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Abstract
The rapid development of hypersonic vehicles has motivated the related research dramatically while the evasion of the

hypersonic vehicles becomes one of the challenging issues. Different from the work based on the premise that the pursuers’

information is fully known, in this paper the evasion guidance for air-breathing hypersonic vehicles (AHVs) against

unknown pursuer dynamics is studied. The gradient descent is employed for parameter estimation of the unknown

dynamics of the pursuer. The energy-optimized evasion guidance algorithm is further developed by taking the acceleration

constraint and energy optimization into consideration. Under the proposed algorithm, the system can deal with the

unknown pursuer dynamics effectively and provide more practical guidance for the evasion process. The simulation results

show that the proposed method can enable the AHV to achieve successful evasion.

Keywords Hypersonic vehicles � Pursuit-evasion game � Uncertain dynamics � Gradient descent

1 Introduction

The rapid development of hypersonic vehicles has moti-

vated the relate research dramatically [1, 2]. In the past

decades, the advances of the hypersonic weapons drive the

revolution of the abilities and strategies of pursuers.

Therefore, the hypersonic vehicles will be confronted with

rigorous pursuit threat, and it is significant to carry out the

research upon the evasion strategies of the hypersonic

vehicles.

As an emerging research area, the research on the eva-

sion strategies of hypersonic vehicles is few. The few

existing studies [3–5] are all aimed at known waypoints

and no-fly zones, utilizing trajectory planning to achieve

evasion. But the research on pursuit-evasion (PE) games of

hypersonic vehicles is almost blank. However, the evasion

guidance laws in PE games of some other offensive

weapons (such as ballistic missiles and cruise missiles)

have been extensively studied, mainly based on optimal

control theory and differential game method.

The optimal control theory has been widely applied in

the research of PE games [6–12]. In Ref. [6], the optimal

evasion strategy from proportionally guided missiles is

proposed under the assumption of two-dimensional lin-

earized kinematics. The analytical expression of the

specific maneuvering moment is provided, demonstrating

that the maneuvering switching times are related to the

pursuer’s proportional guidance coefficient. And the three-

dimensional optimal evasion strategy in the case of linear

kinematics model is investigated in Ref. [7]. Reference [8]

puts forward the optimal evasion strategy with a path-angle

constraint and against two pursuers. The optimal acceler-

ation command is a bang-bang non-singular one governed

by a switching function. And the number of switching

points and their location is dependent on the dynamics of

the evader and the pursuers, and the constraints of the

problem. Considering the physical constraints of angular

velocity and angle of attack, Ref. [9] carries out the

research of an optimal three-dimensional avoidance
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trajectory. Similarly, in [10–12], the optimal control theory

are used to construct the guidance laws.

There are also some evasion strategies derived by the

differential game method [13–20]. The linear quadratic PE

games with terminal velocity constraints is discussed by

differential game method in Ref. [13]. A large family of

feedback solutions has been obtained from a simple-look-

ing performance index that contains a weighted combina-

tion of the pursuer’s control effort, the evader’s control

effort, the miss distance, and the terminal lateral velocity.

In Ref. [14], the problem of capturing a maneuvering target

is formulated as a non-cooperative zero-sum differential

game. State dependent riccati equation technique is used to

obtain the guidance law directly from the nonlinear state

equations, without any requirement of linearizing them or

making restrictive assumptions. And implementing the

proposed guidance law does not require time-to-go esti-

mate. Reference [15] poses the problem of intercepting a

maneuvering target at a prespecified impact angle in non-

linear zero-sum differential games framework. A feedback

form solution is proposed by extending state-dependent

riccati equation method to nonlinear zero-sum differential

games. In addition, Ref. [16–18] studied multiplayer PE

games from other perspectives based on differential games.

In the aforementioned studies [3–18], the evasion tasks

are all achieved by maximizing the miss distance or the

line-of-sight angle rate. However, for the purpose of energy

optimization and the subsequent combat missions after the

evasion, maximizing the miss distance may cause the

undesired energy consumption and deviation from the

original course, may not be the best choice. In recent years,

by introducing the concept of evasion with specified miss

distance (SMD), some evasion strategies about PE games

has attempted to evasion with minimum energy consump-

tion [19–21]. In Ref. [19–21], to obtain the analytical

expression of the evasion guidance command, the miss

distance constraint is regarded as an equality constraint. As

a result, the miss distance can be controlled to a precise

value while placing excessive requirements on evader’s

maneuverability. Therefore, the existing evasion strategies

with SMD have limited scope of application.

On the other hand, in the above-mentioned studies

[3–21], all the evasion strategies are developed on the basis

of the perfect information of the pursuers. However, the

dynamic information of the pursuers is unknown to the

evader in the real scene. This problem can be solved by

introducing machine learning. In recent years, computation

intelligence have been applied in theoretical research on

hypersonic vehicles [22–24] and multiplayer PE games

[25–28]. However, Ref [22–24] are all about the intelligent

control of hypersonic vehicles, while Ref. [25–28] studied

the cooperative pursuit strategy of multiple pursuers. The

above-mentioned studies do not deal with the evasion

guidance of hypersonic vehicles. Regarding the dynamic

uncertainty estimation problem mentioned above, Ref.

[29–31] employ machine learning to estimate the model

dynamics. However, Ref. [29–31] are not the evasion-faced

information estimation research and are difficult to use in

the PE games of hypersonic vehicles.

Based on the studies mentioned above, it is obvious that,

on the premise that the dynamics of the pursuer is unknown

and the evader’s maneuver ability is not dominant, the

existing strategies cannot achieve the evasion while con-

sidering the acceleration constraints and energy optimiza-

tion simultaneously. It has to be pointed out that, Ref.

[3–18] all try to achieve the evasion by maximizing the

miss distance or the line-of-sight angle rate. However, it is

difficult to balance acceleration constraints and energy

optimization in this case. Reference [19–21] derived the

evasion strategies with SMD, but it has excessive

requirements for evader’s maneuverability, which is not

suitable for the AHV for the reason of acceleration con-

straint. In addition, Ref. [3–21] assumes that the pursuers’

information is fully known, but does not take into account

the uncertainty of pursuer dynamics. And in the studies

[22–31] of computational intelligence, the estimation of the

uncertainty of pursuer dynamics is not addressed.

In view of the above-mentioned discussion, while con-

sidering the flight characteristics of the AHVs studied in

this paper, the main problems inside the work for evasion

guidance are as follows:

(i) The unknown pursuer dynamics will affect the

results of PE game.

(ii) The acceleration constraint must be guaranteed

during the whole process of evasion.

(iii) In order to better perform the subsequent combat

missions after evasion, it is necessary to perform

energy optimization during the process of evasion.

Compared with the existing studies (assuming that the

enemy’s dynamics are known), in this paper the gradient

descent method is applied in this article to estimate the

unknown dynamics parameters instead of directly assum-

ing as known. At the same time, the flight capabilities of

both aircrafts are taken into account during the design

process of the guidance law.

2 Problem formulation and preliminaries

2.1 Pursuit-Evasion game model

In this paper, it is assumed that both the AHV and the

pursuer are within the detection range of each other, and

the evasion-pursuit relationship and the definition of rela-

tive angles in horizontal plane are shown in Fig. 1.
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The AHV and the pursuer are regarded as mass points,

and the subscripts E & P indicate the state of the AHV and

the pursuer, respectively. Both flight speeds VE & VP are

assumed to be constant, and the flight path varies with

lateral accelerations aE & aP which are normal to velocity

direction. aE;c & aP;c are guidance commands and hE & hP
are the trajectory deflection angles, respectively. r denotes

the relative distance between the AHV and the pursuer.

The combat scenario is set as that the AHV under head-

on pursuit situation (HOPS). Therefore, it is assumed that

the AHV and the pursuer are both on the X axis at initial

time t0, with almost the opposite moving directions.

It is assumed [19, 20, 32, 33] that the dynamic equations

of both sides can be linearized near the initial line of sight,

and can be established:

_xi ¼ Aixi þ biai;c; xi 2 Rni ; i ¼ E,P

a?i ¼ cTi xi þ diai;c
ð1Þ

where a?i ¼ ai cos hi; i ¼ E;P. The coefficients Ai & bi in

Eq. (1) can be regard as constants. According to Fig. 1, the

state variable can be chosen as x ¼ y _y xE xP½ �T,

where y ¼ yE � yP and the position deviation normal to the

initial line of sight. xE and xP denote the state variable

vectors of the AHV and the pursuer, respectively. The

relative motion equations can be expressed as:

_x ¼ Axþ BEaE;c þ BPaP;c ð2Þ

where

AðtÞ ¼

0 1 01�nE 01�nP

0 0 cTE �cTP
0nE�1 0nE�1 AE 0nE�nP

0nP�1 0nP�1 0nP�nE AP

2
6664

3
7775

BE ¼

0

dE

bE

0nP�1

2
6664

3
7775; BP ¼

0

�dP

0nE�1

bP

2
6664

3
7775

ð3Þ

The initial state x at t0 can be given by

xðt0Þ ¼ y0 _y0 xE0
xP0

½ �T ð4Þ

To facilitate the analysis of the problem, the time to go

is defined as

tgo ¼ tf � t0 ¼ r

Vr
ð5Þ

where tf is the terminal engagement time point and Vr is

the closing speed between the two sides.

In order to simplify expressions, Eq. (2) can be further

written as

_x ¼ Axþ BuuðtÞ þ BvvðtÞ ð6Þ

where u& v are the guidance commands aE;c & aP;c of

both sides, respectively. The position deviation is expres-

sed by scalar output:

y ¼ cTx ð7Þ

where cT ¼ ½ 1 0 01�nE 01�nP �. The absolute value

yðtf Þ
�� �� is regarded as the miss distance.

In this paper, it is assumed that the guidance law of the

pursuer is known, which is given as

v ¼ FðtÞxþ GðtÞ ð8Þ

On the basis of Eq. (1), in order to simplify the

derivation process, the dynamic equation of the pursuer can

be expressed as

_aP ¼ APaP þ bPaPc ð9Þ

where the coefficients AP & bP in Eq. (9) are unknown to

the evader.

Remark 1 The scramjet is used as the power system of the

AHV. If the evasion maneuver occurs in the longitudinal

plane, the sharp change of attitude angle and angular

velocity will affect the working state of scramjet [34, 35].

Lateral maneuver can be carried out at a fixed altitude and

fixed speed to avoid the impact on the attitude angle and

angular velocity due to changes in speed and altitude

during evasion. In some existing literature about the eva-

sion of hypersonic vehicles, the modelling and simulations

are conducted in 2-dimension [32, 33].

Remark 2 In the PE (pursuit-escape) game model, in order

to simplify the derivation process, the dynamic equations

of aircrafts can be expressed by first-order equations, and

the dynamic parameters in the equations are constants. This

way of expression can be seen in many studies

[19, 20, 32, 33, 36, 37] about PE (pursuit-escape) games.

Remark 3 Since the values of AP & bP in Eq. (9) depend

on the acceleration response speed of the pursuer, in the

real scene, the dynamic information of the pursuer is

unknown to the evader.

Fig. 1 Planar engagement geometry
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2.2 Design goals

M is chosen as the lower bound of miss distance for suc-

cessful evasion, and the condition for successful evasion

can be shown as:

yðtf Þ
�� ���M ð10Þ

The acceleration command for the AHV is limited and

can be given by

uðtÞj j � umax ð11Þ

The energy consumption of the AHV during the evasion

process is given by

Ztf

t0

u2dt ð12Þ

In summary, the main problem in this paper can be

summarized as Problem 1.

Problem 1 Consider the PE game model given by Eq. (6)

with unknown pursuer dynamics given by Eq. (9), the

evasion strategy should be derived to minimize the energy

consumption given by Eq. (12), while the miss distance

subject to Eq. (10) and the control constraint subject to

Eq. (11).

3 Main results

3.1 The structure of evasion strategy

The design of evasion strategy in this article is divided into

two steps. In details, we firstly collected the flight data of

the pursuer and utilized the gradient descent method to

train a estimation model of the unknown pursuer dynamics.

Then the energy-optimized evasion guidance algorithm

while considering system constraints is derived on the basis

of the estimated parameters.

The framework of the evasion strategy design in this

paper is shown as Fig. 2.

3.2 The estimation of unknown pursuer
dynamics

According to Eq. (9), the pursuer’s dynamic coefficients

AP & bP need to be estimated.

The key to the estimation of unknown coefficients in the

equation is how to determine the influence of two or more

related inputs on the corresponding output.

In this paper, for the two inputs aP & aPc in Eq. (9), the

influence of aP & aPc on the output is determined through

multiple iterations of a large amount of data. That is, the

machine learning is used to obtain the coefficients AP & bP
in Eq. (9).

As one of the basic algorithms of machine learning, the

gradient descent method has the following advantages: the

standard deviation is low, the number of iterations required

for convergence is small, and the learning efficiency will

not decrease [38, 39]. The basic idea of the gradient des-

cent algorithm is to find the minimum value of the loss

function according to the direction of the gradient descent

of the loss function. Therefore, the gradient descent algo-

rithm is employed to learn the pursuer dynamics in this

work.

In this paper, for calculating the unknown pursuer

dynamics in Eq. (9), set hhðx0; x1Þ ¼ _aP ¼ APaP þ bPaPc,

then we have

hhðx0; x1Þ ¼ h0x0 þ h1x1 ð13Þ

where x0 & x1 correspond to aP & aPc, respectively,

h0 & h1 correspond to the unknown parameters AP & bP,

respectively.

Equation (13) is the multiple regression equation. In

Eq. (13), the response variable hhðxÞ is shown with inde-

pendent variables xiði ¼ 0; 1Þ, hiði ¼ 0; 1Þ is a constant

value. And, for model building process to minimize the

differences between the observed and the predicted

response values, coefficients h0&h1 are calculated.

For the multiple regression equation Eq. (13), when the

number of samples is determined, there are ðxð0Þ0 ; x
ð0Þ
1 ; y0Þ,

ðxð1Þ0 ; x
ð1Þ
1 ; y1Þ, …, ðxðmÞ0 ; x

ðmÞ
1 ; ymÞ. Then the loss function

can be expressed as

Jðh0; h1Þ ¼
1

2m

Xm
j¼1

ðhhðxðjÞ0 ; x
ðjÞ
1 Þ � yjÞ2 ð14Þ

Calculate the partial derivative of the current loss

function

oJðh0; h1Þ
ohi

¼ 1

m

Xm
j¼0

ðhhðxðjÞ0 ; x
ðjÞ
1 Þ � yjÞxðjÞi ð15Þ

Define a as the update step size, representing the

learning rate. When the learning rate is determined, the

expression of hi is updated to

hi ¼ hi - a
1

m

Xm
j¼0

ðhhðxðjÞ0 ; x
ðjÞ
1 Þ � yjÞxðjÞi ð16Þ

Based on Eqs. (13–16), the steps to estimate AP & bP
can be expressed as follows.

1. Establish a pursuit-evasion game simulation system,

conduct pursuit-evasion tests under unknown dynamic

parameters, and collect sample data through the

historical game process.
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2. Take Eq. (13) as the multiple regression equation,

according to the calculation method in Eqs. (14–16),

calculate the loss function’s partial derivative
oJðh0;h1Þ

ohi

and the update expression of hi.
3. The minimum value of the loss function Jðh0; h1Þ and

the corresponding coefficients h0 & h1 can be obtained

through iterative calculation(data comes from step 1).

And h0 & h1 are equivalent to AP & bP in Eq. (9).

3.3 The evasion guidance command

Considering the fact that AHVs’ maximum acceleration is

inferior to the pursuer’s, it poses a great challenge to the

evasion of the AHV. As a result, effective evasion algo-

rithms are required for achieving successful evasion while

giving consideration to the acceleration constraints and

energy optimization simultaneously.

For the purpose of energy optimization, the evasion

command u1 is designed by introducing the SMD. Giving

consideration to the acceleration constraints, the evasion

command u2 based on NDG is designed. When the pur-

suer’s capability is strong enough to cause the AHV’s

evasion command u1 to saturate, the evasion command is

switched from u1 to u2. The composition structure of

evasion command is shown as Fig. 3.

To makes the proposed framework more clear, the fol-

lowing explanations are provided. For the goal of the

evasion with minimum energy consumption, the guidance

command u1 should be given priority. However, when the

pursuer’s capability is strong enough that the AHV cannot

achieve successful evasion with u1, the evasion command

u2 is employed.

Accordingly, the composite evasion command can be

given by

ucðtÞ ¼ u1ðtÞ u1ðtÞj j\umaxðt 2 t0; tf
� �

Þ

ucðtÞ ¼
u1ðtÞ; t 2 t0; t1½ �

u2ðtÞ; t 2 t1; tf
� �

8<
: ; u1ðtÞj j � umax

8>>><
>>>:

ð17Þ

where t1 is the moment when u1 reaches saturation for

the first time( u1ðt1Þj j � umax).

This section is divided into two parts. Firstly, the

derivation of SMD—based evasion command u1 is pre-

sented. Secondly, the derivation of NDG—based evasion

command u2 is presented. With Eq. (17) and the expression

of u1 and u2, the composite guidance command uc is

generated.

3.3.1 Derivation of SMD–based evasion command
in evasion strategy

In this subsection, the process of deriving u1 is given.

Substituting Eq. (8) into Eq. (6) yields

_x ¼ Aþ BvFð Þxþ BuuðtÞ þ BvG(t) ð18Þ

To facilitate the derivation process, the zero effort miss

distance Z1ðtÞ is introduced here[40]. According to

Eq. (18), the expression of Z1ðtÞ and its derivative can be

given by

Z1ðtÞ ¼ cT /1ðtf ; tÞxðtÞ þ
Z tf

t

/1ðtf ; sÞBvG(s)ds

� �
ð19Þ

_Z1ðtÞ ¼ bðtÞu1ðtÞ ð20Þ

bðtÞ ¼ cT/1ðtf ; tÞBuðtÞ ð21Þ

with the boundary conditions

Fig. 2 Framework of the evasion strategy design
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Z1ðtÞ ¼ cT /1ðtf ; t0Þx0ðtÞ þ
Z tf

t0

/1ðtf ; sÞBvG(s)ds

� �

Z1ðtf Þ ¼ yðtf Þ

8><
>:

ð22Þ

where /1ð�; �Þ is the state transition matrix, corre-

sponding to the state matrix Aþ BvFð Þ.
After the transition, the miss distance can be expressed

as Z1ðtf Þ
�� �� and the condition for successful evasion of the

AHV is given by

Z1ðtf Þ
�� ���M ð23Þ

On this basis, Problem 1 in Sect. 2.2 can be convert to

Problem 2.

Problem 2 In line of the PE game model given by

Eq. (20), the evasion strategy should be derived to mini-

mize the energy consumption given by Eq. (12), while the

miss distance subject to Eq. (23) and the control constraint

subject to Eq. (11).

For solving the Problem2, in consideration of bounded

acceleration of the AHV, the performance index is given

by

J ¼ 1

2
Q Z1ðtf Þ �M
� �2þ

Ztf

t0

u2
1ðtÞdt

2
4

3
5 ð24Þ

subject to

u1ðtÞj j\umax

where Q Q[ 0ð Þ is a weighted matrix to be designed. By

adjusting Q, the miss distance is larger than the boundary

value M while u1 meets the acceleration constraint.

As mentioned in Sect. 2.1, the AHV and the pursuer are

both on the X axis at initial time t0, with opposite moving

directions. As a result, there is Z1ðtÞ ¼ 0. On this basis,

considering the evasion condition Eq. (23), the condition

that Z1ðtf Þ[M is chosen as the criteria of successful

evasion.

According to Eq. (24), the analytic expression of u1 can

be derived and expressed as

u�1ðtÞ ¼ �Q Z1ðtf Þ �M
� �

bðtÞ ð25Þ

Substituting Eq. (25) into Eq. (20), and integrate the

new equation, then we have

u�1ðtÞ ¼
�QbðtÞ

1 þ Q
R tf
t b2ðtÞdt

Z1ðtÞ �M½ � ð26Þ

For calculating Z1ðtÞ and bðtÞ, the vector Y is introduced

to simplify computation.

YðtÞ ¼ /T
1 ðtf ; tf � tÞc ð27Þ

Easy to prove that Y satisfies

_Y ¼ ðAþ BvFÞTðtf � tÞY;Yð0Þ ¼ c ð28Þ

Equation (28) is the adjoint equation of the model in

Eq. (18). According to Eq. (27) and Eqs. (19, 21, 28) can

be expressed as

Z1ðtÞ ¼ YTðtf � tÞxðtÞ þ
Ztf

t

Yðtf � sÞBv(s)G(s)ds ð29Þ

bðtÞ ¼ YTðtf � tÞBuðtÞ ð30Þ

In summary, the energy-optimized evasion command u1

is given by

u�1ðtÞ ¼
�QbðtÞ

1 þ Q
R tf
t b2ðtÞdt

Z1ðtÞ �M½ � ð31Þ

where

Z1ðtÞ ¼ YTðtf � tÞxðtÞ þ
Ztf

t

Yðtf � sÞBv(s)g(s)ds

bðtÞ ¼ YTðtf � tÞBuðtÞ

8>>><
>>>:

Fig. 3 Composition structure of

evasion command uc
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3.3.2 Derivation of NDG-based evasion command
in evasion strategy

In this subsection, the process of deriving u2 is given, based

on the NDG method [41].

During the derivation, according to the principle of the

NDG, the expression of vðtÞ cannot be assumed in advance.

Therefore, different from Z1ðtÞ, the zero effort miss dis-

tance Z2ðtÞ is given by

Z2ðtÞ ¼ cT/2ðtf ; tÞxðtÞ ð32Þ
_Z2ðtÞ ¼ buðtÞu2ðtÞ þ bvðtÞvðtÞ ð33Þ

buðtÞ ¼ cT/2ðtf ; tÞBuðtÞ
bvðtÞ ¼ cT/2ðtf ; tÞBvðtÞ

(
ð34Þ

with the boundary conditions

Z2ðt0Þ ¼ cT/2ðtf ; t0Þx0

Z2ðtf Þ ¼ yðtf Þ

(
ð35Þ

where /2ð�; �Þ is the state transition matrix, corre-

sponding to the state matrix A.

After the transition, the condition for successful evasion

of the AHV is given by

Z2ðtf Þ
�� ���M ð36Þ

On this basis, Problem 1 in Sect. 2.2 can be convert to

Problem 3.

Problem 3 In line of the PE game model given by

Eq. (33), the evasion strategy should be derived to mini-

mize the energy consumption given by Eq. (12), while the

miss distance subject to Eq. (36) and the control constraint

subject to Eq. (11).

According to Fig. 3, when the NDG-based command u2

is employed, the AHV try to evade with maximum miss

distance, and the performance index is given by

J ¼ Z2ðtf Þ
�� �� ð37Þ

subject to

u2ðtÞj j � umax

The Hamiltonian of the problem is

H ¼ k2ðtÞ _Z2ðtÞ ð38Þ

The adjoint equations are

_k2ðtÞ ¼ � oH

oZ2ðtÞ
¼ 0

k2ðtf Þ ¼
oJ

oZ2
tf

�� ¼ sgn Z2ðtf Þ
� �

8>><
>>:

) k2ðtÞ ¼ sgn Z2ðtf Þ
� �

ð39Þ

On the basis of extremum principle, then we have

u�2ðtÞ ¼ arg max
u2

H ¼ umaxsgn Z2ðtf Þ
� �

v�ðtÞ ¼ arg min
v

H ¼ vmaxsgn Z2ðtf Þ
� �

8<
: ð40Þ

Substituting Eq. (40) into Eq. (33) yields

_Z2ðtÞ ¼ Lsgn Z2ðtf Þ
� �

L ¼ cT/2ðtf ; tÞBuðtÞumax + cT/2ðtf ; tÞBvðtÞvmax

(
ð41Þ

In the NDG, both sides should adopt the optimal strat-

egy. On this basis, for the reason that the maximum

acceleration of the AHV is weaker than the pursuer’s, there

is

L\0 ð42Þ

Integral on both sides of Eq. (41), we obtain

Z2ðtÞ ¼ Z2ðtf Þ �
Ztf

t

_Z2ðtÞdt

¼ Z2ðtf Þ �
Ztf

t

Lsgn½Z2ðtf Þ�dt

¼ Z2ðtf Þ � sgn½Z2ðtf Þ�
Ztf

t

Ldt

ð43Þ

For
R tf
t Ldt\0, there is

sgn½Z2ðtÞ� ¼ sgn½Z2ðtf Þ� ð44Þ

Substituting Eq. (44) into Eq. (40), the NDG-based

evasion command u2 is given by

u�2ðtÞ ¼ umaxsgn Z2ðtÞ½ � ð45Þ

where Z2ðtÞ can be calculated by Eq. (32).

To sum up, by substituting Eqs. (31 45) into Eq. (17),

the composite evasion command uc is given by

ucðtÞ ¼ u1ðtÞ u1ðtÞj j\umaxðt 2 t0; tf
� �

Þ

ucðtÞ ¼
u1ðtÞ; t 2 t0; t1½ �

u2ðtÞ; t 2 t1; tf
� �

(
; u1ðtÞj j � umax

8>><
>>:

ð46Þ

where

u1ðtÞ ¼
�QbðtÞ

1 þ Q
R tf
t b2ðtÞdt

Z1ðtÞ �M½ �

u2ðtÞ ¼ umaxsgn Z2ðtÞ½ �

8><
>:

Remark 4 Compared with the existing studies [3–21], the

major innovations of the proposed method are highlighted

as follows.

(i) In a lot of previous work [3–18], either the

acceleration constraint is not taken into account, or

the bang-bang control is directly adopted and the
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energy optimization is ignored. In contrast, the

evasion strategy introduces the boundary value

M(lower bound of miss distance for successful

evasion) and combines the concept of SMD and

NDG theory, so as to solve the energy optimiza-

tion problem under the premise of acceleration

constraints.

(ii) In some previous work [19–21], the evader tries to

evasion with SMD(Zðtf Þ ¼ M,Zðtf Þ is the zero

effort miss distance). But the equation constraint

Zðtf Þ ¼ M has excessive requirements for the

evader’s maneuverability. In this paper, the con-

ditions of successful evasion are seen as an

inequality Zðtf Þ[M. And the inequality con-

straint Zðtf Þ[M does not have excessive require-

ments for the evader’s maneuverability. Therefore,

the evasion command in this work is more

practical and has wider applicability.

(iii) In all the above-mentioned previous work [3–21],

the evasion strategies are developed on the basis of

the perfect information of the pursuers. In this

paper, by introducing the gradient descent method,

the dynamic information of the pursuer is esti-

mated. With the estimation, a more realistic

dynamic model of pursuer is obtained. On the

basis of the estimated model, the evasion strategy

is designed. As far as authors know, the evasion

strategy in this work is the first one which can

achieve the successful evasion against the pursuer

with unknown dynamics.

4 Results and discussion

4.1 Simulation of pursuer dynamics estimation

In the process of pursuer dynamics estimation, the relevant

simulation parameters are set as follows:

1. Without prior information, the initial values of coef-

ficients hi are randomly selected as h0 = 7,h1 = 2.

2. The learning rate a needs to be carefully selected. If a
is too small, the function Jðh0; h1Þ will decrease slowly

and consume a lot of resources. If a is too large, the

function Jðh0; h1Þ may not converge. In this paper,

a ¼ 0:001.

The estimation results of pursuer dynamics are shown in

Figs. 4, 5 and 6 And the analysis is as follows:

1. It can be seen from Fig. 4 that the loss function

converges to the order of 0.005, so the result of

parameter estimation can be considered to be with high

accuracy.

2. According to Figs. 5 and 6, after the 6380th and

6144th iterations, the parameters h0 & h1 converged to

-0.5077 & 0.5073, respectively.

3. As can be seen in Figs. 4, 5 and 6, in the first 10 times

iterative calculation, the numerical curves of all

(a)

(b)

Fig. 4 Calculation of loss function Jðh0; h1Þ. a 10,000 times iterative

calculation, b First 10 times iterative calculation

(b)

(a)

Fig. 5 Estimation of coefficient h0. a 10,000 times iterative calcu-

lation, b First 10 times iterative calculation
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parameters have severe oscillation. The reason is that

the initial values of h0 & h1 are randomly selected.

However, the oscillation will not affect the accuracy of

the final result. It can be seen that after several

iterations, the oscillation has completely disappeared.

4. In summary, there is ÂP ¼ h0 ¼ �0:5077,

b̂P ¼ h1 ¼ 0:5073. Substituting the value of ÂP & b̂P
into Eq. (9), then the estimation result of the pursuer

dynamic model can be expressed as:

_aP ¼ APaP þ bPaPc 	 �0:5077aP þ 0:5073aPc

4.2 Simulation of evasion guidance of the AHV

In the process of evasion guidance, the relevant assumption

and simulation parameters are set as follows:

1. The augmented proportional navigation (APN) guid-

ance law is selected as the guidance law of the pursuer.

2. The basic parameters of both sides and simulation

parameters of the engagement scenario in this paper are

shown in Tables 1 and 2, respectively.

In Table 1, a is the speed of sound. The value of

aPmax=gj j is set as 8.0 for the sake of guaranteeing the

robustness of evasion strategies. In the existing literature,

in order to meet the hit-to-kill condition for the pursuit, the

maneuverability of pursuers should be more than three

times the AHV’s acceleration [42]. For the sake of guar-

anteeing the robustness of evasion strategies in this paper,

the value of aPmax=gj j is set as 8.0. In addition, in order to

meet the conditions of HOP, the initial value of trajectory

deflection angle hE0
is set between 0; 10½ ��.

In Table 2, M is set as 1 m which is the maximum

distance to meet the hit-to-kill condition. r0 is set as

60; 100½ � km due to the fact that pursuers can detect and

track the evader within 100 km.

In this section, the composite evasion command uc
(Eq. 46) is simulated. (The value of uc is based on the

estimation result in Sect. 4.1.) The key index parameters

yðtf Þ
�� �� (miss distance) is shown below for evaluating the

success of evasion. As a comparison, the simulation results

of u1 (Eq. (31)) and u2 (Eq. (45)) are also given below.

where uc: the composite evasion command. u1: the

SMD-based evasion command. u2: the NDG-based evasion

command.

The simulation results are given in Figs. 7, 8, 9, 10, 11

and 12 and Table 3. The analysis is as follows:

1. According to Eq. (10), the criterion for successful

evasion is yðtf Þ
�� ��[M ¼ 1m.The flight trajectories

with different evasion commands are respectively

given in Figs. 7, 8, 9, from which we can see that the

AHV can achieve successful evasion with u2 or uc,but

not with u1 (even if u1 does not meet the acceleration

constraint in Fig. 10. Therefore, it can be concluded

that u2 and uc have stronger evasion capabilities than

u1.

2. It can be seen from Fig. 11 that different evasion

commands have a greater impact on the AHV’s

trajectory deflection angle at the end of the evasion.

Compared with u1 and uc, the evasion command u2

produces a large trajectory deflection angle. Consider-

ing the AHV’s fast flight speed, a large trajectory

deflection angle will cause the AHV to deviate from

the original route to a great extent. Moreover,

combining the energy consumption in Table 3, it can

be seen that u2 can enable the AHV to achieve

successful evasion while paying great cost, which is

not conducive to the combat mission after evasion.

3. As can be seen in Fig. 12, as the initial trajectory

deflection angle hE0
and initial distance r0 change, the

AHV can still achieve successful evasion with uc.

Therefore, the evasion command uc can enable the

AHV to complete the evasion for different initial

conditions.

(a)

(b)

Fig. 6 Estimation of coefficient h1. a 10,000 times iterative calcu-

lation, b First 10 times iterative calculation

Table 1 Basic parameters of the AHV and the pursuer

Item Value

March number VE=a,VP=a (Mach) 6.0, 4.0

Maximum lateral acceleration aE max=gj j, aPmax=gj j 2.0, 8.0

Time constants of the AHV’s autopilot sE & sP 0.5, 0.5

Initial value of trajectory deflection angle hE0
,hP0

(�) 0–10, 180
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In summary, compared to u1 and u2, the proposed

command uc is the only guidance command that can enable

the AHV to achieve the successful evasion while consid-

ering acceleration constraints and energy optimization

simultaneously.

5 Conclusions

In this paper, considering the unknown dynamics of the

pursuer, a novel evasion strategy based on the estimation of

the pursuer dynamics is proposed for the AHV. The

structure of proposed evasion algorithm mainly combines

the estimation of unknown pursuer dynamics based on

Table 2 Simulation parameters
Item Value

Initial distance r0 (km) 60–100.0

Altitude H (km) 25.0

Lower bound of miss distance for successful evasion M (m) 1.00

Initial coordinate of AHV & pursuers xE0
; yE0

ð Þ, xP0
; yP0

ð Þ (km) (0,0), (60–100,0)

Simulation step size dt (ms) 1.0

Fig. 7 Flight trajectory with command u1

(a)

(b)

Fig. 8 Flight trajectory with command u2. a Flight trajectory. b Partial

enlarged view of (a)

Fig. 9 Flight trajectory with command uc

Fig. 10 Different evasion guidance command of the AHV
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gradient descent and an composite evasion command based

on SMD and NDG. Through the gradient descent method,

the dynamic model of the pursuer was obtained. On the

basis of the estimated model, an evasion strategy that

satisfies the acceleration constraint and energy optimiza-

tion at the same time was designed. The simulation results

show that, with the proposed evasion algorithm, the AHV

can achieve successful evasion against the pursuer with

unknown dynamics, and take into account the energy

optimization and acceleration constraint simultaneously.

The future direction for this work can be the strategies in

the multiplayer PE games. Specifically, the cooperative

strategy of multiple teammates and pursuit-evasion strate-

gies against multiple enemies can be studied with the aid of

computation intelligence in the future.
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