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Abstract
Patients with deaths from COVID-19 often have co-morbid cardiovascular disease. Real-time cardiovascular disease

monitoring based on wearable medical devices may effectively reduce COVID-19 mortality rates. However, due to

technical limitations, there are three main issues. First, the traditional wireless communication technology for wearable

medical devices is difficult to satisfy the real-time requirements fully. Second, current monitoring platforms lack efficient

streaming data processing mechanisms to cope with the large amount of cardiovascular data generated in real time. Third,

the diagnosis of the monitoring platform is usually manual, which is challenging to ensure that enough doctors online to

provide a timely, efficient, and accurate diagnosis. To address these issues, this paper proposes a 5G-enabled real-time

cardiovascular monitoring system for COVID-19 patients using deep learning. Firstly, we employ 5G to send and receive

data from wearable medical devices. Secondly, Flink streaming data processing framework is applied to access electro-

cardiogram data. Finally, we use convolutional neural networks and long short-term memory networks model to obtain

automatically predict the COVID-19 patient’s cardiovascular health. Theoretical analysis and experimental results show

that our proposal can well solve the above issues and improve the prediction accuracy of cardiovascular disease to 99.29%.
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1 Introduction

COVID-19 is the first global coronavirus pandemic that

humanity has ever faced, and awareness of COVID-19 is

still growing. In addition to advanced medical technology,

big data plays a crucial role in the prevention and control of

COVID-19 [1, 2]. In the real-time environment constituted

by the Internet of Things (IoT), not only sensors and

mobile devices have generated a large amount of data, but

also software applications, web, and other resources have

generated massive data [3, 4]. Especially in medical and

healthcare, due to the emergence of a large number of

wearable medical devices, the data generated by these

devices need to be collected remotely in real time. How-

ever, it brought many new challenges. One of the most

critical challenges is to extract streaming data in real time

and process and analyze different types of data [5].

The death of COVID-19 patients is often accompanied

by underlying cardiovascular and other diseases. Cardio-

vascular diseases characterized by suddenness have

become one of the main diseases threatening human health

[6]. A large number of medical practices show that when

the heart suddenly stops, the best rescue time is within 4

minutes. At the same time, we found that if we can detect

subtle signs in advance and take effective measures, 70%

of cardiovascular disease patients, including heart attacks,

can avoid death. Currently, electrocardiogram (ECG) is the

most straightforward and efficient clinical examination

method for all kinds of cardiovascular and cerebrovascular

diseases. Therefore, real-time and effective monitoring,

analysis, and diagnosis of the COVID-19 patient’s ECG

signal are particularly important [7]. Moreover, the com-

munication between doctors and COVID-19 patients is not

accurate, convenient, and timely, such as telephone and

text communication. Although doctors and hospitals can

observe the health of COVID-19 patients throughExtended author information available on the last page of the article
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inspections, this traditional hospital-based diagnosis and

treatment lack immediacy and continuity, and it is difficult

to capture the COVID-19 patients’ signs. Therefore, it is of

practical significance to provide real-time ECG diagnosis

and predict services for those in need [8].

With wearable medical devices (such as heart rate

monitoring cuffs, blood pressure, blood glucose meters,

etc.), it can continuously track COVID-19 patients’ health

and provide personalized healthcare solutions [9]. How-

ever, the data continuously generated by wearable medical

devices need not only real-time processing but also diag-

nosis and prediction. Existing wireless communication

technologies have problems such as high latency and low

speed. Moreover, relying on manual recognition of elec-

trocardiogram diagnosis methods can no longer meet the

current medical needs. Simultaneously, traditional machine

learning-based methods need to manually extract electro-

cardiogram features, which cannot realize the automation

of the diagnosis process and the accuracy of the results.

Therefore, it is a significant challenge to process a large

amount of data generated by sensors and diagnose them in

real time in a critical situation [10].

Given the aforementioned difficulties with traditional

cardiovascular diseases diagnoses and wearable device

data processing and analysis, the automatic classification

and diagnosis of assisted ECG signals for COVID-19

patients based on deep learning is an effective solution to

the above problems. In addition, with the emergence of 5G

[11, 12], a solution with high throughput and low latency

has been provided for processing a large amount of mon-

itoring data [13]. Moreover, the development of big data

technology also provides many open source platforms for

real-time processing of streaming data, such as Spark,

Druid, and Flink. With the continuous advancement of

artificial intelligence technology, the application of artifi-

cial intelligence technology to medical diagnosis is a

general trend [14]. In recent years, in order to meet the

needs of high-speed and high-precision ECG analysis, deep

neural networks have been widely used in automatic ECG

diagnosis [15].

This article proposes a real-time cardiovascular moni-

toring system for COVID-19 patients based on 5G and

deep learning with the assist of wearable medical devices

that can transmit human ECG signal data. The Second 2

introduces related work. The overall architecture of the

real-time monitoring system is proposed in Sect. 3. Sec-

tion 4 is the ECG signal classification algorithm based on

deep learning. In Sect. 5, we put forward the experimental

method and evaluation. Finally, Sect. 6 summary the

conclusion.

2 Related works

In recent years, big data analysis related to healthcare has

become an important issue in many research fields, such as

machine learning, deep learning, and data mining using

medical and health data and information available in hos-

pitals. The progress of the data collection process comes

from the tremendous development of technology in the

medical and health field, in which data records are col-

lected through three main stages of digital data flow gen-

erated from patient clinical records, health research records

and organization operations [16]. Analyzing these data for

computer-aided diagnosis and then developing real-time

systems has become the development trend of today’s

smart medical care.

Sun and Reddy et al. [17] discussed an overview of

health care data sources. This research analyzes that health

care data plays a very important role in many systems such

as disease prediction, prevention methods, medical guid-

ance, and emergency medical decision-making to improve

health, reduce costs and increase efficiency. And in the

existing research, a variety of Spark machine learning

models have been used in medical databases. For example,

in [18], a real-time health prediction system using spark

machine learning streaming big data is introduced. The

system is tested on tweets of users with health attributes.

The system receives the tweets, extracts features, and uses

decision tree algorithms to predict The health of the user

and finally, sends the information directly to the user to

take appropriate action. In addition, Alottaibi et al. [19]

proposed a Sehaa-Kingdom of Saudi Arabia (KSA) Central

Arab Healthcare Twitter data big data analysis tool. The

system uses two different machine learning algorithms,

including naive Bayes and logistic regression algorithms,

and applies multiple feature extraction methods to detect

various diseases in KSA. In [20], a system based on

Apache Spark that can predict heart disease in real time

uses memory computing to apply machine learning to

streaming data. The system is divided into two stages. The

first stage is to apply classification algorithms to data for

heart disease prediction through Spark MLlib and Spark

streaming, and the second stage is to use Apache Cassandra

to store massively generated data and visualizations.

In addition, many systems that use wearable devices to

collect data to predict cardiovascular disease have been

proposed in recent years [21, 22]. Al-Makhadmeh and

Tolba et al. [23] proposed a heart disease detection system

based on wearable medical equipment. The system trans-

mits the collected patient heart data to the medical system

and then uses feature extraction technology and deep

learning model Value feature extraction and correct clas-

sification. Lin et al. [24] proposed a system based on
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Support Vector Machine (SVM) classifier to predict

patients suffering from left ventricular hypertrophy. The

system collects young people’s age, height, weight and

electrocardiogram data for rapid diagnosis. Khade et al.

[25] proposed a cardiovascular disease prediction system

based on SVM and Convolutional Neural Networks

(CNN). The system sends ECG signals to the SVM clas-

sifier and Boosted Decision Tree to classify cardiovascular

diseases and then uses CNN to predict severe Degree, and

the accuracy rate is 88.3%. Zhao et al. [26] proposed a

system that uses CNN to detect the original ECG signal in a

wearable device. This system avoids the traditional manual

feature extraction process and implements the system

based on the cloud. In addition, Kumar et al. [27] proposed

a three-layer framework system with an ML model to

receive data from wearable devices and perform analysis

and processing. The first layer collects ECG data from

wearable devices. The second layer stores healthcare data

in the cloud, and the third layer uses logistic regression

algorithms to predict cardiovascular diseases.

Moreover, many researchers have used deep learning in

the field of myocardial infarction detection and coronavirus

detection. M Hammad et al. [28] proposed an automatic

detection method for myocardial infarction based on the

end-to-end model of a deep convolutional neural network

and used the focal loss function optimization model for

data imbalance, and finally reached 98.84% on the PTB

data set. [29] provides a promising solution by proposing a

COVID-19 detection system based on deep learning. The

simulation results reveal that the proposed deep learning

modalities can be considered and adopted for quick

COVID-19 screening; [30] propose a modified version of

Fuzzy C-Means for segmenting 3D medical volumes,

which has been rarely implemented for 3D medical image

segmentation; in [31], two new quantum information hid-

ing methods are proposed for telemedicine image sharing.

The results show that the proposed methods have excellent

visual quality, high embedding capability and security.

Most researches rely on specific medical care data

sources and apply them on offline systems. However,

medical data sources are diverse and new data are con-

stantly being produced. Real-time healthcare analysis

involves real-time streaming data processing, machine

learning algorithms, and real-time analysis, while tradi-

tional data transmission has defects such as high latency

and low throughput. In addition, machine learning algo-

rithms rely on manual extraction for feature extraction.

There are limitations in its effective feature extraction and

feature weighting methods, which limits the classification

ability to a certain extent. Therefore, we use 5G technology

[32, 33] and deep learning [34, 35] to propose a real-time

medical monitoring system for cardiovascular diseases,

which is used to process real-time data streams transmitted

from wearable devices to predict the health of patients in

real time and send timely information to patients.

3 The online prediction system

The real-time online health monitoring system mainly uses

open source frameworks such as Kafka, Flink, and Ten-

sorflow to realize the transmission of personal data and the

construction of monitoring models. The system can obtain

the COVID-19 patients’ core information through wearable

devices, namely ECG signals, analyze the data with deep

learning algorithms in Cloud, and predict the COVID-19

patients’ health risk. The overall structure diagram is

shown in Fig. 1, which consists of four modules. The first

module is responsible for data acquisition and transmis-

sion. The second module is responsible for streaming

storage and analysis, and the third module is responsible

for the training module of deep learning. The fourth stage

is the module responsible for health diagnose and predict

for Covid-19 patients.

3.1 Details of each module

Acquisition and transmission mainly use acquisition

equipment, 5G network infrastructure and other facilities.

Details are as follows:

(1) Acquisition equipment It is composed of various

sensor modules, controllers, processors and power

supplies embedded in wearable devices. The main

function is to complete the collection, processing and

transmission of ECG and Global Positioning System

(GPS) positioning data. The selection of these

modules needs to meet the needs of usability and

wearability, so as to make the wearer feel comfort-

able and move as much as possible. The photoelec-

tric sensor, ECG sensor and GPS sensor are

integrated into the microcontroller. The sensor

converts the collected electrical signal into an analog

electrical signal, which is processed by the controller

and becomes a digital signal, which is transmitted to

the handheld device of the individual user through

the wireless sensor module. The positioning infor-

mation and ECG information obtained by the

handheld device can be uploaded to the cloud server

through the 5G network.

(2) 5G infrastructure 5g network is a digital cellular

network, including supplier service area covered by a

series of small geographic area called cellular. The

analog signal with the ECG information is digitized

on a handheld device, and an analog-to-digital

converter turns the digitized information into a
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bitstream for transmission. In the handheld device’s

network, 5g network local antenna array and auto-

matic sending and receiving devices with low-power

consumption and handheld devices to communicate

by radio waves [36]. The frequency of the commu-

nication channel is assigned by the public pool

selection frequency. 5G infrastructure includes 5G

access network and 5G core network. Its main

purpose is to provide high-bandwidth, low-latency

communications. Compared with the traditional

network, 5G network has higher access rate and

lower delay. It can meet the access requirements of

ultra-high traffic density, ultra-high connection num-

ber density and ultra-high mobility. It also improves

the spectrum efficiency of the network, and reduces

the operation and maintenance costs while improving

the network energy efficiency. it is very suitable for

the real-time system environment of this article.

(3) Access to 5G infrastructure Due to the low power

consumption, the wearable device adopts a Bluetooth

connected to a handheld terminal with 5G connection

function (such as a 5G mobile phone), and the data

collected by the wearable device are uploaded to the

cloud after connecting to the 5G network through the

handheld terminal.

Streaming storage and reading stageThe framework is

mainly divided into two stages, the specific introduction is

as described in next section. In the first stage, the message

queue collects information from different COVID-19

patients, including the input of source data and the con-

sumption of source data. The second stage is the stream

processing pipeline, in which the Flink stream receives the

monitoring data stream related to the ECG attribute, and

then adopts a batch and stream integrated (streaming for a

single COVID-19 patient, and a batch for the entire

COVID-19 patients). Perform feature engineering and

feature selection operations on the data stream, and wait for

data storage and model training.

The training framework of the ECG risk modelIt is

mainly responsible for receiving preprocessed input data,

online learning and notification of whether to update our

deployed model through the message middleware accord-

ing to the newly obtained data stream. The initial model of

the model is obtained through training by inputting labeled

data. Consider the complexity of the model and the con-

tinuity of ECG data. We use the CNN?LSTM module as

the bottom layer of the model, and the detailed training

method is in Section IV. The trained model waits for the

monitoring of the monitoring module to achieve the pur-

pose of optimization.

ECG monitoring and risk inference moduleIn order to

improve the optimization of the model, we have added a

registered monitoring middleware to the monitoring mod-

ule. The middleware mainly has two functions:

(1) Whether the value of the data in the monitoring

system has expired. The time from data entering the

system to the model making a risk judgment is much

shorter than the processing time after an ECG

accident occurs, thereby ensuring the real-time

nature of the system.

(2) Another is to monitor whether the model changes.

When the model changes, the judgment module is

notified to verify whether the model is optimized. So

as to achieve the purpose of real-time perfecting the

model. Finally, when the model is perfected this

time, the output stream is sent back to Kafka again,

and the monitoring module will determine whether

there is an abnormality in the COVID-19 patients’

data stream. For special abnormal information, the

alarm function of the system will be triggered. For

Fig. 1 Architecture design of Cardiovascular Monitoring System for COVID-19 Patients
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normal prediction results, the inference module will

push the result predictions to the data center for

storage. In this way, through the personal client,

COVID-19 patients can obtain personal monitoring

information and personalized health reports in real

time.

3.2 Details of streaming data

The process of collecting data sets by physical equipment

is often real time and continuous. The collected data

mainly include COVID-19 patient personal information,

ECG information, positioning information, network delay

monitoring information, etc. The device processes the data

set as time passes, that is to say, it is transmitted to the

server receiving end through the handheld terminal in the

form of streaming data. The whole service adopts the

Client/Server method for individual users, and the receiver

accepts data through the Transmission Control Protocol

(TCP). However, directly receiving and processing this

kind of high-throughput data will cause huge pressure on

network resources, so it is necessary to buffer the data

when receiving the data. The message queue is used as a

buffering solution to effectively solve the problem of data

inconsistency. As a high-throughput distributed messaging

system, Kafka can support real-time data processing and

provide real-time data to the next processor, so Kafka is

selected as a data transmission tool.

Secondly, a large number of iterative calculations will

be generated in the data processing calculation process, and

the processor is required to be able to efficiently support

iterative data processing in real time. Choose Flink with

higher-level APIs and better benchmark results [37]. Flink

provides a wealth of APIs. At the same time, the integra-

tion with Druid and Redis is already quite high. We will

choose Redis to store the final calculation results. Below

we will elaborate on the process of streaming data from the

perspective of Kafka and Flink frameworks. The details of

streaming data are shown in Fig. 2.

3.2.1 Kafka data stream processing

Input of source data The physical device uses the hand-

held device to first send to the streaming storage and

reading framework via TCP, and then TCP binds the IP and

port number to start the data receiving thread. After

receiving the data, the system will store the source data in

the datasource. In order to effectively analyze and process

the original data, the system needs to extract, transform,

and load (ETL) a large amount of original data to the target

storage data warehouse. In the face of a large number of

COVID-19 patient data, a buffer queue is set up from the

source data to the data warehouse, namely kafka.

(1) At this stage, Kafka will create topics through Linux

commands. Topics are created according to the data

types (UserInfo, ECGInfo, GPSInfo). Second, con-

figure the properties of the producer. Finally, various

objects are initialized to complete the configuration

of Kafka. The configured objects include serialized

objects, partitioners, acks objects, etc.

(2) When sending data to the Kafka cluster, in order to

achieve Kafka flow card control, the system needs to

create a buffer area for the coming data. After setting

the buffer data size, when the buffer area is full, it

will be sent to Kafka uniformly.

(3) In data parsing, first call the dataParser method,

obtain the data type according to the data type

position in the data frame definition, and record the

data type. At the same time, if the whole frame of

data is all 0 during the analysis, it means that the

frame data is invalid data, and the frame data is

skipped. After analyzing the data type, enter the

analysis function of different data items according to

the data type, analyze the whole data, and store it in

the form of an object.

(4) When each test item creates the ProducerRecord

object, the source data needs to be reorganized to

form a processing form in Flink. There are two

objects involved in sending messages, KafkaPro-

ducer and ProducerRecord. ProducerRecord specifies

the topic information that needs to be sent, the

message content value, and can also specify partition

information and key values. After the partition is

selected, the producer can determine which topic and

which partition to send the message to. Inside the

Producer, a separate thread will send the record to

the corresponding broker.

(5) After the Kafka server successfully receives the

message sent by the Producer, it will respond with a

response. If the message is written successfully, it

will return a RecordMetaData object. If it fails, the

Producer will resend the message. If it fails after a

few times, it will return an error message.

Consumption of source data After Kafka processes the

data, consumers need to subscribe to the message and read

the data in Kafka. In this article, Kafka consumers are the

target storage data warehouse and the Flink clusters. In

Flink, Kafka’s Partition needs to correspond to Flink’s

parallel task instance. Flink can also guarantee that even

after a failure, the allocation of partitions to Flink instances

can be maintained, so partition determinism is maintained,

which ensures that data processing is exactly at once. This

effectively guarantees the integrity of the system data.
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3.2.2 Flink data stream processing

After confirming that the Kafka consumer is Flink, it is

necessary to create a Flink-Kafka consumer object. The

realization of a data processing process based on Flink

mainly includes the following five steps. First, you need to

obtain the execution environment for data processing, and

then load the initial data. After the data are loaded into

Flink, specify the data conversion method, that is, to realize

the specific data processing process, that is, the specific

deep learning-based classification method in Sect. 4. In

addition, the model update is also based on the data col-

lection situation within a period of time to update the

model, the notice service will let the new model act on the

system’s prediction. After the processing is completed,

specify the storage location of the data calculation result.

Since Flink is lazy loaded, after the above steps are defined,

the execution of the program needs to be triggered at the

end before the Fink cluster will start processing data. For

patients detected as suspected of COVID-19 patient, the

system will also alert management personnel to deal with

such situations.

4 Cardiovascular disease classification
algorithm based on Deep Learning

4.1 Data preprocessing

The ECG signal is a weak electrical signal, which is easily

interfered by electrical signals from various other sources,

including baseline drift, EMG interference and power fre-

quency interference. In order to obtain a truly useful ECG

signal, we need to denoise these high-frequency or low-

frequency noises. In addition, a complete ECG is com-

posed of a long continuous time series. If it is directly input

into the neural network classification, it will greatly

increase the complexity of the network calculation, and it is

not conducive to extracting good feature information.

Therefore, in the study of ECG signal classification, the

entire ECG signal is usually divided into several small

segments in units of heart beats according to specific rules.

The denoising of ECG signals and heartbeat segmentation

are collectively referred to as preprocessing.

4.1.1 ECG signal denoising

The ECG signal contains a variety of different types of

high-frequency or low-frequency noise. The purpose of

denoising the ECG signal is to suppress the noise in the

signal, and to enhance the part that can contribute to feature

extraction. In order to obtain useful signals, this paper uses

discrete wavelet transform (DWT) to process ECG signals.

Because the tightness of the ECG signal processing has a

Fig. 2 ECG data flow process
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greater impact on the signal, Daubechies wavelet is more

suitable. In this paper, DB8 wavelet basis is selected to

decompose the ECG signal into 8 layers, and the coeffi-

cients of each layer are obtained. The frequency difference

of the three noises of ECG signal is relatively large, so the

soft threshold processing method is selected, that is, dif-

ferent thresholds are used for quantization processing at

different transform scales. Finally, the ECG signal is

reconstructed according to the low-frequency coefficients

of the 8th layer obtained by DB8 wavelet decomposition

and the high-frequency coefficients of each layer, and the

denoised ECG signal is obtained. The evaluation method of

the denoising effect of the ECG signal is reflected by the

signal-to-noise ratio (SNR) and the mean square error

(MSE). The larger the SNR value, the less noise the

denoised ECG signal contains and the better the denoising

effect; the smaller the MSE, the smaller the degree of

distortion of the ECG signal. The calculation method is

shown in formula (1) and (2) where s(i) represents the

original ECG signal containing noise, x(i) represents the

denoised ECG signal, and N represents the length of the

collected ECG signal.

SNR ¼ 10 � lg
XN

n¼1

sðiÞ2

½xðiÞ � sðiÞ�2
ð1Þ

MSE ¼
PN

n¼1 ½xðiÞ � sðiÞ�2

N
ð2Þ

4.1.2 Heartbeat segmentation

After the ECG signal is denoised, the R peak in the

waveform needs to be located and segmented. For the R

peak detection task, combined with the real-time require-

ments of ECG signal detection, the current mainstream R

peak positioning method P-T algorithm is used [38].

According to the characteristics of ECG signals, the algo-

rithm uses the characteristics of large slope of QRS com-

plexes, and searches for the peak value of R waves in ECG

signals through differentiation and adaptive threshold

methods to achieve positioning effect. After the detection

of the R peak position is completed, the heart beat seg-

mentation of the entire ECG signal is performed, and the R

peak is taken as the reference position, and the forward and

backward intercepts are performed, respectively. The

intercepted length is at least a complete heartbeat, and a

complete heartbeat is about 0.6s� 0.8s, so the sampling

point must be greater than 360*0.8 = 288. Too many

sampling points will cause correlation interference between

different types of waveforms. This paper selects 300

sampling points, divides all the ECG signals in MIT-BIH,

and normalizes each collected heartbeat, limiting the

amplitude of each heartbeat to �1; 1½ �.

4.1.3 Data enhancement

ECG classification is an imbalance problem. Abnormal

heartbeats are much smaller than normal heartbeats.

Because deep learning has a strong ability to express and

explain, it is difficult for the model to learn a small number

of sample features during the training process, which

makes the model invalid in practical applications. There-

fore, less data must be enhanced to solve the imbalance

problem. This paper adopts the Synthetic Minority Over-

sample Technique (SMOTE) oversampling algorithm pro-

posed by Chawla in 2002 [39]. The idea of this algorithm is

to synthesize new minority samples through a certain

strategy. The synthesis strategy is for each minority sample

a, A sample b is randomly selected from its nearest

neighbor, and then a point on the line between a and b is

randomly selected as the newly synthesized minority

sample. Therefore, this paper uses the algorithm to syn-

thesize new sample data from the similarities between the

existing minority heartbeat samples. The SMOTE algo-

rithm is shown in formula (3).

Xnew ¼ Xi þ randð0; 1Þ � ðXi;j � XjÞ ð3Þ

where rand(0, 1) represents the random number generated

between 0 and 1, Xnew represents the newly generated

heartbeat samples of S, V, F and Q, Xi represents the ith

heartbeat sample in the minority class, Xi;j represents the

heartbeat sample b in the ith neighborhood of the ith

heartbeat sample a in the minority class.

4.2 Convolutional neural networks

CNN is a kind of multilayer neural network used for image

classification, segmentation or detection that has developed

rapidly in recent years [40, 41]. It inherits the unique fea-

ture extraction capabilities of deep learning. Because of its

advantages such as local connection, weight sharing, and

down-sampling, it effectively reduces the number of

parameters in the neural network structure with a large

amount of data, reduces the complexity of the operation,

and reduces the memory of the operation. CNN is con-

structed by different combinations of input layer, hidden

layer and output layer. The hidden layer usually includes a

convolutional computing layer, a pooling computing layer,

and a fully connected layer. The network structure of 1D-

CNN is shown in Fig. 3.

The convolution operation layer is to perform convo-

lution operation on the input sequence or picture, and the

purpose is to extract the characteristics of the input signal.

Convolution operation includes convolution operation and

activation function. The convolution operation is to mul-

tiply a set of weights with the input, expressed in matrix

form as formula (4), where X represents the matrix
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representation of the input signal and W is the convolution

kernel. The size and number of the weight matrix can be

customized by experience; � means convolution. After the

convolution operation, the result needs to be determined

and transformed by the activation function, and the output

that reaches the threshold is mapped to another space

through nonlinear changes, and then the features can be

nonlinearly classified.

SðtÞ ¼ ðX �WÞðtÞ ð4Þ

The pooling operation layer is to down-sample the features

extracted by the convolutional layer. This process can

retain important pair of feature information without

changing the number of feature maps. In this way, the

model reduces spatial information to obtain better com-

puting performance and reduces the risk of model

overfitting.

The final classifier in the entire CNN network is

implemented in the fully connected layer, and the output

after convolution and pooling is flattened into a single

value vector, and the probability calculation is performed

through the softmax function to obtain the final category

output. The softmax function converts the input into a

probability value ranging from 0 to 1, and the sum of all

probability values is 1.

This paper uses a network composed of multiple con-

volutional layers and pooling layers to extract features of

the ECG signal. Feature extraction technology can replace

manual labor, avoiding the inaccuracy of feature selection

due to human reasons and saving a lot of time spent on

features.

4.3 Long short-term memory networks

Long short-term memory network (LSTM) is a variant of

recurrent neural network. The traditional RNN hidden layer

is used as a memory unit. As the model progresses over

time, the effective information of the input data is gradu-

ally weakened. The LSTM redesigned the memory module

to retain the backpropagation error between the time step

and the level, so that the network model continues to

maintain the learning state in multiple time steps and thus

has the ability to capture the causality of long-distance

information. Therefore, LSTM is suitable for ECG signals

with timing characteristics.

The core of LSTM is composed of input gate, output

gate and forget gate. These three control gates can enable

LSTM neurons to read, write, reset and update long-dis-

tance historical information. The structure diagram is

shown in Fig. 4. The overall calculation formula is as

follows.

LSTM realizes the selective loss of information in

neurons through the forget gate in the structure, and the

calculation formula is as (5).

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ ð5Þ

where Wf represents the weight matrix of the forgetting

gate, ht�1 is the previous output in the network, xt repre-

sents the current input, bf represents the bias term of the

forgetting gate, and rð�Þ represents the sigmoid function.

The output of the input gate consists of two parts. The

calculation formulas are as (6) and (7). The output of the

input gate is composed of two parts, it represents the cur-

rent output, which is realized by the sigmoid function, and
~Ct represents the current state, which is realized by the tanh

function.

it ¼ rðWxixt þWhiht�1 þ biÞ ð6Þ
~Ct ¼ tanh ðWxcxt þWhcht�1 þ bcÞ ð7Þ

Among them, it represents the current output, realized by

the sigmoid function, ~Ctt represents the current state,

realized by the tanh function, Wð�Þ represents the weight

matrix of this part, and b� represents the bias term of this

part.

The output gate calculation formulas are as (8), (9) and

(10).

Fig. 3 1D-CNN Network Structure

Fig. 4 LSTM Network Structure
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Ct ¼ ft � Ct�1 þ it � ~Ct ð8Þ

ot ¼ rðWxoxt þWhoht�1 þ boÞ ð9Þ

ht ¼ ot � tanh ðctÞ ð10Þ

Ct is the output state of the cell, which is composed of the

product of the output ft of the forgetting gate and the state

Ct�1 at the previous moment and the sum of the product of

the two outputs in the input gate. Wo represents the weight

matrix of the output gate, and bo represents the offset term

of the output gate, ht represents the current final output.

In LSTM, the current state information ct and the pre-

vious state information ct�1 have a linear relationship.

When the forget gate is open, that is, when the output of the

sigmoid unit is close to 1, the gradient will not disappear,

and the new state The information is the weighted average

of the previous state information and the accumulated

information at the current moment, so regardless of the

sequence length, as long as the forget gate is open, the

network can remember the past state information, that is,

LSTM can capture long-term dependencies.

4.4 ECG signal classification based
on CNN1LSTM

Both CNN and RNN can classify image and text input, so

there is an opportunity to combine the two network models

to improve classification efficiency. If the input adds time

characteristics that CNN itself cannot handle, the combi-

nation of the two is more advantageous. Since the ECG

signal is a physiological signal collected in accordance

with time, it contains rich time domain features. The

positional relationship between the waveforms of various

stages in a heartbeat beat is close. The input of the neuron

in LSTM is not only affected by the input at the current

moment, but also related to the output at the previous

moment, that is, there is an association between nodes at

different moments in the time series, which can save

contextual information, and is dependent on long-distance

time. Time series are particularly effective. Therefore, this

paper uses the local perceptual field characteristics of CNN

and the memory function of LSTM to construct a classi-

fication model combining CNN?LSTM. The specific

model structure is shown in Fig. 5. Among them, the size

of the convolution kernel is increased from 21 by 2, and the

sliding step size is 2 to extract the morphological charac-

teristics of the ECG signal. The number of convolution

kernels is 4, 16, 32, and 64. The convolutional layer per-

forms feature reorganization to form a feature map. The

pooling part selects a maximum pooling operation with a

size of 3 and a step size of 2 to compress the feature vector

size. The signal features extracted by the convolutional

network are sent to the 128-unit LSTM network for time

analysis. Finally, various predicted probabilities are output

through the fully connected layer and the softmax function.

Model training process

– CNN extract features Input the preprocessed data into

the CNN network, and extract intermediate features

after convolution and pooling. The calculation formula

is as (11).

Xn
j ¼ Reluð

X

j2Mj

ðXn�1
j �Wn

j Þ þ bnj Þ ð11Þ

Among them, Xn
j represents the jth feature of the ECG

signal after the nth layer of convolution, W represents

the convolution kernel, and b represents the bias term.

– LSTM extraction features take the middle feature Xn
j

of the ECG signal after feature extraction as the input of

the LSTM layer, and use the formula introduced in the

previous section to calculate the output.

– Softmax classification The signal features extracted by

CNN and LSTM are sent to the fully connected layer,

where 5 classification labels are encoded with one-hot,

and then the softmax function is used to generate the

probability pk of each heartbeat type. The calculation

formula is as (12).

pk ¼ softmaxðxÞ expðhTk xÞP
k expðh

T
k xÞ

ð12Þ

where x is the input sample data, k is the heartbeat type,

and h is the model parameter. In this paper, x represents

each heartbeat, k = 1,2,3,4,5, corresponding to cate-

gories N, S, V, F and Q, respectively.

– Backpropagation and weight update: After the cat-

egory is judged, the ECG classification loss is calcu-

lated, and the loss is back-propagated according to the

chain rule to calculate the gradient of each weight and

use gradient descent to update the weights. The

calculation formula is as (13).

hj ¼ hj � a
5JðhÞ
5hj

; j ¼ 1; 2; . . .; k ð13Þ

– Iterative training Repeat the above steps until the

network converges or reaches the maximum number of

training cycles. If the effect of the model training result

is improved, save the model.

Model testing process

Load the optimal model. Load the optimal parameters of

the model training stage, input the ECG signal data of the

test set into the CNN?LSTM network for calculation, and

output the final results and evaluation indicators.
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4.5 Discussion and analysis

In the patient’s ECG signal, usually abnormal ECG signal

data are far less than normal ECG data. This unbalanced

data distribution often leads to models that are more

inclined to learn with multiple data categories, and the

learning of a few categories of data is insufficient, espe-

cially in the process of small-batch gradient descent opti-

mization. If there are only a few abnormal ECG signal data

in the ECG data set, it makes the direction of gradient

descent heavily dependent on normal ECG data, resulting

in a low recognition rate of abnormal ECG signals. Usu-

ally, the solution to this problem is to perform multi-

sampling of categories with a small amount of data or

under-sampling categories with a large amount of data. In

recent years, many people have used the popular generative

confrontation network in deep learning to enhance data to

achieve data balance.

5 Experimental results and discussion

5.1 Dataset introduction

This paper uses themost widely used ECG signal database in

the field of ECG signal classification research, namely the

MIT-BIH arrhythmia database. TheMIT-BIHECGdatabase

contains 48 half-hour records of the 24-hour dual-channel

ECG records of 47 subjects. Among them, 23 records of the

100 series are randomly selected frommore than 4000Holter

collectors, and the other 25 records of the 200 series are

unusual but clinically important arrhythmia signals. The

ECG signal data are stored in a binary formatwith a sampling

frequency of 360 Hz, and the atr file in each record indicates

the type of heartbeat. This paper is classified into 5 categories

according toAAMI standards, namelyN (normal heart beat),

S (supraventricular odor), V (ventricular odor), F (fusion

heart beat), Q (undefined heart beat). The number of various

heartbeats is shown in Table 1.

5.2 Experimental settings and evaluation
indicators

The hardware configuration of the experimental platform is

Intel i7-6700 CPU, the graphics card is GTX1080Ti, the

memory is 32G, the operating system is Window10 system,

and the model is implemented based on the Python pro-

gramming language and Tensorflow framework. When

training the network model parameters, the initial value of

the learning rate is 0.001, and then the ReduceLROnPla-

teau function makes the learning rate adaptive to the

model; the Dropout parameter is 0.2, Batch_size is 128,

and Epoch is 1000. For S, V, F, and Q, first select 20% as

the test set, and use the remaining 80% to generate new

data. In order to maintain the credibility of the experiment,

this paper adopts a tenfold cross-validation method.

In order to evaluate the performance of the model in this

paper, the following two indicators are used:

(1) In medical diagnosis, normal heartbeats and abnor-

mal heartbeats are negative and positive respectively. If the

true type is negative and classified as negative, it is

recorded as true negative (TN); the true type is positive and

classified as negative and recorded as false negative (FN);

the true type is classified as negative. Negatives are clas-

sified as positives and counted as false positives; those that

are true to positives are classified as negatives and counted

as true positives (TP). In the ECG signal judgment model,

Accuracy (Acc), Specificity (Spe) and Sensitivity (Sen) are

generally used as indicators for judgment. Among them,

accuracy represents the probability that the model is

accurately classified for a given test set, and specificity

represents the probability that a negative example is

accurately predicted by the model, and sensitivity repre-

sents the probability that a positive example is correctly

Fig. 5 CNN-LSTM Network Structure
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classified by the model. The three evaluation index for-

mulas are as (14), (15) and (16).

Sen ¼ TP

TPþ TN
� 100% ð14Þ

Spe ¼ TN

TN þ FP
� 100% ð15Þ

Acc ¼ TN þ TP

TPþ FPþ FN þ TN
� 100% ð16Þ

(2) ROC curve: This indicator is based on the three models

of SVM, CNN, LSTM and the scheme of this article. After

training 4 models, they are used to predict the test set and

obtain the ROC curve. The area under the ROC curve can

be used to judge the performance of the model.

5.3 Result analysis

In (1), the probability of Acc, Spe and Sen in different

methods of cardiovascular disease are shown in Fig. 6. As

can be seen from the this figure, through the predictions of

different models on the test set, it is found that the clas-

sification effect of traditional machine learning SVM is less

than that of deep learning methods, and our proposed

method is higher than other deep learning methods in Acc,

Spe, and Sen. They reached 99.29%, 99.53%, and 97.77%,

respectively.

In (2), four trained models are used to predict the test

set, and the ROC curve is shown in Fig. 7. It can clearly

see that the ROC curves of these four models have a large

deviation from the 45-degree diagonal. Among them, the

area under the SVM model is small, and the trained SVM

model has a general classification effect on the ECG
signals of coronary patients. This shows that traditional

machine learning has a large amount of data and has a poor

Table 1 Number of various

heartbeats
Heartbeat type Description Number

N (Normal heart beat) Normal beat 83513

Left bundle branch block beat

Right bundle branch block beat

Atrial escape beats

Nodal(junctional) escape

S (Supraventricular odor) Atrial premature 2184

Aberrant atrial premature

Nodal(junctional) premature

Supra-Ventricular premature

V (Ventricular odor) Premature Ventricular 6975

contraction Ventricular escape

F (Fusion heart beat) Fusion of Ventricular and Normal 801

Q (Undefined heart beat) Paced 3593

Fusion of Paced and Normal

Unclassifiable

Total 97066

Fig. 6 Acc, Spe and Sen for each model

Fig. 7 ROC curve comparison chart
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feature extraction effect on data with more features, which

makes the generalization of the model poor; the area under

CNN and LSTM is not much different, and the ECG signal

classification effect is good. It also shows that the deep

learning model can effectively extract the unilateral fea-

tures of the ECG data to a certain extent, making the model

generalization better; it can be seen that the area of our

proposed method is the largest, showing that the

CNN?LSTM models can not only propose the character-

istics of the ECG signal itself, but also accurately propose

the time-domain features in it. Combining them for clas-

sification can effectively improve the classification. The

effect makes the model strong in generalization.

6 Conclusion

Aiming at the accuracy and timeliness of heart rate

detection for COVID-19 patients, this paper proposes a

real-time cardiovascular monitoring system based on 5G

and deep learning to ensure low latency and high

throughput of ECG signal data transmission in wearable

devices. In order to achieve real-time ECG signal data

monitoring, analysis and diagnosis, it adopts the new

generation of wireless communication technology 5G, plus

the real-time data processing platform Flink framework,

and finally uses the classification of the proposed deep

learning ECG signal model to realize real-time ECG signal

data monitoring, analysis and diagnosis. The correct rate of

model prediction can reach 99.29%, which proves that the

real-time medical monitoring system is necessary and can

effectively predict the actual situation of the COVID-19

patient’s cardiovascular system. It has high practical value

and can realize early warning of emergencies in time.

Our next plan is to further optimize the deep learning

model, try to increase the one-dimensional time series

signal to the two-dimensional space, use the Generative

Adversarial Networks to enhance the data of the insuffi-

cient number of heartbeat types, solve the problem of ECG

signal imbalance, and consider using migration learn to

increase model accuracy and reduce training time.
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