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Abstract
Density estimation plays a crucial role in many data analysis tasks, as it infers a continuous probability density function

(PDF) from discrete samples. Thus, it is used in tasks as diverse as analyzing population data, spatial locations in 2D sensor

readings, or reconstructing scenes from 3D scans. In this paper, we introduce a learned, data-driven deep density estimation

(DDE) to infer PDFs in an accurate and efficient manner, while being independent of domain dimensionality or sample

size. Furthermore, we do not require access to the original PDF during estimation, neither in parametric form, nor as priors,

or in the form of many samples. This is enabled by training an unstructured convolutional neural network on an infinite

stream of synthetic PDFs, as unbound amounts of synthetic training data generalize better across a deck of natural PDFs

than any natural finite training data will do. Thus, we hope that our publicly available DDE method will be beneficial in

many areas of data analysis, where continuous models are to be estimated from discrete observations.
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1 Introduction

Many data analysis problems, reaching from population

analysis to computer vision [6, 28], require estimating

continuous models from discrete samples. Formally, this is

the density estimation problem, where, given a sample

fxig� pðxÞ, we would like to estimate the probability

density function (PDF) p(x). Our aim is to enable this at

high speed and quality with very little assumptions about

the data fxig or the PDF p(x). While this is a well-solved

problem for PDFs on a 1-dimensional (1D) domain, it

becomes increasingly difficult in higher-dimensional

domains and additionally implies a strong bias on the

estimate. Practically limiting is also the fact that sophisti-

cated estimators require long computing times. To achieve

the task of finding a good and fast estimator for arbitrary

domain dimensions and to make as little assumptions on

the PDF as possible (low bias), we employ deep learning,

which has recently been successfully applied to many real-

life applications in different fields [3, 12, 33].

Although it has been proposed more than 60 years ago,

kernel density estimation (KDE) [27, 29] is today still the

method of choice when performing density estimation.

Unfortunately, a key problem for KDE is the choice of the

required bandwidth parameter. While automatic approa-

ches exist (such as Silverman [34]), they only work under

given assumptions, struggle with computational efficiency

and fail for cases where there is no constant bandwidth to

explain the entire sample. As a consequence, various neural

density estimation approaches have been proposed.

Unfortunately, these either require to be trained on the

distribution to be analyzed [2, 24], which is not known in

most cases, or they have problems generalizing, as they are

trained on a single sample only [14, 25, 26].

In contrast to previous work, our method allows for

accurate, instantaneous estimation from only a single

sample of an arbitrary number of data points or dimensions,

without access to the original PDF during estimation,

neither in parametric form nor in the form of many sam-

ples. To do so, we do not make any assumptions through

priors and do not require re-training of the model on the

sample at hand during estimation.
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To propose an automated and generally applicable

neural network approach for direct density estimation, two

contributions need to be made. First, a representative

training dataset needs to be generated. And second, an

appropriate neural network architecture needs to be

designed. When reflecting on these two contributions, it

becomes clear that they are tightly intervened. The ques-

tion here is, how to generate a representative dataset, which

results in a general applicability of the trained model. The

key enabling idea here is to use convolutions on the

unstructured distribution to allow for a generalization on

arbitrarily sized samples. This restricts the input of the

network for each pointwise density estimation to only a

finite receptive field. Thus, the training data do not need to

represent all possible distributions, which would be infea-

sible, but rather all possible local characteristics. This is not

only a much easier task, but its validity for accurate density

estimation has also been shown by the analysis on nearest

neighbor estimation [8].

To incorporate these local features, we handle our

samples as follows. For any sample S � Rd the receptive

field is given by the distribution of the k closest points in

the proximity of arbitrary query points x 2 Rd. Since there

is a limited variety of these structures, a representative

training dataset can be generated, which eventually enables

generalization to any given distribution. Together with a

specifically designed network architecture, we will show

that such a data-driven approach can be used for general

deep density estimation. To this end, we make the fol-

lowing key contributions:

• Generation of general probability distributions with

ground truth PDFs for arbitrary domain dimensions,

reflecting the widest possible range of local

characteristics.

• Accurate density estimation with a deep neural network

in inference, by utilizing a novel convolutional

architecture.

In the remainder of this paper, we will first discuss prior

work, before detailing our neural network architecture

design and the training data generation process. Finally, we

will evaluate the proposed method with respect to result

accuracy and its generalization capabilities and conclude

by summarizing the obtained results.

2 Related work

As the density estimation problem is crucial for many data

analysis tasks, a substantial amount of prior work has been

dedicated toward its solution.

2.1 Conventional density estimation

Basic models fit parametric functions such as lines or

Gaussians to the sample, but real data are typically of a

more complex shape and mixtures of parametric curves are

required [9]. Another straightforward solution is to con-

struct discrete histograms with finite-sized bins around

centers ci and counting how many sample points fall into

each bin. A high count corresponds to a high value pðciÞ.
This does not scale well with the number of dimensions, as

it requires exponential memory, does not produce a con-

tinuous result as only discrete centers are domained, and

choosing the bin size can be difficult [32].

Histogram binning is a special case of KDE, where the

hard counting is replaced by a compact and soft (e.g.,

Gaussian or Epanechnikov) kernel Kðjjxi � xjj=hÞ that

weights the contribution of sample point xi to a continuous

coordinate x. KDE has one control parameter h, called the

bandwidth of the kernel. Choosing h can be difficult: if it is

too small the result is noisy; if it is too large the result may

turn out overly smooth. Picking the optimal h is easy if p is

known, but typically we do not have access to p. In prac-

tice, the easiest way to choose h is based on heuristics due

to Silverman [34] that account for the number of points and

the domain dimension. More sophisticated methods were

suggested to pick the right bandwidth when making prior

assumptions on p such as smoothness or sparsity [17].

These are however only applicable if p fits the assumptions,

they struggle with computational efficiency and fail for

cases where there is no constant bandwidth h to explain the

entire sample. While the time complexity of vanilla KDE is

only OðnÞ, it can be as large as Oðn2Þ for a KDE with

sophisticated bandwidth selection algorithms [38]. A more

sophisticated method for density estimation is the non-

parametric PDF estimator by Farmer and Jacobs [13].

While it can be applied without the need of fine-tuning

parameters such as the bandwidth in KDE and produces

good results, it is only applicable for 1D distributions.

2.2 Neural density estimation

The most common approach for neural density estimation

is the utilization of Gaussian mixture models [10] or their

addition the variational Bayesian Gaussian mixture models

[4]. However, they require large distributions in order to

estimate complex PDFs well enough. Also neural networks

have been used to model density estimation for cases where

the PDFs p is known and can be used during supervision

[2, 24]. Regrettably, we rarely know the PDF of most

natural signals: no supervision is available when for

instance discovering novel dynamics, group formations, or

particle events. Consequently, these methods are limited to
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estimate density if the PDF is known. While such models

are also applied without access to the true PDF [23], the

training target for these cases is just generated using KDE

or other density estimators, which essentially just shifts the

problem from estimating densities to learning KDE, which

will hardly ever produce better results than KDE can.

Unsupervised methods that only require access to the

sample but not to the PDF, have also been proposed

[14, 25, 26]. Here, the network itself represents the PDF,

and—while more complex than a linear, Gaussian or

parametric mixture model—this essentially is a fit of a

network to the data in one sample. This means a new

network is trained for every sample. Fortunately, this

makes little assumptions, but regrettably, at the expense of

quality as it fails to capture the essence of learning: rep-

resenting previous knowledge relevant for a task; nothing

discovered in one sample will ever contribute to density

estimation of another sample.

3 The DDE method

DDE solely uses local information in the distribution

around a query point, to predict an accurate density esti-

mate, whereby a network is used that is trained indepen-

dently of the query distribution. The core of the DDE

approach is a neural network in form of a multi-layer

perceptron (MLP), convolved over the complete input. The

most important difference to all prior approaches is that we

designed the method such that only a single training on a

large and representative set of samples with known PDF

p is required. The thus-trained model can then be used

without the necessity of further training, to estimate the

probabilities of arbitrary unknown distributions residing in

a domain with same dimensionality.

3.1 Network architecture

The architecture of our DDE approach is illustrated in

Fig. 1. The network takes as input the sample distribution

S � S for S ¼
Qd

i¼1½ai; bi� with ai; bi 2 R and ai � bi and a

set of query points Q � S. For the direct density estimation

of each point in the distribution, both sets are the same. The

first step is then the realization of a finite receptive field by

calculating the distances to the k closest non-identical

points xi 2 S to any query point x 2 Q by either using a kd-

tree, ball tree, or brute force. The latter is only beneficial

because of the possibility of full parallelization on a GPU

(graphics processing unit). This first step is what makes the

network convolutional, as it convolves over the input with

the size of the convolution determined by k. To achieve a

model which can be applied to arbitrary datasets, the

convolution is of uttermost importance. While a convolu-

tion could be realized by feeding the unstructured points by

position, without a direct distance encoding, this would

require at least a fine-tuning of the model architecture for

any given dimensionality, as the complexity of the input

will increase with dimensions.

The obtained distances are then fed into an MLP which

predicts p(x). As the MLP is shared over all points, this

becomes effectively a convolution with the MLP as con-

volution kernel and the kernel size defined by k. The

specific layout of the MLP, i.e., its number and size of

hidden layers, is not necessarily fixed but can be deter-

mined during each training session, where the resulting

estimator is the best model out of an ensemble of trained

models. While the value of k could give a bias on the

estimate, with highly fluctuating values for small k and

overly smoothed estimates for large k, we have found

empirically that a value of k ¼ 128 gives highly accurate

results on a wide range of dimensionalities and sample

sizes. The evaluation on the choice of k is discussed in

Sect. 3.3. Thus, the most important difference to all prior

approaches is that we designed the method such that it does

not fit the model to S at hand, but uses only the learned

information of the training set to predict p for S. While it

would be possible to assign further one-dimensional con-

volutions on the distance input, we have found empirically

that the MLP achieves the better results. For the exact

architecture of the MLP we investigated three types of

structures. The first started with an input layer with 2048,

1024, 512 or 256 nodes with every consecutive layer being

Fig. 1 Our DDE approach: input is the distribution of n data points

with a domain dimensionality d, as well as the set of m points to query

for density estimation with same dimensionality. For the case of

direct density estimation of the distribution, both sets are the same.

Using a kd-tree or a brute force algorithm the distances to the

k nearest neighbors are computed. These are fed per query point into

an MLP which returns the scalar density estimate for that point
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equally large or smaller. The second started with an input

layer of size 32, 64, 128 or 256, which extends to a hidden

layer with a maximal size of 512, 1024 or 2048 nodes,

before reducing to the output size of 1. The last type is

similar to the first one, but uses a skip connection between

every two consecutive layers, inspired by ResNet [16]. All

of these models were tested with different numbers of

hidden layers. Testing these along different sizes for k we

have achieved the best results using the second type of

models with k ¼ 128, 128 input neurons, 9 hidden layers

with a maximum size of 512 and a doubling/halving of

layer sizes, respectively, between each two consecutive

layers.

This architecture results in a time complexity for DDE

of Oðn log nÞ, which is governed by the distance search.

While the calculations from DDE to get the density esti-

mate from distances are implemented in TensorFlow, and

thus highly parallelized on the GPU, the time-wise most

complex part, i.e., the distance search, is still implemented

on the CPU (central processing unit).

3.2 Training process

For the training objective we used the mean squared error

as loss function. Apart from that, we used conventional

building blocks, whereby our model was trained with rec-

tified linear units (RELU) [19] as activation function in

every layer, with batch normalization [18] after every but

the last layer, and to calculate the parameter update we

used the Adam optimizer [21] with default parameters and

exponential learning rate decay.

The output of the model in 1D is further smoothed by a

univariate spline interpolation with a fixed order of the

polynomial and an automated adaptive smoothing factor,

making this amendment also fully automated. Such post-

processing is not conducted in higher dimensions, as we

know of no existing method which can be automated,

allowing for an unbiased way to return smoother but still

accurate estimates over all applications.

3.3 On the choice of k

The parameter for the number of neighbors fed into the

network k was empirically found and set. Here, we briefly

discuss how we determined k ¼ 128. As the choice of the

parameter k is intertwined with the network architecture,

especially the size of the first hidden layers, we present

here only an example of the empirical analysis we con-

ducted. This can be seen in Fig. 2, where we plot the

Kullback–Leibler (KL) divergence against the parameter k

for 1D and 3D. Note that these models show slightly poorer

estimates in 1D and even poorer ones in 3D than the ones

discussed in the rest of this paper, as they were trained

much shorter, which also leads to the rather large noise

regarding different k. The model trained here differed only

in the number of k for the convolutional window, but had

the same architecture otherwise, with the first hidden layer

of size 128. The significant performance loss for k’135 for

1D is attributed to this fact, as the lower size of the first

hidden layer with respect to the input needs a fast infor-

mation encoding already in the first layer, while for hidden

layers larger than the input, the information can be ‘‘passed

through’’ the first layers and be iteratively encoded by the

entire network. While the former should be in general

possible, in practice the model will be caught too quickly in

a local optimum for the first layer. For our investigations

we tested a large variety of different architectures with

different layer sizes and numbers, which description would

be beyond the scope of this paper. For the same reason our

tests did not include densely sampled k, but such from a

power 2 distribution (i.e., 16, 32, 64, 128, 256). Having that

said, the final selection for k involved mainly the error

metrics over the validation dataset, but as well the visual

quality of the resulting estimates and the fact that k should

not be too large, as it sets an ultimate bound on the lowest

sample size possible to estimate. Regarding the error

metrics we show the KL divergence in Fig. 2 on the top,

where we can see first of a strong performance gain for

larger k which asymptotically reaches a minimum for

k’60, and as discussed above becomes worse again for

k’135. This indicates that k could be selected as low as 64

according to the larger test series. In the next step, we also

assessed the visual quality of the estimates (Fig. 2, bot-

tom). We have analyzed unsmoothed estimates for k ¼ 32

(blue), for k ¼ 64 (orange) and for k ¼ 128 (green) in

comparison with the true PDF (black), for 2 sample dis-

tributions of size 1000. The reason for choosing k ¼ 128

over k ¼ 64 can be seen in the lower sensitivity to the noise

in the data; thus, the estimate for k ¼ 128 is smoother. An

explanation to the empirically found constant optimal value

for different dimensions is the fact that the model is trained

for every dimensionality and takes only the scalar distance

as input. Thus any dimension-specific dependency of the

distances is inherently encoded by the network.

An additional problem of our estimates becomes visible

in Fig. 2 (bottom), where we can see a false zero estimate

on the tail of the distributions. Solving this problem

requires the longer training times as well as the selection of

the final model from a larger set of identical models, where

the last step ensures that we rule out models which con-

verged to bad local optima. While this seems like a rather

time-intensive training, it should be noted that it is quickly

surpassed by the generation of the training data, and that

the model has to be trained only once for all future appli-

cations on the same domain dimensionality.
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4 Data generation

Besides the local learning concepts described above, an

appropriate dataset is crucial in order to realize DDE. The

samples used to train our network are purely synthetic. This

is necessary as a great amount of data along with its ground

truth, i.e., the actual PDF values at every sample point, is

required during training, but also when evaluating the

trained models and comparing the results to state-of-the-art

approaches. Additionally, the training data must supply a

wide as possible range in the feature space, regarding the

structures of PDFs.

To obtain such a representative training dataset, we

propose a simple algorithm which generates the desired

number of probability distributions by selecting functions

from a set of 1D base functions and connecting them with a

random operator from a set of defined operators. To

achieve greater randomness in the resulting functions we

equipped the base functions with random factors in various

places, combined this with a varying extent of the domain,

which is scaled to unit range [0, 1] afterward. Examples of

such synthetic 1D functions are presented in Fig. 3 We note

that applying the network on these scaled data does in

general not prohibit estimations outside of this range, as it

is fed with distances, which can still be obtained for such

data points. Of course this would change for distances

outside of the trained range, i.e., larger than 1, but such

data points would either be in the original scaled distri-

bution if they have a notable probability, or have vanishing

probability pðxÞ ! 0, and are thus not respected by our

algorithm. While the different kinds of base functions

themselves, applied in this manner, define the local struc-

ture of the obtained PDFs, randomization of the base

function with respect to its relative position on the x-axis

and the randomization of the domain extent of the base

function are important to cover a greater portion of the

feature space with respect to the global PDF structure. To

frame this in an example, we for instance use a Gaussian

base function and apply DDE. As DDE predicts the PDF

estimate only from distances, the position of the base

Fig. 2 Comparison of different

values for k of the DDE model.

The KL divergence is shown as

mean over the validation dataset

with 250 functions, plotted

against the number k in 1D (top)

and 3D (center). On the bottom

two examples of the validation

set in 1D are shown, each with a

size of the distribution of 1000

samples, with the model

estimates for k ¼ 32, k ¼ 64

and k ¼ 128, respectively

Neural Computing and Applications (2021) 33:16773–16807 16777

123



function on the x-axis makes no difference. However,

combining this first base function with the positive part of a

sine by addition, shows the importance of both random-

ization aspects. The randomization of the position of the

Gaussian in a p-range does not drastically change the

global structure of the resulting PDF, while the random-

ization of domain extent does not lead to the appearance or

disappearance of periodic features in the PDF, caused by

the sine.

For an even greater randomization, also the number of

functions connected nc is varied during function genera-

tion. The set of functions was selected, such that they

contain a wide range of different structures. These are

periodic or aperiodic features, (non-)monotonicity, differ-

ent degrees of slopes, signal peaks of varying degree,

discontinuities, valleys, (non-)heavy edges, and semi-di-

verging features. The latter needs to be semi-diverging, as

actually diverging functions lead to problems in the PDF

generation because of exploding values. For further details

on the set of base functions we refer to Appendix 2.

For the set of operators in this work we used only the

addition and multiplication to guarantee the positive defi-

niteness of the synthesized functions, since a cutoff used on

non-positive definite functions as well as a power operator,

albeit positive definite, would result in too many redundant

features in the resulting functions.

While it would be optimal to construct PDFs for larger

domain dimensions d[ 1, it would become an increas-

ingly tedious task to find a proper set of base functions,

which would have to be done for every given domain

dimensionality. Instead, we adapt our method to always

select functions from the same set of 1D base functions as

before and combine them to higher functions with a higher-

dimensional domain. This is realized through two different

approaches. In one approach first nc base functions are

coupled to obtain d 1D functions which are then coupled to

d-dimensional functions. The other approach instead first

constructs nc d-dimensional functions from the 1D func-

tions and couples them afterward with a randomly selected

operator, which is in practice again either addition or

multiplication. The functions built in this way are nor-

malized by numerical integration to obtain PDFs, and

probability-distributed samples are drawn from these via

rejection sampling. The benefit of the former approach is

that it is significantly faster to construct as small as possible

upper bound for the importance sampling and to normalize

the function, as the dimensions are decoupled (linear

growth with the number of dimensions opposed to an

exponential growth), but it bears the drawback that the

functional space is more structured and thus the feature

space is less covered. Both generation schemes still pose

the problem of exploding or vanishing numerics for large

dimensions. In detail, this arises for base functions which

have a very small maximum. To counter this it is necessary

to apply additional constraints on the high dimensional

function generation. Therefore, starting at d ¼ 50, first the

set of operators for combining the base functions is reduced

to only the addition. Secondly, we neglect such base

functions which have a maximum lower than 0.01.

Otherwise the small values of the functions, especially

paired with a multiplication operator, will lead to explod-

ing values during normalization of the function, to obtain a

PDF. To ensure our experiments are feasible, we limited

the number of dimensions and employed 2� nc � 7 for all

applications.

With this data generation scheme it is in principle pos-

sible to generate an infinite stream of data during training.

However, we differed from this by generating a large

training set, as it was more practical wrt. computational

time when comparing different models.

For 1D to 3D the PDFs used for evaluating the presented

approach are generated from real-world data. For this we

used subsets of a stock market dataset in 1D,1 of Imagenet

in 2D [31] and of DeepLesion in 3D [36]. To accomplish

that, the stock values over time and the gray-scale pixel/

Fig. 3 Example PDFs (top) with associated histograms (bottom) from the synthetic training set used for 1D PDF prediction

1 Huge Stock Market Dataset (2017), authored by Boris Marjanovic.

Retrieved from https://www.kaggle.com/borismarjanovic/price-

volume-data-for-all-us-stocks-etfs/version/3 (Nov. 2019).
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voxel intensities are treated as discrete density functions.

To gain continuous data from the otherwise discrete den-

sities, the values at arbitrary positions are interpolated from

the surrounding positions. For larger dimensions, the PDFs

for evaluation were instead purely synthetic, as we are not

aware of available datasets. The generation followed the

same scheme as for the training data, but with a different

set of base functions, constrained on certain characteristics.

The training sample sets for each dimensionality com-

prised 1000 samples, whereby every sample contained

1000 points for 1D and 5000 points for the rest. The val-

idation set during training was a quarter of the respective

training set, split before training. To evaluate the general-

ization capability, additional sets of synthetic samples were

generated only including certain characteristics in the

sampled functions or excluding them from the complete

function set.

5 Evaluation

To evaluate the proposed DDE method, we use it to infer

PDFs for synthetic and real-world data unseen during

training, as well as single analytical PDFs in 1D. The

performance of every prediction is quantified by the total

computing time for estimation, the mean pairwise squared

error (MSE) and the Kullback–Leibler (KL) divergence

[15, 22] as distance metrics between the true PDF values.

Furthermore, we consider the p value of the two sample

Kolmogorov–Smirnov test, which is an estimate on the

distribution itself. In the latter we compare the input dis-

tribution with a distribution sampled from the estimated

PDF, where the p value is an expression on how likely it is

that the two distributions come from the same PDF. The

DDE model is trained only once for a given domain

dimensionality, with the trained state then directly applied

to arbitrary sample distributions with same dimensionality.

Thus, the time it takes to train the model is not regarded in

the evaluation, because we are only interested in the time it

takes to get an estimation for any given distribution. A

dependence of the reported computing times with respect

to varying implementation should only be of a minor order,

as all tested methods are, at least for their time-wise most

complex parts, run with CPU implementations from widely

used and advanced software libraries. We did not engage in

writing sophisticated GPU implementations for competing

methods, as the main goal of this paper is to demonstrate

that learned density estimation is highly accurate and can

serve as an off the shelf tool for data scientists, even when

it is only trained once.

To perform a meaningful evaluation, we compare our

estimations to several frequently used density estimators

available in Python and R. These are chosen, as Python is

the most used programming language for the data-based

sciences, directly followed by R,2 which especially is the

standard tool to solve statistical problems with many

implementations unmatched by other languages. For

Python we are comparing against a naive KDE imple-

mentation with Silverman’s rule of thumb [34] for the

bandwidth estimation (KDE), a Gaussian mixture model

for density estimation (GMM) and a variational Bayesian

Gaussian mixture model [4] (BGMM). For R we are

comparing against the implementation of KDE with the

plugin bandwidth estimator Rpi [35], the smoothed cross-

validation bandwidth estimator Rscv [11, 20], the least

squares cross-validation bandwidth estimator Rlscv [5, 30],

the normal mixture bandwidth Rnm [37] and the normal

scale bandwidth Rns [7], as well as the R implementation of

Farmer and Jacob’s PDF estimator [13] (FJE) in 1D, as the

latter is only defined in 1D. In addition, we are comparing

to a TensorFlow implementation of the masked autore-

gressive flow [26], which is a recent approach for deep

density estimation. As not all methods can be presented in

the plots, we have chosen to display only the estimators

which showed in any test either the best result, or a good

trade-off between different metrics, such as between time

and MSE. The exclusion of this is Rscv, which is not rep-

resented, as it produces almost identical results to Rpi.

Furthermore, we omitted Rhlscv which, while producing

good results in some cases, fails horribly for single distri-

butions, making it impossible to compare in the chosen

plots. All other results are reported in the tables in

Appendix 3.

A summary of the test results for domain dimensional-

ities d 2 f1; 3; 5; 10; 30g is presented in Fig. 4 with the

MSE and total computational time of estimation over the

dataset and in Fig. 5 with the KL divergence, while the

numerical values are presented in Appendix 3. For higher

dimensions ’5C DDE shows the best MSE and is com-

parable with respect to the KL divergence, while being the

fastest method in most cases. For smaller dimensions /5

there is a give and take of time and accuracy between DDE

and the competing methods. While in 3D DDE shows the

worst KL divergence for smaller distribution sizes, it

improves in accuracy for larger distribution sizes, which

we could not equally observe in the other methods. The

same relation is apparent for MSE, while the different

scores are more comparable here. Regarding computing

time, DDE is among the fastest method only beaten by

vanilla KDE and also by Rns for large sample sizes. The

former is significantly worse regarding the MSE, and while

better for low distribution sizes regarding the KL

2 Visualization of Kaggles 2018 data science survey (2018), authored

by Kaggle and sudhirnl7 at https://www.kaggle.com/sudhirnl7/data-

science-survey-2018 (retrieved October 2020).
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divergence, gets again worse for larger distribution sizes.

The latter is better in both MSE and KL divergence, getting

passed by DDE only for large sample sizes. In 1D we find

that the best estimator is FJE which shows the best MSE

score, and on average the best KL divergence for all tested

distribution sizes, while it also contains some outliers with

worse estimates regarding the latter. Unfortunately, FJE is

consistently the slowest in all performed tests. In com-

parison with the other tested methods, DDE scores better

regarding both the KL divergence and MSE, where the

other methods become comparable only for larger distri-

bution sizes. Regarding speed, DDE is slower than most

methods in 1D, which is caused by the additional

smoothing operation. Thus, for small dimensionalities

DDE cannot for all tests be generally regarded as the best

method on the evaluated distributions, but can neither be

regarded as worse than the other evaluated techniques.

In the next step, we take a closer look on the estimations

for distinct distributions in 1D. For each we present the

estimate by Rnm, KDE, FJE and DDE, both with post

applied smoothing and without, for distributions of size

n ¼ 500 and n ¼ 5000 along with the MSE, KL diver-

gence, p value and estimation time. The distributions we

are estimating are the five test distributions of Farmer and

Jacobs [13].

Fig. 4 MSE per sampled distribution (left) and the total computing

time (right) on a logarithmic scale—in both cases lower is better. The

MSE plot shows the median as bar with a notched box showing the

interquartile range (IQR) and the 1.5 IQR range on the whiskers with

outliers as black circles. The methods shown are either the best

methods with respect to accuracy and computing time or show the

best trade-off between those two. Sometimes better scoring methods

(such as Rnm) could not be tested for higher dimensions, as they

simply take to much time. In 1D and 3D the tests were conducted on

the stock market and DeepLesion test sets, respectively, and for

higher dimensions on synthetically generated datasets
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5.1 Gamma distribution

The gamma distribution pðxÞ ¼ 1ffiffiffiffi
px

p e�x presents the sig-

nificant feature of a singularity at x ! 0, shown in Fig. 6.

Going through the estimators Rnm fails in estimating the

PDF for both tested distribution sizes, which is however

not distinctively apparent in the numeric scores, as it finds

a good estimate for the actual divergence. KDE can fit the

tail of the distribution, but fails for the divergence, which is

also represented by the bad scores in all metrics. FJE, while

being the slowest method, finds a good estimate for the

divergence, but cannot fit the overall shape of the PDF

well. While DDE can estimate distribution well for most

parts, it fails to fit the divergence for small distribution

sizes. The smoothing has only a minor effect on DDE for

this distribution.

5.2 Sum of two Gaussians distribution

The sum of two Gaussians distribution pðxÞ ¼
7

10
Nðxjl ¼ 5; r ¼ 3Þ þ 3

10
Nðxjl ¼ 0; r ¼ 1

2
Þ, where N

denotes the Gaussian distribution with mean l and standard

deviation r is a standard multimodal distribution with soft

tails, shown in Fig. 7. For this case, Rnm finds a good

estimate, which follows the general structure of the PDF,

with some high-frequency errors. This is also apparent by

the significantly small MSE and KL divergence and the

large p value. While KDE can also reproduce the general

structure of the PDF, both peaks are under-estimated,

causing significantly lower scores. The quality of the FJE

estimate is both visually and numerically in between those

of KDE and Rnm. While ii recovers the general structure of

the PDF also for n ¼ 500, the sharp peak is still under-

estimated, while the left bump is shifted and narrower than

it should be. For n ¼ 5000, the sharp peak is estimated well

Fig. 5 KL divergence per sampled distribution on a logarithmic

scale—lower is better. The plot shows the median as bar with a

notched box showing the interquartile range (IQR) and the 1.5 IQR

range on the whiskers with outliers as black circles. In 1D and 3D the

tests were conducted on the stock market and DeepLesion test sets,

respectively, and for higher dimensions on synthetically generated

datasets
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Fig. 6 Results on the test of the

gamma distribution in 1D. On

top a plot of the true PDF and

the estimates of Rnm, KDE, FJE

and DDE with and without post

applied smoothing. For the plot

on the left the estimators learned

the distribution of a sample size

of n ¼ 500 and n ¼ 5000 on the

right. Below are the tabulated

metrics of MSE, KL divergence,

p value and the computational

time

Fig. 7 Results on the test of the

sum of two Gaussians

distribution in 1D. On top a plot

of the true PDF and the

estimates of Rnm, KDE, FJE and

DDE with and without post

applied smoothing. For the plot

on the left the estimators learned

the distribution of a sample size

of n ¼ 500 and n ¼ 5000 on the

right. Below are the tabulated

metrics of MSE, KL divergence,

p value and the computational

time
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and the left bump is roughly estimated, while the shape

here is more akin to actual features, as the bump is split in

two, while the errors of Rnm are more akin to noise. While

DDE can estimate the structure of the PDF correctly, it

estimates a wrong feature to the left of the strong peak for

n ¼ 500 and the tails vanish to quickly for both tested

distribution sizes. Hence, the scores on MSE and KL

divergence still show both, good results for both n, while

the p value for n ¼ 500 is quite low. Again the smoothing

has only a minor, while visible and measurable effect.

5.3 Five fingers distribution

The five fingers distribution pðxÞ ¼ w
P5

k¼1
1
5
Nðxjl ¼

2k�1
10

; r ¼ 1
100

Þ þ ð1 � wÞ with w ¼ 0:5 contains five sharp

Gaussian peaks, shown in Fig. 8. This type of distribution

is a good test for estimators, as the sharp peaks and only

local expression of the PDF with vanishing probability on

large ranges of the domain, pose a difficult challenge for

density estimation. In particular Rnm fails again for the

estimation of this PDF, producing an almost flat line for

both distribution sizes. KDE scores similarly poorly, while

at least estimating the Gaussian’s to some degree, albeit far

to under-expressed. For this distribution FJE does not

manage to recover the five peaks, but instead estimates

only three, leading to a large KL divergence and a very low

p value. We note that this faulty estimate is maybe caused

by a faulty estimation in the R package, as the estimate of

this distribution in the original paper of Farmer and Jacobs

is better. The estimation of DDE for n ¼ 500 is not close to

a PDF in this example, as the area under the curve is by far

too large, but it is the only method able to reproduce the

general structure of the PDF with sharp peaks, while the

virtual peaks between the actual Gaussians are a wrong

feature estimated for small sample sizes, caused by the

roughly symmetric distribution of sampled points around

them. For n ¼ 5000 the shape of the PDF is better esti-

mated, with only the peaks being too high, causing the

lowest KL divergence and highest p value. Here the effect

of smoothing is again very small.

5.4 Cauchy distribution

The Cauchy distribution pðxÞ ¼ b
pðx2þb2Þ has heavy tails.

The extreme statistics of the Cauchy distribution are gen-

erally a difficult problem for density estimation, shown in

Fig. 9. Here Rnm and KDE give visually almost identical

estimates with good scores, while for n ¼ 5000 the former

shows better distance scores, while the latter has a signif-

icantly higher p value. Again, the estimate of FJE is far

away from the true PDF and by far the worst of the com-

pared estimates, while again, this distribution was better

Fig. 8 Results on the test of the

five fingers distribution in 1D.

On top a plot of the true PDF

and the estimates of Rnm, KDE,

FJE and DDE with and without

post applied smoothing. For the

plot on the left the estimators

learned the distribution of a

sample size of n ¼ 500 and n ¼
5000 on the right. Below are the

tabulated metrics of MSE, KL

divergence, p value and the

computational time
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estimated by Farmer and Jacobs. DDE over estimates the

tails of the distribution for n ¼ 500 with a slightly to high

peak in the center. While this also causes bad scores, the

estimation becomes much better for larger sample sizes. In

this case the effect of smoothing is visually not noticeable

for both sample sizes and even causes worse metrics for

n ¼ 5000.

5.5 Discontinuous distribution

The discontinuous distribution

pðxÞ ¼

4

5
; if x\0:3 or x[ 0:8

1; if 0:4\x\0:5

5

4
; else

8
>>>><

>>>>:

defined on the range [0, 1], poses the problem of discon-

tinuities in the PDF with heavy edges, as shown in Fig. 10.

While no method can estimate the sharp edges of this

distribution well for n ¼ 500, almost all methods can

estimate the larger bump of the distribution, with only FJE

producing one smooth curve offers the entire PDF. DDE

and KDE are closer to the valley of the distribution, but

Rnm can also estimate the second bump as a noticeable

feature. For n ¼ 5000 KDE still produces an overly smooth

estimate, while the unsmoothed result of DDE contains

many noisy spikes. Here, the smoothing has the strongest

effect, leading to an estimate which is visually similar to

that of Rnm, while showing the best distance scores. FJE

does now estimate the larger bump of the distribution,

while showing no other features of the true PDF, apart from

reproducing the heavy edges on x ¼ 0 and x ¼ 1 better

than KDE, as it does not quickly degrade toward the end of

the distributions.

To summarize these five results, we can say that DDE

has difficulties both in estimating sharp peaks as well as

long tails, where in the former it produces to high estimates

and in the latter vanishes to quickly. Still, DDE is the only

method which reproduced the functional shape of the target

PDF in all tests, which makes it a good method for esti-

mating such.

5.6 Examples for higher domain dimensions

To compare the actual shape of the density estimates in

higher dimensions, we present examples of estimations in

2D and 3D domains in Fig. 11. As a depiction of the

estimations becomes sub-optimal already for 3D, where we

plot a slice of the volume projected onto the xy-plane, we

cannot show them for higher dimensions. In the figure we

Fig. 9 Results on the test of the

Cauchy distribution in 1D. On

top a plot of the true PDF and

the estimates of Rnm, KDE, FJE

and DDE with and without post

applied smoothing. For the plot

on the left the estimators learned

the distribution of a sample size

of n ¼ 500 and n ¼ 5000 on the

right. Below are the tabulated

metrics of MSE, KL divergence,

p value and the computational

time
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Fig. 10 Results on the test of

the discontinuous distribution in

1D. On top a plot of the true

PDF and the estimates of Rnm,

KDE, FJE and DDE with and

without post applied smoothing.

For the plot on the left the

estimators learned the

distribution of a sample size of

n ¼ 500 and n ¼ 5000 on the

right. Below are the tabulated

metrics of MSE, KL divergence,

p value and the computational

time

Fig. 11 Examples of the best

tested density estimators Rpi,

Rnm, Rns and DDE for

distributions with 10,000 points

each. Examples for 2D (top) and

3D (bottom). For 2D and 3D the

ground truth PDF is given on

the left. Below each estimation

the respective error image is

given with MSE values on top
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present the results of Rpi, Rns, Rnm and DDE, both with their

respective estimate, as well as an error image between the

true PDF and the estimate. Both in 2D and 3D, Rpi and Rns

produce very smooth estimates. While this may be bene-

ficial on areas with a rather flat distribution, it becomes

certainly a problem on regions with dominant features,

which cannot be estimated well. DDE and Rnm on the other

hand give closer estimates to the PDF. Especially in 2D the

estimates are similar, while Rnm appears as a smoother

version of DDE, which however seems to be an unwanted

feature both regarding the visual quality, as well as the

MSE, although only marginally. This is even more so true

for 3D, where only DDE manages to estimate the sharp

features of the distribution, which becomes also visible in

the error image, where all KDE-based estimators still show

more distinct structures, while it is more distributed for

DDE and akin to noise. Note that these error images are

normalized on their own range, not with respect to a

common factor and should thus be compared along the

actual error value. Thus, although comparable to Rnm in the

total accuracy, DDE appears to produce an estimate which

is visually closer to the real PDF. This is essentially the

same result as in 1D, where the metrics were on par or

sometimes worse than other estimators, but still the esti-

mate was visually more akin to the PDF.

5.7 Generalizability evaluation

In this section, we describe our investigations toward the

generalization of our proposed models to other data.

Therefore, we compared models trained on subsets of the

real-world data to the same models trained on synthetic

data. During this comparison, we tested all trained models

on the real-world test sets as well as different synthetic test

sets as visualized in Fig. 12. We have further varied the

distribution sizes, whereby all test distributions are disjoint

from the training distributions. Note that the PDFs gener-

ated from real-world data are expected to be similar among

train and test sets with regard to the functional shape. The

results of our investigations show that the models trained

on synthetic data perform equally or better than the models

trained on real-world datasets, except for 3D where the

real-world models always score better. We attribute this

difference for the 3D case to the specific characteristics of

the DeepLesion dataset. The dominant silhouette edges,

which occur in the entire dataset, are hard to fit, but

inherently learned by the, respectively, trained model, for

exactly these type of edges at those positions, thus over-

fitting it to this kind of data. On the synthetic test distri-

butions however, both types of model score similarly in 2D

and 3D, while in 1D again the models trained on synthetic

data score significantly better. This indicates that the

models show a good generalization capability while also

having space for additional specialization. The models

trained on real-world data in 3D show comparable results

on the synthetic test sets, but perform systematically better

on the real-world test sets. We ascribe the fact that the

models trained on real-world data perform worse on syn-

thetic data in 1D, to a lacking diversity in the data of the

real-world distributions in 1D. As this systematically lower

score is also apparent on the real-world data, it could

additionally indicate that the models’ capacity was large

enough to not only overfit similar functional shapes, but

also the specific PDFs. This is possible in that case, as the

Fig. 12 Comparison of the MSE

score (on a logarithmic scale,

lower means better) of models

trained on synthetic data (circle)

and such trained on subsets of

the real-world dataset (cross),
evaluated on synthetic (top) and

real-world data (bottom). All

test datasets are disjoint to the

respective training datasets, but

stem from the same respective

corpus of data. Every tick

represents the mean MSE over a

complete dataset for one

n 2 f1000; 5000; 10; 000g,

where n is the number of points

per sample
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model does not need to learn information about global

shapes, before it can address local features, but instead

learns only the local features based on the common global

shape of the entire dataset.

For an additional test, we trained models on datasets

comprising functions with random, sinusoidal and random

with the exclusion of sinusoidal characteristics, with results in

Fig. 13. In this test we can see that all models score roughly

similar on the monotone dataset, indicating that this specific

functional shape can also be well estimated by models trained

exclusively on other functional shapes. As expected, the

sinusoidal trained models score always significantly better on

the sinusoidal datasets. Along this it is important to note that

the model trained without sinusoidal functions scores worse

on the sinusoidal PDFs in 10D than the one trained on random

functions, but significantly better in 30D. This indicates that

the specific functional shape must not be apparent in the

training data in form of the 1D base functions, but that the

important local characteristics can be generated by the random

combination of the base functions. Nevertheless, this evalu-

ation also shows that the generation of training data in high

dimensions shows great potential for advancement, as the

difference of the models trained on sinusoidal data to all other

models gets larger with higher dimensions.

5.8 Complete data space estimation

Any method used for the process of estimating PDFs of

arbitrary distributions has to estimate not only the areas of

high probability accurately, but the complete data space. The

difficult task in this is the correct estimation of areas with a

very faint or zero probability. Examples for this task are

presented in Fig. 14 for the same methods as before. For the

compared methods we can see that DDE and Rnm can

extrapolate to the upsampled regions much better than the

other methods, caused by the overly smooth estimation of the

complete data space by those. Even for the rather large

sample sizes shown, Rns predicts much too smooth estima-

tions, missing every feature of the true PDF. Also Rpi seems

to be unable to correctly estimate the parts of the PDF with a

strong gradient, while it is able to correctly estimate the

larger regions of zero probability in the bottom example. The

estimations of Rnm and DDE can hardly be differentiated.

AlthoughRnm shows a slightly better score, the visual quality

of the estimations appears equivalent, with the only differ-

ence that Rnm estimates a slightly smoother PDF which can

be preferred or not, while DDE again holds the benefit of

being much faster than Rnm. Also FJE cannot correctly

estimate the periodic function on the top, where the valleys

and peaks are shifted in some cases. While the estimate

produced by FJE is still better than of vanilla KDE orRns, it is

not as accurate as DDE, Rpi or Rnm. In the lower case its

estimate is close to the last mentioned methods, but still

shows some distinct variations from these and the true PDF.

5.9 Local shape dependence

We also evaluated the dependency of the different esti-

mators on the local density around a given query point. For

this, we constructed a range of PDFs shown in Fig. 15, for

which the position t such that pðtÞ ¼ 1 is known. The

definition of the respective functions from left to right and

top to bottom is given in Table 1. Given distributions with

sizes n ¼ 500 and n ¼ 10; 000, every estimator was eval-

uated on t. We again present the values of the best esti-

mators in Table 1. We show the estimate at the query point

Fig. 13 Comparison of the MSE score (on a logarithmic scale, lower

means better) of models trained on synthetic data with random

(circle), sinusoidal (cross) and random without sinusoidal character-

istics (triangle), evaluated on synthetic data with monotone (top) and

sinusoidal characteristics (bottom). All test datasets are disjoint to the

respective training datasets but stem from the same respective corpus

of data. Every tick represents the mean MSE over a complete dataset

for one n 2 f1000; 5000; 10; 000g, where n is the number of points

per sample
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Fig. 14 Examples of the

estimated PDF values for the

complete data space in 1D for

Rpi, Rnm, Rns, KDE, FJE and

DDE alongside the true PDF

values for the complete data

space. The distributions were

sampled with n ¼ 5000 points

each from synthetic PDFs

disjoint to the synthetic training

data

Fig. 15 A set of 9 PDFs with 1D

domain. For every PDF we have

a distribution which is used get

the estimate p(t) at position t,
with the ground truth values of

pGTðtÞ ¼ 1
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t for every estimator and the respective mean value and

standard deviations. The estimate as well as the mean value

should be close to 1, while the standard deviation should be

as low as possible for an estimator who is robust with

respect of the local shape. While DDE knows per definition

only the information carried by the k ¼ 128 closest points,

the other estimators were still fed with the full distribution.

As can be seen from the results in row 2 and 4, DDE

struggles with correct estimates on heavy edges. The only

estimator, out of the ones we compared here, solving this

task is FJE, although not in all cases. Additionally, FJE

produces significantly bad estimates for query points on a

rising slope, visible in rows 7 and 8, which no other esti-

mator does. Other than that, DDE shows results compara-

ble to the other estimators. On average, DDE shows the

best results for low sample sizes, but shows worse results

for high sample sizes by the same margin. While we cannot

deduce any significant advantage or disadvantage of DDE

given the results of this analysis, it shows that DDE is on

average at least just as resilient to the local shape regarding

the estimation accuracy, as other estimators are.

6 Discussion

The problem of automated density estimation is crucial for

many data analysis tasks and beyond. We presented a well-

generalizing novel data-driven neural network approach to

solve this problem. To achieve this task we have proposed

the model architecture of DDE and a pipeline for the

generation of synthetic PDF datasets, making generalizable

training possible. All material for retraining, generating

data and the actual implementation of DDE is publicly

available.3 With the provided implementation, every task

can be completed by a single function call and is thus

Table 1 Numerical results of

the tests for dependence on local

shape of the distribution’s

underlying PDF

PDF p(x) Rpi Rnm Rns KDE FJE DDE

n = 500

1 if 0:5\x\1:5 0.83 0.75 0.87 0.80 0.99 0.88
x
2

if x\2 0.45 0.56 0.45 0.41 0.25 0.46

2x if x\1 0.98 0.88 1.00 0.59 1.17 1.01

sin x if x\ p
2

0.49 0.42 0.50 0.47 0.88 0.49

sin x if p
3
\x\ 2p

3
1.01 1.00 1.01 0.90 0.94 0.97

e
�ðx�lÞ2

2r2 if x\30
0.95 0.94 0.94 1.02 0.93 1.00

x2 if x\3
1
3 0.79 0.96 0.86 0.92 0.62 0.85

x2

3
if x\9

1
3 0.92 0.86 0.96 0.82 0.49 0.91

sin xþ 2 if 3p
2
� p

a\x\ 3p
2
þ p

a
1.01 0.44 0.99 1.22 1.03 0.96

Mean 0.82 0.76 0.84 0.79 0.81 0.84

SD 0.20 0.21 0.21 0.25 0.28 0.20

n ¼ 10;000

1 if 0:5\x\1:5 1.01 1.11 0.99 1.28 1.00 1.02
x
2

if x\2 0.50 0.52 0.49 0.36 1.06 0.50

2x if x\1 1.05 1.05 1.03 1.68 0.99 1.00

sin x if x\ p
2

0.49 0.49 0.51 0.18 0.92 0.50

sin x if p
3
\x\ 2p

3
0.98 1.02 0.96 0.51 0.95 0.94

e
�ðx�lÞ2

2r2 if x\30
0.98 0.98 0.98 1.05 0.92 1.06

x2 if x\3
1
3 0.97 0.85 1.01 1.11 0.54 0.81

x2

3
if x\9

1
3 1.01 0.93 0.99 1.35 0.47 0.87

sin xþ 2 if 3p
2
� p

a\x\ 3p
2
þ p

a
1.05 1.09 1.04 0.71 1.04 1.05

Mean 0.89 0.89 0.89 0.91 0.88 0.86

SD 0.21 0.22 0.21 0.47 0.20 0.21

All values are the respective density estimate at point t with ground truth pðtÞ ¼ 1. The mean and standard

deviation of the Gaussian in row 6 are defined as r ¼ 1ffiffiffiffi
2p

p , l ¼ 15 and the value a in row 9 is defined as

a ¼ 6:52326761054738. For every PDF pðxÞ ¼ 0 for x outside the defined ranges. The table on the top

shows the results for distributions with size n ¼ 500 and the bottom one for n ¼ 10;000

3 https://github.com/trikpachu/DDE.
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resulting in no barrier for potential users or researcher

benchmarking their own results.

The comparison with the state-of-the-art density estima-

tors in Sect. 5 indicates that first of all DDE shows the best

general applicability in high dimensions, concerning that

other methods are significantly slower, with on average

better or comparable scores both in accuracy and speed with

respect to the compared methods and evaluated datasets.

While this is achieved by employing generalized models,

even better results could be expected when retraining our

estimator for the case at hand, in a test scenario where the

same family of distributions has to be evaluated many times.

This is visible from the results in Sect. 5.7, where we could

achieve better scores for a model trained and evaluated on

such data with strong global similarities. As we could show

especially for 1D problems, our method does not predict the

best estimates in all cases, but nevertheless always predicted

estimates, reminiscent of the real PDF in structure, without

failing completely for single distributions.

7 Conclusion

The DDE method poses a new, generally applicable tool for

data-driven density estimation. While it produces good

results, structurally reminiscent of the real PDF, it does not

always show the best scores, while also the speed of the

method could be enhanced. Thus we discuss here a few

possible paths to further advance DDE. On the one hand, we

have seen in Fig. 8 that albeit DDE produces visually good

estimates of the PDF, in regard of the shape of it, it can be

far away of a real PDF, as it is not normalized to one. While

this happens only for very few cases, a normalization,

preferably not as an expensive postprocessing step, should

be employed somehow in the algorithm. Currently we

employed only the MSE for our training objective. This

could be enhanced by employing different metrics, perhaps

more suited to the application toward probabilities, such as

the KL divergence. Another example is the modification of

the method to better respond to anisotropically distributed

samples by respecting the edges of the distribution. In

addition, the single model could be transformed into an

ensemble of models, where first one model decides for the

value of k and then assigns the corresponding model, which

would be similar to the current model formulation. This also

allows for the estimation of distributions smaller than the

default k. Additionally, two advancements of the synthetic

function generation should be made. First, the set of base

functions should be adapted to include more functional

characteristics and a theoretically more sound set of com-

plementary functions. Second, the generation of high

dimensional synthetic data should be adapted, since the

analysis of Sect. 5.7 has shown that the models

generalization capability shrinks for higher dimensions. This

could further increase the difference of accuracy in high

dimensions with respect to the other estimators.

Appendix 1: Hardware used
for the evaluation

The networks are built and trained with TensorFlow 2.1,

and all tests were conducted using an NVIDIA GTX 1080

GPU and an Intel Core i7-8700K CPU.

Appendix 2: Set of base functions
for the synthetic function generator

As described in Sect. 4 the generation of synthetic PDFs,

from which to draw probability distributions with ground

truth, takes a set of 1D base functions as building blocks. The

functions from which those are chosen are listed in Table 2.

Most of the functions take the parameters R and S as Input,

where R is a uniform random number in the range [0,1] R 2
Uð½1; 0�Þ and S is the upper bound of the domain in the

respective dimension. Here we explain how the selected

functions satisfy the addressed necessary features of base

functions, which are periodic or aperiodic features, (non-)-

monotonicity, different degrees of slopes, signal peaks of

varying degree, discontinuities, valleys, (non-)heavy edges,

(non-)heavy tails, and semi-diverging features. While most

proposed functions are aperiodic, the sine and cosine func-

tions bear the feature of periodicity. Combined with other

functions and expressed on varying domain extents, this

results in different shapes of such periodicity. Monotonicity is

expressed by the different linear or power functions. While

the appearance of negative along positive monotonicity on its

own is redundant for our model, it becomes important for the

random combination with other asymmetric functions; thus,

both are included. While basically every function produces

different degrees of slopes, this is formally also encoded as

well by f ðxÞ ¼ x, f ðxÞ ¼ xaR and f ðxÞ ¼ x2, as the multi-

plicative combination of these leads to arbitrary degrees. The

signal peaks are encoded by the different randomized Gaus-

sians. Discontinuities in f(x) are produced by the step func-

tions, while discontinuities in f 0ðxÞ are encoded by the norm

of the sinusoidal functions, as well as by the maximum and

minimum operators taking x as argument. The latter also

prohibit exploding values, while semi-diverging features are

still expressed by the inverse functions of x and f ðxÞ ¼ x2 for

large domain sizes. The functional valleys are again encoded

by the sinusoidal functions. The heavy or non-heavy edges

are encoded by basically every function. Most prominently do

the step functions encode heavy edges, while all monotone

functions have by default one heavy and one soft edge.
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Appendix 3: Tabulated data

In this section we present the tabulated data of the results

depicted in Fig. 4 in Tables 3, 4, 5, 6, 7, 8 and 9. The

synthetic results shown in Fig. 4 are the combined results

from all synthetic test sets of the respective sample size and

dimensionality. In addition to the density estimation

methods reported in the main paper, we did additional tests

which are reported in the tables. These are the smoothed

cross-validation bandwidth estimator Rscv [11, 20], the least

squares cross-validation bandwidth estimator Rlscv [5, 30]

and a variational Bayesian Gaussian mixture model

(BGMM) [1]. The methods are not included in the analysis

in the main text, as it is easily visible from the main text

that they are clearly worse in all aspects compared to their

competing methods, which is GMM for BGMM and the

Table 2 1D base functions for

the generation of synthetic

PDFs

Definition of function f(x) Parameters

1
1þe�Rx

2Rffiffiffiffiffiffiffi
2pr2

p e
�ðx�lÞ2

2r2
ðl; rÞ 2 fð0:75RS;

ð0:5RS;
ð0:25RS;

ð0:75RS;

ðRS;
ð0:5RS;
ð0:25RS;

ðRS;
S� x

minð 1
4xþ� ; 1000Þ

1
4xþ�

min aR; 1
50xþ�

� �
a 2 0:5; 2; 4

maxðaRS; xÞ a 2 0:4; 0:8

aRx a 2 2; 3
x

4 maxð0:2;RÞ

S2 � x2

ðS� xÞ2

xaR a 2 1; 2

S� xmaxðaR;0:05Þ a 2 1; 2

1; if x[ maxðR; 0:6ÞS
0; otherwise

�

1; if x\maxðR; 0:4ÞS
0; otherwise

�

1; if x\0:25RS or x[ 0:75RS
0; otherwise

�

1; if maxð0:25R; 0:1ÞS\x\maxð0:75R; 0:4ÞS
0; otherwise

�

x

x2

ffiffiffi
x

p

sinðxÞ þ 1

cosðxÞ þ 1

j sinðxÞj
j cosðxÞj
j sinðxÞ

xþ� j

R is a uniform random number in the range [0, 1]: R 2 Uð½1; 0�Þ and S is the upper bound of the domain in

the respective dimension
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Table 3 MSE, KL divergence, p
value and computing time for all

evaluated methods in 1D,

evaluated on the stock market

dataset

Estimator n = 500 n = 1000

MSE KL Div. p value Time (s) MSE KL Div. p value Time (s)

KDE 1.4e-1 2.4e-02 5.0e-01 1.6e?00 1.1e-01 2.2e-02 5.0e-01 4.5e?00

Rpi 9.7e-02 1.9e-02 5.3e-01 3.5e-01 6.9e-02 1.5e-02 4.6e-01 3.6e-01

Rlscv 6.8e202 1.7e202 7.0e201 1.3e?00 4.5e-02 1.2e202 7.1e201 1.3e?00

Rscv 9.7e-02 1.9e-02 5.2e-01 2.1e?00 6.8e-02 1.5e-02 4.8e-01 2.2e?00

Rnm 1.9e-01 2.3e-02 6.2e-01 2.5e?02 8.6e-02 1.6e-02 7.0e-01 5.9e?02

Rns 1.8e-01 2.7e-02 3.2e-01 1.4e201 1.4e-01 2.5e-02 2.3e-01 1.5e201

GMM 2.1e?00 – – 1.1e?03 3.3e?00 – – 1.5e?03

BGMM 2.0e?01 – – 8.3e?02 4.3e?01 – – 1.9e?03

MAF 5.0e-01 – – 2.9e?03 4.5e-01 – – 3.0e?03

FJE 8.5e-02 1.8e-02 4.5e-01 2.6e?03 5.1e-02 1.3e-02 4.4e-01 3.5e?03

DDE 7.2e-02 1.8e-02 5.5e-01 1.1e?01 4.4e-02 1.3e-02 5.8e-01 2.1e?01

DDEsmooth 7.1e-02 1.8e-02 5.4e-01 1.1e?01 4.1e202 1.2e202 5.7e-01 2.1e?01

Estimator n = 5000 n = 10,000

MSE KL Div. p-value Time (s) MSE KL Div. p value Time (s)

KDE 8.0e-02 1.5e-02 5.1e-01 5.8e?01 6.0e-02 1.3e-02 5.0e-01 2.1e?02

Rpi 3.9e-02 8.3e-03 3.4e-01 4.5e-01 2.6e-02 6.1e-03 2.9e-01 5.8e-01

Rlscv 2.0e202 5.3e203 7.2e-01 1.3e?00 1.3e202 3.7e203 7.2e-01 1.5e?00

Rscv 3.8e-02 8.1e-03 3.6e-01 2.1e?00 2.6e-02 6.0e-03 3.0e-01 2.2e?00

Rnm 3.4e-02 7.2e-03 7.4e201 3.7e?03 1.6e-02 4.3e-03 7.3e201 8.0e?03

Rns 9.6e-02 1.7e-02 5.2e-02 2.0e201 7.6e-02 1.4e-02 2.0e-02 2.4e201

GMM 2.0e?01 – – 7.5e?03 4.2e?01 – – 1.0e?04

BGMM 1.3e?02 – – 1.2e?04 1.9e?02 – – 2.3e?04

MAF 4.3e-01 – – 3.1e?03 4.1e-01 – – 4.1e?03

FJE 3.2e-02 7.7e-03 4.3e-01 6.7e?03 2.2e-02 5.7e-03 4.2e-01 8.5e?03

DDE 2.4e-02 7.8e-03 4.3e-01 2.2e?02 2.1e-02 6.9e-03 3.5e-01 5.4e?02

DDEsmooth 2.0e202 6.1e-03 4.3e-01 2.2e?02 1.8e-02 5.5e-03 3.4e-01 5.4e?02

Table 4 MSE and computing

time for KDE, Rnm, Rns and the

smoothed DDE estimate in 1D,

evaluated on synthetic test sets

with different characteristics

dataset KDE Rnm Rns DDEsmooth

MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

Gaussian 500 1.7e?0 3.6e21 7.4e?1 1.1e?1 1.8e?1 4.1e-1 1.3e10 2.1e?0

Gaussian 1000 2.0e?0 1.0e10 3.1e?1 2.1e?1 8.3e?0 1.6e?0 1.9e10 3.1e?0

Gaussian 5000 3.1e?0 1.7e?1 9.8e21 1.8e?2 2.1e?1 4.2e?1 1.0e?5 1.3e11

Gaussian 10000 2.6e10 6.3e?1 2.9e?2 4.0e?2 1.1e?1 1.8e?2 5.8e?3 5.4e11

Linear 500 5.7e-1 1.9e21 3.2e-1 2.1e?1 1.6e-1 4.1e-1 8.3e22 2.0e?0

Linear 1000 6.7e-1 6.4e21 1.7e-1 4.1e?1 2.3e-1 1.6e?0 7.6e22 2.8e?0

Linear 5000 5.8e-1 8.0e10 3.4e-2 3.2e?2 6.7e-2 4.4e?1 3.0e22 1.2e?1

Linear 10000 6.0e-1 2.9e?1 2.3e22 7.1e?2 9.5e-2 1.8e?2 3.4e-2 2.4e11

Monotone 500 4.9e-1 2.0e21 1.6e-1 2.4e?1 1.1e-1 4.1e-1 4.6e22 2.0e?0

Monotone 1000 5.5e-1 6.0e21 1.1e-1 4.9e?1 1.7e-1 1.6e?0 4.0e22 2.9e?0

Monotone 5000 5.7e-1 9.5e10 5.5e-2 3.0e?2 9.0e-2 4.3e?1 2.7e22 1.1e?1

Monotone 10000 5.3e-1 2.9e?1 3.5e22 7.9e?2 6.8e-2 1.8e?2 2.1e?2 2.7e11

Sinusoidal 500 5.2e-1 1.8e21 5.3e-1 2.1e?1 2.6e-1 4.3e-1 5.0e22 2.0e?0

Sinusoidal 1000 5.8e-1 5.3e21 3.0e-1 4.4e?1 1.2e-1 1.7e?0 3.4e22 2.8e?0

Sinusoidal 5000 5.4e-1 6.8e10 1.1e-1 3.2e?2 8.1e-2 4.4e?1 2.0e22 1.1e?1

Sinusoidal 10000 5.6e-1 2.6e?1 3.4e-2 6.5e?2 5.2e-2 1.8e?2 2.3e22 2.3e11
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Table 5 MSE, KL divergence

and computing time for all

evaluated methods in 3D,

evaluated on the deep lesion

dataset

Estimator n = 500 n = 1000

MSE KL Div. Time (s) MSE KL Div. Time (s)

KDE 4.6e?00 1.2e-01 7.5e100 4.0e?00 1.2e-01 3.0e?01

Rpi 1.0e?00 1.1e-01 1.8e?02 8.3e201 9.3e-02 5.8e?02

Rlscv 9.9e201 1.0e201 5.3e?03 8.3e201 9.2e-02 2.1e?04

Rscv 1.2e?00 1.0e201 4.7e?03 9.9e-01 9.1e202 1.7e?04

Rnm 1.1e?00 1.0e201 2.8e?03 8.5e-01 9.4e-02 6.7e?03

Rns 1.2e?00 1.0e201 2.4e?01 1.1e?00 9.3e-02 5.7e?01

GMM 4.2e?00 – 3.0e?03 3.8e?00 – 4.2e?03

BGMM 4.3e?01 – 7.6e?02 8.3e?01 – 1.6e?03

MAF 1.1e?01 – 2.1e?03 3.3e?00 – 2.4e?03

DDE 1.4e?00 1.8e-01 9.9e?00 1.1e?00 1.5e-01 1.9e101

Estimator n = 5000 n = 10,000

MSE KL Div. Time (s) MSE KL Div. Time (s)

KDE 3.3e?00 1.1e-01 7.1e?02 3.0e?00 1.1e-01 3.0e?03

Rpi 7.9e-01 7.3e202 3.1e?03 7.3e-01 6.8e-02 2.2e?03

Rlscv 1.7e?07 7.5e-02 1.3e?04 – – –

Rscv 9.1e-01 7.7e-02 1.3e?04 8.2e-01 7.2e-02 1.1e?04

Rnm 7.2e201 7.3e202 3.3e?04 6.8e201 6.7e202 1.0e?03

Rns 1.0e?00 8.0e-02 1.5e101 9.3e-01 7.6e-02 1.5e101

GMM 2.1e?01 – 1.6e?04 7.2e?01 – 2.3e?04

BGMM 3.2e?02 – 1.1e?04 4.8e?02 – 2.6e?04

MAF 1.9e?00 – 3.2e?03 1.9e?00 – 4.6e?03

DDE 8.4e-01 1.1e-01 1.1e?02 7.6e-01 9.9e-02 2.6e?02

Table 6 MSE and computing time for KDE, Rnm, Rns and DDE in 3D, evaluated on synthetic test sets with different characteristics

Data-set KDE Rnm Rns DDE

MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

Gaussian 500 1.1e?1 7.1e21 4.5e10 4.1e?2 9.6e?0 4.1e?0 9.1e?0 2.0e?0

Gaussian 1000 2.4e?1 2.8e?0 1.4e11 8.4e?2 2.2e?1 9.5e?0 1.9e?1 2.6e10

Gaussian 5000 1.6e?1 5.0e?1 4.9e10 3.0e?3 1.7e?1 9.2e?1 1.1e?1 8.9e10

Gaussian 10000 6.5e?0 1.7e?2 1.8e10 5.5e?3 7.8e?0 3.0e?2 4.0e?0 2.2e11

Linear 500 3.6e-1 7.0e21 4.3e-1 3.4e?2 2.9e-1 4.1e?0 2.5e21 1.8e?0

Linear 1000 2.7e-1 2.7e?0 2.9e-1 8.0e?2 2.7e-1 9.4e?0 2.0e21 2.5e10

Linear 5000 2.7e-1 4.8e?1 – – 3.5e-1 9.1e?1 2.3e21 8.5e10

Linear 10000 2.1e-1 1.6e?2 1.6e21 1.3e?2 3.0e-1 2.9e?2 2.0e-1 1.7e11

Linear 50000 1.3e21 3.7e?3 – – – – 1.5e-1 8.4e11

Monotone 500 6.2e-1 7.0e21 4.9e21 3.6e?2 5.3e-1 4.1e?0 4.9e21 1.9e?0

Monotone 1000 5.8e-1 2.8e?0 5.4e-1 8.4e?2 5.0e-1 9.2e?0 4.4e21 2.5e10

Monotone 5000 2.3e-1 4.8e?1 – – 2.7e-1 9.1e?1 1.9e21 8.3e10

Monotone 10000 1.9e-1 1.7e?2 1.5e21 7.5e?3 2.5e-1 2.9e?2 1.8e-1 1.6e11

Monotone 50000 – – – – – – 2.2e21 8.6e11

Sinusoidal 500 2.4e-1 6.9e21 2.1e-1 3.5e?2 2.2e-1 4.1e?0 1.5e21 1.9e?0

Sinusoidal 1000 2.1e-1 2.7e?0 1.9e-1 6.9e?2 2.4e-1 9.4e?0 1.4e21 2.5e10

Sinusoidal 5000 1.0e-1 4.6e?1 – – 1.7e-1 9.1e?1 8.5e22 8.6e10

Sinusoidal 10000 8.3e-2 1.6e?2 8.0e-2 1.0e?2 1.5e-1 2.9e?2 7.8e22 1.6e11

Sinusoidal 50000 – – – – – – 6.9e22 8.5e11
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other KDE estimators for Rscv. Rlscv however is not inclu-

ded in the analysis for a different reason. First of all, it is

very slow and thus only applicable for small domain

dimensionalities, and secondly, even though it gives the

best predictions sometimes, it also fails incredibly in other

cases without an apparent reason. This causes an error

many magnitudes larger than of all other methods. Such

failure without any apparent reason is a clear exclusion

criterion. For the reason of long computing times, not all

methods are tested for all datasets. All tables contain the

different estimators in columns, with MSE, KL divergence

and computing time for each method and dataset reported

in the main paper and with only the MSE and computing

time for the other methods and/or datasets. In 1D we

additionally report the p value, which is only applicable

there. Every entry in the tables is the mean (or sum for the

computing time) of the respective metric over the respec-

tive dataset for the respective method. The values high-

lighted in bold font are the best respective values for that

dataset. The dataset names are combinations of the char-

acteristic details of the included distributions and the

number of points per distribution. The former is either the

name of the real-world dataset (Stock data, Imagenet or

DeepLesion) or the sole characteristic of the base functions

from which the synthetic functions were generated

(Gaussian, linear, monotone or sinusoidal). The real-world

datasets contained 500 samples each, and the synthetic

datasets contained 50 samples each. The synthetic func-

tions with same characteristic but different sample sizes

were all randomly generated anew and thus contain dif-

ferent ground truth densities.

Appendix 4: Additional plots of the 1D
analysis

In this section we present the plots of the PDFs and esti-

mates of Sect. 5 individually in Fig. 16, 17, 18, 19, 20, 21,

22, 23, 24, 25 such that similar estimates can be better

compared.

Fig. 16 Estimates for the gamma

distribution with n ¼ 500
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Fig. 17 Estimates for the sum of

two Gaussians distribution with

n ¼ 500
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Fig. 18 Estimates for the five

fingers distribution with

n ¼ 500
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Fig. 19 Estimates for the

Cauchy distribution with

n ¼ 500

16800 Neural Computing and Applications (2021) 33:16773–16807

123



Fig. 20 Estimates for the

discontinuous distribution with

n ¼ 500
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Fig. 21 Estimates for the

gamma distribution with

n ¼ 5000
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Fig. 22 Estimates for the sum of

two Gaussians distribution with

n ¼ 5000
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Fig. 23 Estimates for the five

fingers distribution with

n ¼ 5000
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Fig. 24 Estimates for the

Cauchy distribution with

n ¼ 5000
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