on synthetic, real-world,

dense, sparse, small-scale, and large-scale tensors. We

compared the proposed PROX-ANQP and PROX-iHALS

methods with three sparse NCP methods listed below.

• AO-ADMM: This is the sparse NCP method using AO-

ADMM algorithm [19], which includes multiple inner

iterations. The l1-norm is handled by a proximal

operator.

• iAPG: We extend the APG method in sparse Tucker

decomposition [47] to the sparse NCP problem in (6).

In order to make a fair comparison, we implement APG

in the inexact scheme using multiple inner iterations,

which is abbreviated as iAPG [42]. The l1-norm is

handled by a proximal operator.

• iMU: This is the sparse NCP method using the classical

MU algorithm [9]. We implement MU in the inexact

scheme using multiple inner iterations, which is abbre-

viated as iMU.

The above three methods can be directly applied to solve

the sparse NCP in (6). The l1-norm can be handled by the

proximal operator in AO-ADMM and iAPG. Due to the

proximal operator, AO-ADMM and iAPG do not suffer

from the rank deficiency. Using the multiplicative updating

rule, MU does not suffer from the rank deficiency.

In Table 1, we summarized the computational com-

plexity of all the sparse NCP methods. Only the multi-

plicative operations were counted for mode-n in one outer

iteration. The main time cost of these algorithms was spent

on the calculation of MTTKRP XðnÞB
ðnÞ, which consists of

two parts: Khatri-Rao product BðnÞ and matrix product of

XðnÞ and BðnÞ. The computational complexity of BðnÞ

reaches R
QN

~n¼1; ~n6¼n I ~n and that of XðnÞB
ðnÞ reaches

R
QN

n¼1 In. Item
�
BðnÞ

�T
BðnÞ can be calculated efficiently by

(5), whose complexity is R2
PN

~n¼1; ~n 6¼n I ~n. For the inner loop

of the subproblem, �K is assumed to be the average iteration

number. In Table 1, we can find that the complexity of

these algorithms is highly comparable to each other. It can

be inferred that the time of convergence is highly related to

the number of iterations.

Many experimental parameters and settings will affect

the performances of a sparse NCP method. Since our

purpose in the experiments is only to test the ability to

impose sparsity, we fix the following settings for all

methods.

• Initialization. For PROX-ANQP, PROX-iHALS, AO-

ADMM and iAPG, all factor matrices were initialized

using nonnegative random numbers by MATLAB

function max(0,randn(In;R)). Only the iMU was

Table 1 Computational Complexity of Multiplicative Operations for

Subproblem (9)

Method XðnÞB
ðnÞ �

BðnÞ
�T

BðnÞ Inner loop

PROX-ANQP �KðInR2þR3Þ

PROX-iHALS �KInR
2

AO-ADMM R
QN

~n¼1; ~n6¼n I ~n R2
PN

~n¼1; ~n6¼n I ~n
�KðInR2þR3Þ

iAPG þR
QN

~n¼1 I ~n
�KInR

2

iMU �KInR
2

�K is assumed to be the average inner iteration number
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initialized by max(0,randn(In;R))?0.1. All initialized

factors were scaled by A
ðnÞ
0 ¼

A
ðnÞ
0

jjAðnÞ
0
jjF
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jjX jjFN

p
.

• The factor updating order was fixed by 1; 2; . . .;N.

• The maximum inner iteration MAX_INNER_ITER was

fixed by 5 according to the default setting in AO-

ADMM [19].

• For the PROX-ANQP and PROX-iHALS method, the

proximal regularization parameter an was fixed by 1e-4

[45].

The l1-norm regularization parameters of bn; n ¼ 1; . . .;N;

in sparse NCP are the key elements to impose sparsity,

which are the most crucial testing parameters in the

experiments. We selected a sequence of bn values in

ascending order for each tensor by manual testing. For

synthetic tensors, we stop the increase of bn when the true

sparse components are recovered, while for real-world

tensors, we stop the increase of bn when the number of

nonzero components is reduced to less than half of the

initial number. In order to make it convenient to select and

test the parameters, we kept bn; n ¼ 1; . . .;N; the same in

all modes of the tensor. After choosing the bn, we calcu-

lated and evaluated the sparsity level [44] of the factor

matrices by

SparsityAðnÞ ¼
#
�
A
ðnÞ
i;r \Ts

�

In � R
; ð22Þ

where Ts is a small positive number and # �f g denotes the
number of elements that are smaller than the threshold Ts in

factor matrix AðnÞ.
In the synthetic tensor experiments, we used prior sparse

matrices to construct the data. After decomposition, the

accuracy of the recovered sparse signals should be evalu-

ated. Let SðnÞ ¼ ½s1; . . .; sR� 2 RL�R denote the mode-n

prior sparse matrix, where R is the real number of com-

ponents and L is the length of a component. Let TðnÞ ¼
½t1; . . .; t ~R� 2 RL� ~R represent the mode-n estimated sparse

matrix, where the ~R is the estimated number of nonzero

components. We evaluate the accuracy of the estimated

matrix TðnÞ compared with original sparse signals SðnÞ by
peak-signal-to-noise ratio (PSNR, see Chapter 3 in [9])

PSNR ¼ 1

~R

X~R

r¼1
10log10

L
��t̂r � ŝc

��2
2

; ð23Þ

where t̂r is the rth normalized estimated sparse signal, and

ŝc is the normalized reference sparse signal. ŝc comes from

SðnÞ, which has the highest correlation coefficient with t̂r .

All the experiments were conducted on the computer

with Intel Core i5-4590 3.30 GHz CPU, 8 GB memory,

64-bit Windows 10 and MATLAB R2016b. The funda-

mental tensor computation was based on Tensor Toolbox

2.6 [3]. The codes are available on the author’s website

http://deqing.me/.

5.1 Synthetic tensor data

5.1.1 Size 1000· 100· 100· 5 with one sparse factor

In this experiment, we constructed a synthetic fourth-order

tensor by 10 channels of simulated sparse and nonnegative

signals, as shown in Fig. 1a. The signals come from the file

VSparse_rand_10.mat in NMFLAB [8]. There are

1000 points in each channel, so the sparse signal matrix is
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Fig. 1 Sparse and nonnegative signals used in synthetic tensor. a
shows the original ten channels of signals. b shows the estimated ten

channels of signals from the synthetic tensor XSYN1 by sparse NCP

based on the PROX-ANQP method with bn ¼ 5. The PSNR is

90.2698 according to (23)
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Sð1Þ ¼ ½s1; . . .; s10� 2 R1000�10. Three uniformly distributed

random matrices Að2Þ;Að3Þ 2 R100�10 and Að4Þ 2 R5�10

were employed as mixing matrices, which were generated

by rand function in MATLAB. Afterwards, we synthe-

sized a third-order tensor by

XSNY1 ¼ sSð1Þ;Að2Þ;Að3Þ;Að4Þt 2 R1000�100�100�5

. Next, nonnegative noise was added to the tensor with

SNR of 40dB, which was generated by code

max(0,randn(size(X ))).

For all sparse NCP methods, we set e ¼ 1e� 8 as the

threshold of outer stopping condition in (20). We set Ts ¼
1e� 3 in (22). The maximum running time was set by 180

seconds. We selected 20 as the number of components for

tensor decomposition1. The reason is that we intend to

recover the ten channels of the true signal just by imposing

sparse regularization during decomposition, even though

the exact optimal number of components is unknown. We

selected the values of bn ¼ 0; 0:1; 0:5; 1; 2; 3 for all the

optimization methods to evaluate their abilities to impose

sparsity. The selection of sparse regularization parameters

depends on the tensor data. After tensor decomposition, the

values of objective function value (Obj), relative error

(RelErr), running time in seconds (in wall-clock time),

Table 2 Comparison of Sparse

NCPs on

XSYN1 2 R1000�100�100�5

Method bn Obj RelErr Time(s) Iter NNC Spars1 PSNR

PROX- 0 1.51e?02 0.0082 69.2 33.5 20.00 0.394 74.66

ANQP 1 6.90e?03 0.0088 548.3 275.5 10.00 0.787 84.76

2 8.75e?03 0.0089 803.2 403.1 10.00 0.810 87.25

3 9.90e?03 0.0089 907.4 456.2 10.00 0.837 88.23

4 1.15e?04 0.0089 959.3 480.3 10.00 0.852 88.67

5 1.28e?04 0.0089 991.6 496.0 10.00 0.855 88.79

PROX- 0 1.51e?02 0.0082 103.0 51.4 20.00 0.474 79.34

iHALS 1 8.16e?03 0.0090 394.8 198.3 11.63 0.800 80.59

2 9.64e?03 0.0090 656.4 327.9 10.63 0.824 84.05

3 1.03e?04 0.0090 868.8 436.8 10.23 0.845 87.14

4 1.20e?04 0.0090 859.2 431.9 10.27 0.861 86.93

5 1.31e?04 0.0090 947.1 474.7 10.17 0.864 87.66

AO- 0 1.59e?02 0.0084 254.5 124.8 20.00 0.151 65.74

ADMM 1 7.41e?03 0.0089 357.7 179.4 12.33 0.782 80.64

2 8.42e?03 0.0089 801.9 401.8 11.10 0.819 87.93

3 1.00e?04 0.0089 855.2 427.6 10.63 0.854 88.22

4 1.17e?04 0.0090 908.3 455.9 10.57 0.869 88.45

5 1.34e?04 0.0090 876.7 438.8 10.63 0.871 87.78

iAPG 0 1.56e?02 0.0084 140.9 70.6 20.00 0.122 63.19

1 6.67e?03 0.0088 354.5 177.9 10.37 0.764 86.72

2 8.04e?03 0.0088 681.6 339.0 10.17 0.791 88.57

3 9.72e?03 0.0089 781.7 391.2 10.07 0.828 89.26

4 1.21e?04 0.0090 792.5 394.9 10.27 0.849 88.98

5 1.33e?04 0.0089 871.7 433.8 10.00 0.856 89.33

iMU 0 1.58e?02 0.0084 712.0 352.5 20.00 0.210 66.64

1 6.30e?03 0.0089 862.2 427.4 12.90 0.693 75.63

2 8.62e?03 0.0091 868.9 430.5 11.53 0.788 79.04

3 1.06e?04 0.0093 836.4 411.2 11.10 0.847 81.37

4 1.26e?04 0.0094 822.8 403.5 11.23 0.864 81.00

5 1.39e?04 0.0094 838.4 408.2 10.77 0.882 82.32

Spars1 = Sparsity level of the first factor

Ground truth: Spars1= 0.9

NNC = Number of nonzero components

1 Since ten channels of signals are mixed in the tensor, it is natural to

select 10 as the optimal component number. The number of

components might also be estimated by some classical methods,

such as DIFFIT [38]. However, we selected 20 to test the

performances of sparse regularization.
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iteration number (Iter), the number of nonzero components

(NNC), sparsity level (Spars) and PSNR of the estimated

signal factor matrix were recorded as the performance

evaluation criteria. For all optimization methods with each

bn, the sparse NCP was run 30 times, and the average

values of all criteria were computed. The results are shown

in Table 2. We emphasized the outstanding performances

of the sparse NCP algorithms in bold in the tables.

From Table 2, it can be found that all methods are able

to impose sparsity with proper sparse regularization

parameter bn. When bn increases, the sparsity level of the

mode-1 factor matrix also increases. After properly tuning

the sparse regularization parameter bn, weak components

will be removed (set to 0), weak elements in strong com-

ponents will be prohibited, and the true ten channels of

sparse signals will be recovered.

When bn increases to a proper value, the PSNR

increases significantly. In this experiment, the higher the

value of PSNR is, the better an algorithm performs to

recover original sparse components. In Table 2, it is clear

to see that PROX-ANQP, PROX-iHALS and iAPG have

higher PSNR with larger sparse regularization parameters,

for example bn ¼ 4; 5. This means that these three methods

recover the ten channels of sparse signals more precisely.

One of the recovered sparse signal matrix from XSYN1 by

PROX-ANQP is shown in Fig. 1b.

For the synthetic data, the objective function values and

relative errors are very similar with the same bn value. The
convergence speed can be concluded from Table 2. iMU

performs slowly compared with other methods. AO-

ADMM performs slowly with bn ¼ 0, but it becomes fast

with bn [ 0. All PROX-ANQP, PROX-iHALS and iAPG

methods perform very well. It can also be concluded from

Table 2 that the running time is highly related to the

number of outer iterations.

5.1.2 Size 500· 500· 500 with two sparse factors

For this third-order tensor, the factor matrices were gen-

erated using the following codes.

Factor Code Zeros (%)

Sð1Þ 2 R500�100 max(0,rand(500,100)*10-9); 90

Sð2Þ 2 R500�100 max(0,rand(500,100)*2-1); 50

Að3Þ 2 R500�100 rand(500,100); 0

Afterwards, a third-order tensor was synthesized by

XSNY2 ¼ sSð1Þ; Sð2Þ;Að3Þt, whose true number of compo-

nents was 100 (rank = 100). Noise with SNR of 40dB was

added.

We set the outer stopping condition by e ¼ 1e� 6 and

the maximum running time by 600 seconds. 200 was

selected as the initial number of components. The average

performances of all sparse NCP methods after 30 runs

were computed. We only show running time in seconds,

iteration number (Iter), number of nonzero components

(NNC) and the sparsity level (Spars) of all estimated

factors in Table 3.

Table 3 shows that all methods are able to impose

sparsity on all factors matrices. PROX-ANQP, PROX-

iHALS, and iAPG methods perform very well to extract the

true 100 sparse components. Interestingly, the sparsity

levels of all the extracted factor matrix by PROX-ANQP,

PROX-iHALS, and iAPG methods are also very close to

Table 3 Comparison of Sparse NCPs on X SYN2 2 R500�500�500

Method bn Time(s) Iter NNC Spars1 Spars2 Spars3

PROX- 0 42.0 19.0 200.00 0.300 0.512 0.027

ANQP 0.1 51.6 25.5 100.93 0.705 0.749 0.502

0.5 49.9 25.6 100.27 0.828 0.750 0.505

1 173.6 97.6 100.00 0.872 0.749 0.506

3 241.3 137.5 100.00 0.933 0.725 0.505

5 282.7 158.9 100.00 0.945 0.682 0.505

PROX- 0 56.9 32.4 200.00 0.438 0.506 0.014

iHALS 0.1 80.5 46.3 159.07 0.615 0.623 0.218

0.5 114.5 65.6 123.13 0.746 0.702 0.393

1 131.1 75.2 110.47 0.790 0.728 0.454

3 305.1 174.9 100.23 0.863 0.735 0.503

5 345.3 195.4 100.03 0.891 0.706 0.504

AO- 0 141.5 80.7 200.00 0.344 0.482 0.086

ADMM 0.1 125.8 72.7 195.77 0.613 0.471 0.078

0.5 138.7 79.6 128.93 0.821 0.522 0.064

1 125.3 73.7 110.53 0.875 0.547 0.054

3 165.9 96.7 100.37 0.939 0.646 0.138

5 247.3 144.0 100.00 0.948 0.690 0.359

iAPG 0 121.7 72.7 200.00 0.156 0.495 0.342

0.1 122.0 72.1 200.00 0.566 0.552 0.372

0.5 140.4 83.2 151.77 0.706 0.621 0.444

1 145.2 85.2 107.80 0.719 0.695 0.466

3 288.9 171.3 100.07 0.766 0.722 0.504

5 440.1 263.5 100.00 0.823 0.699 0.505

iMU 0 600 356.8 200.00 0.330 0.508 0.011

0.1 595.3 353.6 199.63 0.374 0.506 0.012

0.5 600 332.9 149.07 0.524 0.638 0.265

1 600 345.1 146.27 0.535 0.635 0.280

3 595.2 345.1 127.97 0.626 0.672 0.369

5 593.7 340.5 118.03 0.672 0.686 0.418

Ground truth levels: Spars1= 0.95, Spars2= 0.75 and Spars3= 0.5

Sparsn = Sparsity level of the mode-n estimated factor

NNC = Number of nonzero components
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the ground-truth2 values with some bn. iMU and AO-

ADMM do not always work well to reach the ground-truth

factor sparsity levels. Moreover, iMU shows slow con-

vergence compared with other methods.

5.2 Third-order dense tensor data

In this experiment, we used a real-world third-order

ongoing EEG tensor. The original data were collected from

fourteen right-handed and healthy subjects of adults in a

music listening experiment. The music stimulus was a

piece of 8.5 minutes of modern tango Adiós Nonino by the

composer Astor Piazzolla. Short-Time Fourier Transform

(STFT) with the window size of 3 seconds and the hop size

of 1 second was used to transform the data of each subject

into a third-order tensor. Details of data collection and

preprocessing can be found in [43, 44]. We only employ

the tensor data of one subject in this experiment3. The size

of this tensor is channel� frequency� time ¼ 64

�146� 510, in which 64 channel points represent 64

electrodes on the scalp, 146 frequency points represent the

spectrum in 1-30Hz, and 510 time points represent the

duration of a stimulus of about 8.5 minutes. Since the

spectra from EEG tensor are usually sparse, we wish to

recover the sparse spectral components by sparse

regularization.

Table 4 Comparison of Sparse

NCPs on Ongoing EEG Tensor

XEEG 2 R64�146�510

Method bn Obj RelErr Time(s) Iter NNC Spars1 Spars2 Spars3

PROX- 0 2.98e?10 0.2847 19.2 444.4 40.00 0.085 0.381 0.104

ANQP 1e?5 3.35e?10 0.2858 34.9 824.1 39.73 0.124 0.475 0.129

5e?5 4.59e?10 0.2957 21.4 540.4 37.30 0.241 0.779 0.292

10e?5 5.86e?10 0.3145 17.6 483.9 30.53 0.383 0.872 0.495

15e?5 6.79e?10 0.3342 15.5 448.4 23.57 0.530 0.904 0.633

20e?5 7.46e?10 0.3515 10.5 310.6 17.57 0.638 0.927 0.723

PROX- 0 2.98e?10 0.2848 14.2 466.9 40.00 0.086 0.376 0.103

iHALS 1e?5 3.34e?10 0.2852 18.6 601.6 39.97 0.119 0.469 0.122

5e?5 4.58e?10 0.2952 15.1 488.4 37.47 0.238 0.778 0.293

10e?5 5.86e?10 0.3158 13.1 424.2 29.83 0.399 0.872 0.503

15e?5 6.79e?10 0.3343 15.5 456.7 23.40 0.533 0.906 0.631

20e?5 7.47e?10 0.3514 10.8 355.7 17.53 0.637 0.927 0.720

AO- 0 2.98e?10 0.2849 23.0 810.4 40.00 0.081 0.385 0.102

ADMM 1e?5 3.34e?10 0.2853 20.2 685.2 39.93 0.124 0.460 0.124

5e?5 4.60e?10 0.2978 16.0 546.6 35.93 0.271 0.775 0.326

10e?5 5.84e?10 0.3218 15.3 523.7 26.23 0.468 0.860 0.547

15e?5 6.75e?10 0.3394 14.2 486.6 20.93 0.582 0.900 0.662

20e?5 7.43e?10 0.3552 9.9 339.5 15.93 0.669 0.925 0.738

iAPG 0 2.99e?10 0.2851 9.5 301.4 40.00 0.084 0.370 0.101

1e?5 3.34e?10 0.2857 21.4 710.9 39.80 0.132 0.475 0.127

5e?5 4.73e?10 0.3117 18.4 621.0 28.37 0.426 0.783 0.445

10e?5 5.92e?10 0.3378 19.5 655.6 19.63 0.598 0.865 0.631

15e?5 6.76e?10 0.3579 15.8 532.8 14.13 0.704 0.904 0.736

20e?5 7.42e?10 0.3681 12.9 436.7 12.20 0.745 0.924 0.781

iMU 0 2.99e?10 0.2853 106.3 2790.8 40.00 0.077 0.380 0.115

1e?5 3.34e?10 0.2857 101.7 2708.2 40.00 0.104 0.457 0.137

5e?5 4.58e?10 0.2928 89.7 1269.9 39.77 0.191 0.761 0.272

10e?5 5.87e?10 0.3132 103.0 1034.6 31.70 0.364 0.860 0.493

15e?5 6.79e?10 0.3339 94.5 946.6 23.97 0.525 0.901 0.634

20e?5 7.48e?10 0.3505 81.5 883.3 18.10 0.635 0.922 0.720

Spars1, Spars2 and Spars3 are the sparsity levels of spatial, spectral and temporal factor

NNC = Number of nonzero components

2 Since we use double number of true sparse components as the

initial number of tensor decomposition, the ground truth sparsity of

the factor matrix is computed by ðx%þ 1Þ=2. x% is the percentage of

zeros in a simulated matrix.

3 https://github.com/wangdeqing/Ongoing_EEG_Tensor_Decomposi

tion.

Neural Computing and Applications (2021) 33:17369–17387 17379

123

https://github.com/wangdeqing/Ongoing_EEG_Tensor_Decomposition
https://github.com/wangdeqing/Ongoing_EEG_Tensor_Decomposition


Topography

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Frquency (Hz)

0

10

10 15 20 25 305

Frquency (Hz)
10 15 20 25 305

20

30

40

50

60

M
ag

ni
tu

de

Spectrum

0 10050 150 200 250 300 350 400 450 500

Time Points (n)

M
ag

ni
tu

de
M

ag
ni

tu
de

Temporal Series

Topography

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0

10

20

30

40

50

60

70

80

M
ag

ni
tu

de

Spectrum

Temporal Series

Topography

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0

10

20

30

40

50

60

70

80

M
ag

ni
tu

de

Spectrum

Temporal Series

Time Points (n)

Frquency (Hz)
10 15 20 25 305

M
ag

ni
tu

de

Time Points (n)

(a)

(b)

(c)

n = 0

n = 5 105

n = 10 105

0

0.5

1

1.5

2

0

1

2

3

4

0

1

2

3

4

0 10050 150 200 250 300 350 400 450 500

0 10050 150 200 250 300 350 400 450 500

Fig. 2 Selected groups of

components from the ongoing

EEG tensor using the PROX-

ANQP algorithm. All groups

reveal the same brain activity.

In the decomposed EEG data,

the spatial component is

topography, the spectral

component is the spectrum, and

the temporal component is the

energy evolution series. The

components in a were extracted

with bn ¼ 0, b with bn ¼ 5�
105 and c with bn ¼ 10� 105
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We set e ¼ 1e� 8 in (20) and Ts ¼ 1e� 6 in (22). The

maximum running time was set by 120 seconds. The initial

number of components was set by 40 according to previous

studies [11, 44]. We tested the values of bn ¼
0; 1e5; 5e5; 10e5; 15e5; 20e5 all methods. All methods

were run 30 times. The averages of performance criteria

are recorded in Table 4. The results show that all methods

are effective to impose sparsity with bn. The iMU is slower

than the other four methods.

We selected three groups of extracted components using

the PROX-ANQP method with bn ¼ 0; 5e5; 10e5, respec-

tively, as shown in Fig. 2. These three groups show the

same brain activity. It is obvious to see that the spectra

become sparser and sparser when the sparse regularization

parameter increases. With bn ¼ 5e5; 10e5, more and more

unnecessary elements are removed in the spectra, and only

the most prominent frequency band is retained. Figure 2

demonstrates that our methods are effective to extract

meaningful sparse components that are related to some

brain activities.

5.3 Third-order large-scale sparse tensor data

In this experiment, we tested the sparse NCP algorithms on

a third-order large-scale sparse social network tensor. The

data contain Facebook wall posts4 information among 46,

952 users in 1952 days [41]. The size of this sparse tensor

XSp1 is 46,952 �46; 951 �1952, and the number of non-

zero elements is 737, 928.

We set the outer stopping condition by e ¼ 1e� 6 in

(20) and the sparsity threshold by Ts ¼ 1e� 6 in (22). The

maximum running time was set by 1200 seconds, and the

initial number of components was set by 100. We tested the

values of bn ¼ 0; 0:01; 0:05; 0:1 for all methods. The

average values of performance criteria after 30 runs are

recorded in Table 5. We recorded the objective function

values of all methods within the first 600 seconds in Fig. 3.

5.4 Fourth-order large-scale sparse tensor data

In this experiment, we evaluated the sparse NCP algo-

rithms on a fourth-order large-scale sparse tensor of NIPS

publications5 [16]. The size of this sparse tensor XSp2 is

2482� 2862� 14;036� 17. The values represent 2482

papers, 2862 authors, 14,036 words and 17 years. There are

3,101,609 nonzero elements.

Table 5 Comparison of Sparse

NCPs on Facebook Wall Posts

Tensor

XSp1 2 R46952�46951�1952

Method bn Obj RelErr Time(s) Iter NNC Spars1 Spars2 Spars3

PROX- 0 6.48e?05 0.9510 535.4 42.8 100.00 0.997 0.989 0.798

ANQP 0.01 6.49e?05 0.9519 379.1 39.8 99.33 0.998 	 1 0.874

0.05 6.70e?05 0.9668 400.8 42.6 59.40 0.999 	 1 0.931

0.1 6.90e?05 0.9814 213.7 22.6 18.53 	 1 	 1 0.975

PROX- 0 6.48e?05 0.9513 512.3 51.7 100.00 0.997 0.990 0.803

iHALS 0.01 6.50e?05 0.9525 487.6 48.4 99.87 0.998 	 1 0.874

0.05 6.69e?05 0.9664 552.0 54.7 63.90 0.999 	 1 0.930

0.1 6.89e?05 0.9808 217.4 21.5 20.27 	 1 	 1 0.974

AO- 0 6.48e?05 0.9514 690.7 71.6 100.00 0.997 0.989 0.803

ADMM 0.01 6.50e?05 0.9522 684.5 69.9 99.97 0.998 	 1 0.873

0.05 6.74e?05 0.9698 620.7 63.3 56.33 	 1 	 1 0.938

0.1 6.93e?05 0.9835 239.4 24.5 15.50 	 1 	 1 0.979

iAPG 0 6.49e?05 0.9520 536.2 58.9 100.00 0.997 0.991 0.797

0.01 6.51e?05 0.9533 533.8 57.5 99.83 0.998 	 1 0.874

0.05 6.74e?05 0.9699 548.1 59.2 52.03 	 1 	 1 0.940

0.1 6.93e?05 0.9831 331.6 35.7 15.53 	 1 	 1 0.979

iMU 0 6.49e?05 0.9521 497.2 58.5 100.00 0.998 0.989 0.800

0.01 6.53e?05 0.9544 592.7 64.3 100.00 0.999 	 1 0.872

0.05 6.84e?05 0.9767 676.7 74.6 39.87 	 1 	 1 0.957

0.1 7.01e?05 0.9893 273.7 30.2 7.07 	 1 	 1 0.990

Sparsn = Sparsity level of the mode-n estimated factor

Sparsn 	 1 means that the factor is very close to a zero matrix

NNC = Number of nonzero components

4 http://konect.cc/networks/facebook-wosn-wall/.
5 http://frostt.io/tensors/nips/.
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The maximum running time was set by 1800 seconds.

Other settings are the same as the previous third-order case.

We tested the values of bn ¼ 0; 0:1; 0:3; 0:5 for all meth-

ods. The average values of performance criteria after 30

runs are recorded in Table 6. Figure 4 illustrates the

objective function values of all methods within the first

1200 seconds.

The experimental results of both the third-order and

fourth-order large-scale sparse tensor demonstrate that all

our algorithms are effective to impose sparsity on the factor

matrices. From Tables 5 and 6, it is clear to see that, with

sparse regularization parameter bn increasing, the number

of nonzero components (NNC) decreases gradually. The

extracted factor matrices from the sparse tensors are

extremely sparse, even though no additional sparse regu-

larization is imposed (b ¼ 0). Nevertheless, our algorithms

with b[ 0 can further increase the sparsity level of the

factor matrices.

From the perspective of convergence speed, both the

PROX-ANQP and PROX-iHALS methods run fast for the

large-scale sparse tensors with different bn values

compared with other methods, which can be concluded

from Tables 5, 6, Figs. 3 and 4. However, AO-ADMM and

iAPG perform slowly for the large-scale sparse tensors.

iMU has fast convergence speed, but it has higher objective

function value with large bn values (e.g., bn = 0.05, 0.1 in

the third-order case, and bn = 0.3, 0.5 in the fourth-order

case). The reason is that, with the same bn value, iMU

yields fewer nonzero components compared with other

methods.

6 Discussion

We have proposed a novel sparse NCP model using the

proximal algorithm and inexact scheme. The model can be

efficiently solved by two algorithms of the PROX-ANQP

and PROX-iHALS. In order to test the performance of the

algorithms, we conducted experiments in different cases,

including synthetic and real-world tensors, third-order and

fourth-order tensors, dense and sparse tensors, and small-

scale and large-scale tensors. Three state-of-the-art sparse
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NCP methods are also tested for comparison, including the

AO-ADMM, iAPG and iMU. We have the following

findings: (1) The PROX-ANQP and PROX-iHALS meth-

ods particularly have the fast convergence speed and

excellent effects of imposing sparsity in all cases compared

with other methods. The outstanding performances of the

PROX-ANQP and PROX-iHALS are due to two points: the

proximal algorithm that overcomes the rank deficiency;

and the inexact scheme that increases the efficiency. (2)

The iAPG method contains a proximal operator, which can

handle the l1-norm. With the proximal operator, iAPG does

not suffer from the rank deficiency. In the experiments, we

find that iAPG is very efficient to impose sparsity for

small-scale dense tensor decomposition. Nevertheless,

iAPG runs slowly for large-scale sparse tensor decompo-

sition. (3) The iMU method converges very slowly for

dense tensors, but it becomes fast for large-scale sparse

tensor. For sparse tensor decomposition, the extracted

factor matrices are extremely sparse already. Most ele-

ments in the factors are zeros. According to the multi-

plicative updating rule, once an element becomes zero, it

will never change. This property might be the reason why

iMU converges fast on the sparse tensor. (4) The AO-

ADMM also contains a proximal operator that can handle

l1-norm and overcome the rank deficiency. However, AO-

ADMM converges slowly compared with PROX-ANQP

and PROX-iHALS in most cases, particularly in the large-

scale sparse tensor case. Moreover, AO-ADMM is inferior

to iAPG with bn ¼ 0 in many cases. In a word, our pro-

posed PROX-ANQP and PROX-iHALS methods have the

best performances for sparse NCP, and have very good

generalization for the different types and scales of datasets.

In addition to the solving methods, another critical issue

of sparse NCP is the selection of the sparse regularization

parameter bn. Firstly, we want to mention that one purpose

of this paper is to demonstrate the effectiveness of the

algorithms to impose sparsity. Therefore, in order to sim-

plify the selection of parameters, we keep bn the same for

all factor matrices in sparse NCP. With the same bn on all

modes, the sparse NCP can still recover high sparse com-

ponents and low sparse (or even dense) components in

different factor matrices. In the future, it would be inter-

esting to investigate how to separately control the sparsity

levels of different factor matrices using unbalanced sparse

regularization parameters. Secondly, the appropriate value

of parameter bn depends on the tensor to be decomposed.

In this study, we selected bn separately for each tensor in

the experiments. When the sparse regularization parameter

is larger, the extracted factor matrices are sparser, and the

relative error of decomposition is also larger. The trade-off

Table 6 Comparison of Sparse

NCPs on NIPS Publications

Tensor

XSp2 2 R2482�2862�14036�17

Method bn Obj RelErr Time(s) Iter NNC Spars1 Spars2 Spars3 Spars4

PROX- 0 3.11e?07 0.9439 1091.8 18.5 100.00 0.999 0.998 0.920 0.941

ANQP 0.1 3.12e?07 0.9447 1161.9 19.9 99.57 0.999 0.998 0.925 0.941

0.3 3.20e?07 0.9571 990.5 17.0 78.43 0.999 0.998 0.950 0.954

0.5 3.38e?07 0.9841 749.3 12.9 24.83 	 1 0.999 0.985 0.985

PROX- 0 3.11e?07 0.9439 991.4 17.2 100.00 0.999 0.997 0.920 0.941

iHALS 0.1 3.12e?07 0.9448 1123.2 19.3 99.93 0.999 0.998 0.925 0.941

0.3 3.20e?07 0.9577 1055.5 18.0 79.60 0.999 0.998 0.948 0.953

0.5 3.37e?07 0.9827 804.5 13.9 28.50 	 1 0.999 0.982 0.983

AO- 0 3.11e?07 0.9440 1346.7 23.0 100.00 0.999 0.997 0.919 0.938

ADMM 0.1 3.11e?07 0.9446 1191.1 20.6 99.70 0.999 0.998 0.924 0.939

0.3 3.23e?07 0.9611 1358.5 23.4 74.70 0.998 0.998 0.951 0.950

0.5 3.40e?07 0.9865 912.5 15.5 21.93 0.999 0.999 0.986 0.986

iAPG 0 3.11e?07 0.9436 1263.9 21.9 100.00 0.999 0.997 0.920 0.941

0.1 3.12e?07 0.9449 1325.0 22.8 99.47 0.999 0.998 0.925 0.940

0.3 3.22e?07 0.9600 1587.2 27.1 73.37 0.999 0.998 0.951 0.949

0.5 3.38e?07 0.9837 1131.5 19.5 27.23 	 1 0.999 0.982 0.979

iMU 0 3.12e?07 0.9448 1126.3 19.4 100.00 0.999 0.998 0.921 0.941

0.1 3.12e?07 0.9456 1197.4 20.5 99.67 0.999 0.998 0.927 0.941

0.3 3.28e?07 0.9685 1317.3 22.5 60.07 0.999 0.999 0.964 0.965

0.5 3.43e?07 0.9916 920.7 15.8 12.73 	 1 	 1 0.992 0.992

Sparsn = Sparsity level of the mode-n estimated factor

Sparsn 	 1 means that the factor is very close to a zero matrix

NNC = Number of nonzero components
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between the sparse level and the relative error depends on

the meanings of real applications. An example of sparse

regularization parameter selection of sparse NCP for

ongoing EEG can be found in [44]. It is also possible to

select an appropriate parameter for a concrete application

using model-order selection methods [37], such as the

Bayesian information criteria (BIC).

The third critical issue of sparse NCP is the sparse

regularization item. In this study, we only investigated the

l1-norm item. In the future, it is worth trying to incorporate

other types of sparse regularization items [2] to our sparse

NCP model besides l1-norm, such as the lq-norm (0\q\1)

[36] and trace norm [29].

7 Conclusion

In this paper, we have investigated the nonnegative

CANDECOMP/PARAFAC tensor decomposition with l1-

norm-based sparse regularization (sparse NCP). We have

proposed a novel sparse NCP model using the proximal

algorithm, which can guarantee the full column rank

condition and the property of convergence to a stationary

point. In addition, an inexact block coordinate descent

scheme was presented to accelerate the computation of

sparse NCP. In the inexact scheme, the subproblems are

updated using multiple inner iterations. We have employed

two algorithms for solving the proposed sparse NCP model

with the proximal algorithm, including the inexact alter-

nating nonnegative quadratic programming (PROX-

ANQP) and the inexact hierarchical alternating least

squares (PROX-iHALS). The experimental results on all

synthetic, real-world, small-scale and large-scale tensors

demonstrated that our sparse NCP methods can impose

sparsity and extract meaningful sparse components suc-

cessfully. Both PROX-ANQP and PROX-iHALS have

exhibited the faster computational speed and better per-

formances of imposing sparsity compared with other sparse

NCP algorithms. The experimental results proved that the

proposed sparse NCP with the proximal algorithm and

inexact scheme is effective and efficient.
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