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Abstract
We present an approach to discriminate SARS-CoV-2 virus types based on their RNA sequence descriptions avoiding a

sequence alignment. For that purpose, sequences are preprocessed by feature extraction and the resulting feature vectors

are analyzed by prototype-based classification to remain interpretable. In particular, we propose to use variants of learning

vector quantization (LVQ) based on dissimilarity measures for RNA sequence data. The respective matrix LVQ provides

additional knowledge about the classification decisions like discriminant feature correlations and, additionally, can be

equipped with easy to realize reject options for uncertain data. Those options provide self-controlled evidence, i.e., the

model refuses to make a classification decision if the model evidence for the presented data is not sufficient. This model is

first trained using a GISAID dataset with given virus types detected according to the molecular differences in coronavirus

populations by phylogenetic tree clustering. In a second step, we apply the trained model to another but unlabeled SARS-

CoV-2 virus dataset. For these data, we can either assign a virus type to the sequences or reject atypical samples. Those

rejected sequences allow to speculate about new virus types with respect to nucleotide base mutations in the viral

sequences. Moreover, this rejection analysis improves model robustness. Last but not least, the presented approach has

lower computational complexity compared to methods based on (multiple) sequence alignment.

Keywords Learning vector quantization � Interpretable models � Genomic sequence analysis � Reject options

1 Introduction

The coronavirus disease 2019 (COVID-19) caused by

SARS-CoV-2 viruses, whose origin lies probably in Wuhan

(China), is a severe respiratory disease [1]. Currently (May

2020), it is spreading rapidly all over the world [88]. Yet

there are several indicators that its molecular characteris-

tics evolve during time [2, 89]. This evolution is mainly

driven by mutations, which play an essential role and may

be accompanied by mechanisms of stabilization [70, 71].
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Therefore, an analysis of virus sequences is essential to

understand the spreading and the behavior of the virus

population. One aspect is to distinguish several types of the

virus, which may force different symptoms and medical

conditions. Thus, sequences have to be compared regarding

their genomic structure. This can be done by alignment

methods or by alignment-free approaches, both coming

with pros and cons. Further, the sequences have to be

distinguished or classified with respect to their virus types.

For this purpose, interpretable models are favored in

comparison with black-box approaches like deep networks,

because a medical interpretation of the classification

decision process is highly desirable. In fact, this could help

to detect new virus variants.

1.1 Biological basics regarding SARS-CoV-2

The analysis of the genomic structure by sequencing is

currently topic of ongoing research to better understand the

molecular dynamics [53]. Obviously, changing the geno-

mic structure may cause new properties and, hence, could

increase the difficulties in finding drugs for treatment. For

example, changes may lead to behavioral changes, such as

the increased binding of the SARS-CoV-2 surface glyco-

protein to human ACE2 receptors [37].

Viruses of the family Coronaviridae possess a single-

stranded, positive-sense RNA genome ranging from 26 to

32 kilobases in length and frequently are extremely similar

[44]. Therefore, the analysis of those sequences to under-

stand the genetic evolution in time and space is very dif-

ficult. This problem is magnified by incorrect or inaccurate

sequencing [75]. Further, mutations are not equally dis-

tributed across the SARS-CoV-2 genome [28]. The

molecular differences in corona virus populations were

investigated using phylogenetic trees so far resulting in

three clusters which are identified as virus types [23]. Yet,

SNP-based radial phylogeny-retrieved trees of SARS-CoV-

2 genomes result in five major clades [28]. Generally, a

disadvantage of those decision-tree-like approaches is the

problem of out-of-sample considerations, i.e., new data

cannot easily be integrated [55, 86]. The respective tree has

to be reconfigured completely, which frequently leads to

major changes in the tree structure [56, 72].

Frequent mutations in SARS-CoV-2 genomes are in the

genes encoding the S-protein and RNA polymerase, RNA

primase, and nucleoprotein. Applying a sequence align-

ment and similarity comparison using the Jaccard index, a

method for monitoring and tracing SARS-CoV-2 mutations

was established in [90]. However, a general mathematical

evaluation of similarities is crucial because respective

similarity measures only partially reflect all biological

aspects of similarity between RNA sequences [87].

Alignment-based methods usually rely on variants of the

Levenshtein distance [38], which, however, are computa-

tionally costly: O l1 � l2ð Þ is the time complexity for both the

Needleman–Wunsch algorithm [51] and for the Smith–

Waterman algorithm [26, 68], where l1 and l2 are the

sequence lengths. Hence, if l1 ¼ l2 ¼ l, the complexity is

simply O l2ð Þ. Both approaches solve internally a mathe-

matical optimization problem, i.e., both algorithms belong

to the algorithmic class of dynamic programming with high

computational complexity.

In case of multiple sequence alignments (MSAs), the

dissimilarity problem is NP-hard [31]. Currently used MSA

implementations such as ClustalW [73], MAFFT [33], or

MUSCLE [18] therefore rely on the progressive alignment

technique [20], which reduces the computational com-

plexity to polynomial time [47]. In the example of MUS-

CLE, the time complexity amounts to OðN4 þ N � l2Þ with
N being the number of sequences and l is the uniform

sequence length. Other alignment-based methods for

SARS-CoV-2 data consider (multiple) longest common

subsequences with similar complexity [41].

Therefore, alignment-free alternatives are promising to

avoid this algorithmic complexity [7, 8, 83, 84, 87, 91].

Commonly used approaches are Bag-of-Words (BoW [67]),

information theoretic methods based on the Kolmogorov–

Smirnov complexity [35] and the related Normalized

Compression Distance [13, 40]. Recently, similarities

based on Natural Vectors gained attraction [17, 42, 92].

These methods have in common that the sequences are

considered in terms of their statistical properties and dis-

tributions of the nucleotides. However, local information

like precise nucleotide positions as well as specific motifs

is lost. An overview of prominent measures and their

behavior for sequence analysis can be found in [94, 95].

The time complexity for this data coding is only OðN � lÞ
and, hence, much lower than for alignment methods.

In the present publication, we investigate whether

alignment-free dissimilarities are suitable for the identifi-

cation of SARS-CoV-2 clusters/classes in combination

with interpretable machine learning methods for clustering

and classification [4, 5]. This we do for two datasets:

GISAID data and NCBI data, see Sect. 2.1. For the first

one, virus classes (types) were identified by phylogenetic

tree analysis in [23], whereas the second one is without

class information.

1.2 Motivation to use an interpretable classifier

Although deep neural network approaches provide

impressive results in sequence classification [9, 21, 69, 72],

deep architectures are at least difficult to interpret. There-

fore, many attempts are made to explain deep architectures
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[59]. However, it is claimed that restricting models to be

interpretable does not necessarily lead to weaker perfor-

mance and, hence, should be favored if possible [58, 82].

Moreover, particularly in the medical domain, knowledge

regarding decision processes is strongly required for cor-

rect interpretation of the results [76].

Therefore, we focus on applying prototype-based

methods using alignment-free dissimilarity measures for

sequence comparison. In fact, prototype-based machine

learning models for data classification and representation

are known to be interpretable and robust [6, 82, 93]. Using

such methods for the SARS-CoV-2 sequence data, first we

verify the classification results for the GISAID data. In

particular, we classify the sequences by a learning vector

quantizer, which is proven to be robust and inter-

pretable [60, 82]. Thereafter, we use this model to classify

the new data from the NCBI. Moreover, this inter-

pretable classifier provides correlation information

regarding data features contributing to a class discrimina-

tion. This additional knowledge allows a further charac-

terization of the virus classes. Additionally, the model is

equipped with a reject option following [22]. This allows to

refuse outliers by the model, which could give hints for

new virus types.

2 Materials and methods

2.1 SARS-CoV-2 sequence databases in use

In order to investigate SARS-CoV-2 viruses in terms of

sub-type spreading, two virus sequence datasets were

considered.

2.1.1 The GISAID dataset DG

The first one, abbreviated by DG, is from the GISAID

coronavirus repository (GISAID—Global Initiative on

Sharing Avian Influenza Data). It consists by March 4,

2020, of 254 coronavirus genomes, isolated from 244

humans, nine Chinese pangolins, and one bat Rhinolophus

affinis. After preprocessing, 160 complete human sequen-

ces are obtained as described in [23], where these genomes

of SARS-CoV-2 have been used to create a phylogenetic

network. The resulting network analysis distinguished

three types of the virus (cluster) A;B; and C : Ais most

similar to the bat virus, whereas B and C are sequences

obtained from A by two mutations: the synonymous

mutation T8782C and the non-synonymous mutation

C28144T changing a leucine to a serine. A further non-

synonymous mutation G26144T changing a glycine to a

valine lead from B to type C. In this sense, the classes

(virus types) code implicitly the evolution in time of the

virus.

In our data analysis, we removed two sequences, whose

accession numbers occur twice in the data record, and

another two, which we identified as not human resulting in

156 final sequences. Additionally, we take the type/class

information as label for the virus genome sequences and,

hence, as reference. A detailed data description as well as

complete list of sequences can be found in [23]. The virus

type assignments and additional data (country, collection

date) as well as accession numbers for all 156 sequences in

use are additionally provided in supplementary material.

The complete data information is found in supplemen-

tary files S12 Data.

2.1.2 The NCBI dataset DN

The second dataset including 892 complete genomes has

been selected from the National Center for Biotechnology

Information (NCBI) Viral Genome database [10] and

GenBank [14] by April 19, 2020, as given in Table 1.

These data are human-based sequences and provide addi-

tionally the country information from which the sequences

originate, as well as their collection date. For each

sequence, we have also derived a more general assignment

to regions based on the country information, which

includes the following values: USA, China, Europe, and

Others. The accession number and the additional data used

in the analysis are included in supplementary material. We

refer to this dataset by DN .

Remark, although the SARS-CoV-2 virus is an RNA

virus, the sequences provided by databases are given using

the DNA coding. In the following, we take over this con-

vention and do not explicitly refer to that later.

Again, the complete data information is found in sup-

plementary files S12 Data.

Table 1 Distribution of the NCBI data DN regarding regions and

month of collection date

China Europe USA Others

December 2019 16 0 0 0

January 2020 44 4 16 9

February 2020 2 6 44 7

March 2020 1 23 706 10

April 2020 0 0 4 0
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2.2 Representation of RNA sequences
for alignment-free data analysis

Several approaches were published to represent sequences

adequately for alignment-free comparison. These methods

range from chaos game representation to standard unary

coding or matrix representations. An overview is given in

[84, 94, 95]. Here, we focus only on two of the most

promising approaches—Natural Vectors and Bag-of-

Words.

2.2.1 Natural vectors

Natural Vectors (NV) for nucleotide sequence comparison

are based on a statistical sequence description for the dis-

tribution of nucleotide positions within a sequence s ¼
s;. . .; sn

� �
based on the alphabet A ¼ A;C;G; Tf g

[17, 42]. Let l0L ¼ nL=n be the relative number (frequency)

of the nucleotide L 2 A and pL jð Þ=n, j ¼ 1. . .nL is the

relative position of the kth nucleotide L in the sequence.

Let E r½ � further be the expectation operator of a random

quantity r. With this convention, we get l0L ¼ E L½ � for the
frequency of the nucleotide L. Further, we denote by lL ¼
l1L ¼ E pL½ � the mean relative position of the nucleotide L in

the sequence. The kth centralized moment lk
L for k � 2 is

given as lk
L ¼ E pL � l1L

� �k
h i

. Then, the natural vector of

order K for a sequence s is defined as

x K; sð Þ ¼ l0A; l
0
C; l

0
G; l

0
T ; l

1
A; l

1
C; l

1
G; l

1
T ; . . .; l

K
A ; l

K
C ; l

K
G; l

K
T

� �

ð1Þ

whereby we again drop the dependencies on K and s for

simplicity, if it is not misleading.

Natural vectors are usually compared in terms of the lp-

metric

dp x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

j¼0

X

L2A
l j

L xð Þ � l j
L yð Þ

� �pp

vuut ð2Þ

giving the Euclidean distance for p ¼ 2. The Kendall

statistics, as a kind of correlation measure, was used in

[43].

The NV description of sequences can also be applied to

nucleotide sequences containing ambiguous characters

(degenerate bases) collected in the extension set E [15, 92].

This yields an extended alphabet A
0 ¼ A [ E. In that

case, weights 0�wL sið Þ� 1 are introduced for each L 2 A

with

wL sið Þ ¼
1 if si 2 A ^ si ¼ L

0 if si 2 A ^ si 6¼ L

pL;si
otherwise

8
><

>:

where pL;si
is the probability that the detected ambiguous

character si 2 E should be the character L. These weights

have to be taken into account during the expectation value

calculations [92].

2.2.2 Bag-of-words

Another popular method to compare RNA/DNA sequences

is the method Bag-of-words (BoW) based on 3-mers, where

the set S of words contains all possible 64 triplets defined

by the nucleotide alphabet A ¼ A;C;G; Tf g [7, 8, 21, 84].

Thus, all sequences s are coded as (normalized) histogram

vectors of dimensionality n ¼ 64, such that we have for

each sequence the corresponding histogram vector h sð Þ 2
Rn with the constraints hk sð Þ� 0 and

Pn
k¼1 hk sð Þ ¼ 1.

Mathematically speaking, these vectors are discrete repre-

sentations of probability densities. If the latter constraint is

dropped, we have discrete representations of positive

functions. The assignments of the triplets to the vector

components hi are provided in supplementary material. If it

is not misleading, we drop the dependence on s and simply

write h instead of h sð Þ. As for NV, nucleotide sequences

with ambiguous characters can be handled using appro-

priate expectation values.

Obviously, comparison of those histogram vectors can

be done using the usual Euclidean distance. However,

motivated by the already mentioned density property, an

alternative choice is to compare them by means of diver-

gence measures [46]. In the investigations presented later,

we applied the Kullback–Leibler divergence [36]

DKL h;mð Þ ¼
Xn

j¼1

hj � log hj

� �
�
Xn

j¼1

hj � log mj

� �
ð3Þ

for sequence histograms h andm. Note that the first term in

(3) is the negative Shannon entropy

H hð Þ ¼ �
Pn

j¼1 hj � log hj

� �
, whereas Cr h;mð Þ ¼

Pn
j¼1 hj �

log mj

� �
is the Shannon cross-entropy. Yet, other diver-

gences like Rényi divergences could be used [85]. We refer

to [79] for a general overview regarding divergences in the

context of machine learning.

The assignment of the nucleotide triplets to the his-

togram dimension is found in supplementary material S13

Histogram Coding of Nucleotide Triplets.

2.3 Machine learning approach for virus
sequence data analysis

2.3.1 Median neural gas for data compression

The Median Neural Gas algorithm (MNG) is a neural data

quantization algorithm for data compression based on (dis-
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)similarities [3, 16]. It is a stable variant of the k-median

centroid method improved by neighborhood cooperative-

ness enhanced learning, where k is the predefined number

of representatives [39, 49]. In this context, median

approaches only assume a dissimilarity matrix for the data

and restrict the data centroids to be data points. Thus, after

training, MNG provides k data points to serve as repre-

sentatives of the data. Thereby, the data space is implicitly

sampled according to the underlying data density in con-

sequence of the so-called magnification property of neural

gas quantizers [48, 78].

It should be emphasized that despite the weak assump-

tion of a given similarity matrix, MNG always delivers

exact data objects as representatives. Hence, any averaging

for prototype generation like in standard vector quantizers

is avoided here. This is essential, if averaged data objects

are meaningless like for texts, music data, or RNA/DNA

sequences, for example.

2.3.2 Affinity propagation for clustering with cluster
cardinality control

Affinity propagation (AP) introduced by Frey and Dueck in

[24] is an iterative cluster algorithm based on message

passing where the current cluster nodes, in the AP setting

denoted as prototypes or exemplars, interact by exchanging

real-valued messages. Contrary to methods like c-means or

neural maps, where the number c of prototypes has to be

chosen beforehand, AP starts assuming that all N data

points are potential exemplars and reduces the number of

valid prototypes (cluster centroids) iteratively. More pre-

cisely, AP realizes an exemplar-dependent probability

model where the given similarities 1 i; kð Þ between data

points xi and xk (potential exemplars) are identified as log-

likelihoods of the probability that the data points assume

each other as a prototype. For example, the similarities

1 i; kð Þ simply could be negative dissimilarities like the

negative Euclidean distance.

The cost function CAP Ið Þ minimized by AP is given by

CAP Ið Þ ¼ �
X

i

f xi; xI ið Þ
� �

�
X

j

dj Ið Þ

where I : N ! N is the mapping function determining the

prototypes for each data point given by means of

I ið Þ ¼ argmax
j

a i; kð Þ þ r i; kð Þf g: ð4Þ

and

dj Ið Þ ¼ �1 if 9 j; k I jð Þ 6¼ j, I kð Þ ¼ j
0 otherwise

�

is a penalty function. The quantity r i; kð Þ is denoted as

responsibility reflecting the accumulated evidence that

point k serves as prototype for data point i. The availabil-

ities a i; kð Þ describe the accumulated evidence how

appropriate data point k is seen as a potential prototype for

the points i.

During the optimization, both kinds of messages are

iteratively exchanged between the data by means of the

alternating calculations according to

r i; kð Þ ¼ 1 i; kð Þ �max
j 6¼k

a i; jð Þ þ f i; jð Þf g

and

a i; kð Þ ¼ min 0; r k; kð Þ þ
P

j 6¼i;k

max 0; r j; kð Þf g
( )

a k; kð Þ ¼ maxj6¼k max 0; r j; kð Þf gf g

until convergence. Finally, the prototypes are determined

according to (4).

Hence, a i; kð Þ and r i; kð Þ can be taken as log-probability

ratios [24]. The iterative alternating calculation of a i; kð Þ
and r i; kð Þ is caused by the max-sum-algorithm applied for

factor graphs [54], which can further be related to spectral

clustering [45].

The number of resulting clusters is implicitly deter-

mined by the self-similarities 1 k; kð Þ also denoted as pref-

erences. The larger the self-similarities the finer is the

granularity of clustering [24]. Common choices are the

median or the minimum of the similarities between all

inputs. Otherwise, the self-similarities can be seen as a

control parameter for the granularity of the clustering.

Variation of this parameter provides information regarding

stable cluster solutions in dependence of plateau regions of

the resulting minimum cost function value.

2.3.3 The generalized learning vector quantizer:
an interpretable prototype-based classifier

Learning Vector Quantization (LVQ) is an adaptive pro-

totype-based classifier introduced by T. Kohonen [34]. A

cost-function-based variant is known as generalized LVQ

[62]. This cost function approximates the classification

error [32]. In particular, an LVQ classifier requires training

data T ¼ xj; c xj

� �� �
2 X � C; j ¼ 1. . .N

� 	
where X � Rn

and C ¼ 1; . . .;Cf g is the set of available class labels.

Further, the model assumes a set of prototypes W ¼
wk 2 Rn; k ¼ 1. . .Mf g with class labels c wkð Þ such that at

least one prototype is assigned to each class. Hence, we

have a partitioning of the prototype set W ¼ [C
j¼1Wj with

Wj ¼ wk 2 W jc wkð Þ ¼ jf g. Further, a dissimilarity mea-

sure d x;wð Þ is supposed, which has to be differentiable

with respect to the second argument. For a given LVQ

configuration, a new data point x is assigned to a class by

the mapping
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x 7!c wx Wð Þ
� �

ð5Þ

with

x Wð Þ ¼ argminwk2Wd x;wkð Þ ð6Þ

is known as the winner-takes-all rule (WTA) in prototype-

based vector quantization. The prototype wx is denoted as

winner of the competition.

During the learning, the cost-based LVQ minimizes the

expected classification error EX E xk;Wð Þ½ � where
E xk;Wð Þ ¼ f l xkð Þð Þ ð7Þ

is the local classification error depending on the choice of

the monotonically increasing function f and the classifier

function

l xkð Þ ¼ dþ xkð Þ � d� xkð Þ
dþ xkð Þ þ d� xkð Þ 2 �1; 1½ � ð8Þ

where d	 xkð Þ ¼ d	 xk;w
	ð Þ and wþ ¼ w

x Wc xkð Þ


 � is the

so-called best matching correct prototype and w� ¼

w
x WnWc xkð Þ


 � is the corresponding best matching incorrect

prototype. Frequently, the squashing function f is chosen as

sigmoid: fr zð Þ ¼ 1
1þexp �rzð Þ. Learning takes place as

stochastic gradient descent learning (SGDL) [27, 57] of

EX E xk;Wð Þ½ � with respect to the prototype set W to obtain

an optimum prototype configuration in the data space.

The dissimilarity d x;wð Þ can be chosen arbitrarily

supposing differentiability with respect to w to ensure

SGDL. Frequently, the squared Euclidean distance

dE x;wð Þ ¼ x� wð Þ2 is applied resulting in the standard

generalized LVQ (GLVQ). If both x and w are assumed as

discrete representations of density functions, divergences

like the Kullback–Leibler divergence DKL x;wð Þ from (3)

come into play instead [50]. It should be emphasized here

that the non-symmetry of general divergences is not

affecting the algorithm if it is used consistently in the

predefined manner. Taking the variant DKL x;wð Þ leads to

the computational advantage that the Shannon entropy

H xð Þ of the data according to (3) is not required to be

calculated because the derivative with respect to a proto-

type w vanishes and, hence, does not contribute to the

learning. In consequence, only the derivative of the cross-

entropy Cr x;wð Þ affects the learning as it is also known

from classification learning by deep neural networks [25].

The resulting LVQ variant is denoted as divergence-

based GLVQ (GDLVQ). We refer to [79] for further con-

siderations and mathematical analysis.

Another popular choice is the squared Euclidean map-

ping distance

dX x;wð Þ ¼ X x� wð Þð Þ2

¼ X x� wð Þð ÞTX x� wð Þ

¼ x� wð ÞTXTX x� wð Þ

ð9Þ

proposed in [66] with the mapping matrix X 2 Rm�n and m

being the projection dimension usually chosen m� n [12].

Here, the data are first mapped linearly by the mapping

matrix and then the Euclidean distance is calculated in the

mapping space Rm. The mapping matrix can be optimized

again by SGDL to achieve a good separation of the classes

in the mapping space. The respective algorithm is known

as Generalized Matrix LVQ (GMLVQ) [65]. Note that

SGDL for X-optimization usually requires a careful regu-

larization technique [64].

After training, the adapted projection matrix X provides

additional information. The resulting matrix K ¼ XTX 2
Rn�n allows an interpretation as classification correlation

matrix, i.e., the matrix entries Kij give only those correla-

tion information between data features i and j, which

contribute to the class discrimination [5, 77]. Thus, it is not

comparable with the data correlation matrix (or covari-

ance), which does not reflect class discriminating correla-

tions. Moreover, because the X-matrix, and therefore also

the K-matrix, is optimized to maximize the classifier

accuracy, bias effects as known from covariance estimation

as explained in [19] are not problematic in this context.

Instead of the linear X mapping, nonlinear mappings

could be considered explicitly as suggested in [81] or

implicitly by means of kernel distances [63, 80].

A trained LVQ model can be applied to newly incoming

data of unknown distribution. However, care must be taken

to ensure that the model remains applicable and that there

is no inconsistency with the new data. Therefore, each

LVQ can be equipped with a reject option for the appli-

cation phase [22, 29]. If the dissimilarity of the best

matching prototype to a data point is greater than a given

threshold s, it is refused for classification, i.e., this optional

tool equips the LVQ with a so-called self-controlled evi-

dence (SCE) [82]. The threshold s is determined during

model training for each prototype individually, e.g., 95%

percentile of the dissimilarity value for those data, which

are assigned to the considered prototype by the WTA rule

(6) together with the class assignment (5).
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In fact, this reject option improves the robustness of the

model [61].

2.4 Stochastic neighbor embedding
for visualization

The method of stochastic neighbor embedding (SNE) was

developed to visualize high-dimensional data in a typically

two-dimensional visualization space [30]. For this purpose,

each data point xk in the data space is associated with a

visualization vector vk 2 R2. The objective of the respec-

tive embedding algorithm is to distribute the visualization

data in a way that the density of original data distances in

the high-dimensional data space is preserved as good as

possible for the respective density of the distances in the

visualization space (embedding space). The quality crite-

rion is the Kullback–Leibler divergence between them,

which is minimized by SGDL with respect to the visual-

ization vectors vk.

Yet, SNE suffers from the fact that the distance densities

in the original data space are frequently heavy-tailed [11],

which leads to inaccurate visualizations. To overcome this

problem, the so-called t-distributed SNE (t-SNE) was

developed [74].

2.5 Data processing workflow

In the following, we describe and motivate the steps of data

processing and analysis.

1. Coding of all sequences of DG data and DN data.

• Alphabet A
0 ¼ A [ E with alphabet extension

E ¼ B;D;H;K;M;N;R; S;V ;W ;Yf g due to

ambiguous characters in the datasets.

• A natural vector representation x 4; sð Þ 2 R20 of

order K ¼ 4 is generated for each sequence s

according to (1) paying attention to the alphabet

extension E.

• A BoW-representation for 3-mers is generated for

each sequence s: h sð Þ 2 R64 according to the

possible nucleotide triplets of the alphabet A ¼
A;C;G; Tf g paying attention to the alphabet

extension E

2. Training of LVQ-classifiers for DG data to evaluate the

results from [23] obtained by phylogenetic trees

• Training data are all samples of DG with the

additional virus type assignment A, B, or C taken as

class labels.

• For all LVQ variants, we take only one prototype

per class.

• For GMLVQ, the projection matrix is chosen as

X 2 R2�n, i.e., the mapping dimension is m ¼ 2.

• SGDL training as tenfold cross-validation to deter-

mine the best LVQ architecture for the given

problem.

– Training of W using the GLVQ for NV

representation.

– Training of W and X using the GMLVQ for NV

representation.

GDLVQ is not applicable for this sequence

representation due to mathematical reasons.

– Training of W using the GLVQ for BoW

representation.

– Training of W and X using the GMLVQ for

BoW representation.

• Final training of the best LVQ architecture with

optimum training schedule to achieve best proto-

type configuration W.

– If GMLVQ architecture is selected for final

training: training of both W and X, determina-

tion of the classification correlation matrix

K ¼ XTX.

– Determination of the reject thresholds for each

prototype for self-controlled evidence use based

on the 95% percentile rule.

3. Clustering DN data

• Compression of the subset of 706 US sequences of

March by MNG to achieve 50 representatives by

MNG using 50 prototypes.

• Generating a balanced subset consisting of all

China samples (63), all Europe samples (33), and

USA samples (114) for cluster analysis. The US

samples comprise the 50 representatives from MNG

and all US samples from January and February. The

samples from other regions are not considered for

cluster analysis. We denote this balanced dataset

extracted from DN by DNB.

• Clustering and identification of stable cluster solu-

tions using affinity propagation by means of the

control parameter 1 ¼ 1 k; kð Þ 8k.

4. Classification of the DNB data as well as the full DN

data using the best LVQ classifier with integrated self-

controlled evidence

• Classification of the DNB data by the final LVQ

classifier with reject option using the determined

thresholds to realize the self-controlled evidence

(SCE).

• Evaluation of the data rejected by the SCE rule.
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3 Results

According to the processing workflow, we trained several

LVQ classifier variants for the DG data. By tenfold cross-

validation, we achieved the averaged accuracies depicted

in Table 2 together with their respective standard devia-

tions. According to these results, GMLVQ performs best

using the BoW coding of the sequences together with the

Euclidean mapping distance dX x;wð Þ from (9). Thus, we

finally trained a GMLVQ network for both the prototype

set W containing one prototype per class and the mapping

matrix X using the sequence BoW coding. For this final

network, a classification accuracy of 100% is obtained

while rejecting seven samples for classification according

to the SCE decision. The resulting classification correlation

matrix K ¼ XTX is depicted in S1 Fig. BecauseX 2 R2�n,

it can serve for a data mapping into a two-dimensional

visualization space. Accordingly, all DG data together with

the GMLVQ prototypes are visualized in S2 Fig. An

additional visualization of the learned prototypes is given

in S3 Fig.

The list of rejected sequences is provided in supple-

mentary material S14 GMLVQ Mapping for DN .

The clustering of the DNB dataset suggests cluster

solutions with either 2, 4, or 5 clusters according to the

stability range of the control parameter 1, as shown in S4

Fig. We visualized the four-cluster solution using the t-

SNE as depicted in S5 Fig. The respective cluster centroids

are visualized in S6 Fig.

Applying the trained GMLVQ classifier to the DNB

dataset leads to the classification of 37 data points to class

A, 95 data points to class B, and 2 data points to class C.

According to the SCE decision, 59 data points were

rejected from classification by the learned GMLVQ clas-

sifier. The result is given in S7 Fig using the t-SNE as

visualization scheme. The visualization of the classification

result by means of the X mapping from the GMLVQ

model delivers S8 Fig.

The distribution of the sequence data from the DNB

dataset with respect to the geographic sequence origins

(regions) and the respective collection dates together with

the class assignments is presented in S9 Fig. A respective

visualization of the distribution for the dataset DG is shown

in S10 Fig.

The classification of the full DN dataset assigns 154 data

points to class A, 293 data points to class B, and 20 data

points to class C, whereas 495 data points are rejected

according to the SCE rule. The class assignments are

visualized in S11 Fig.

The predicted virus type or the rejection decision for

each sequence from DN according to the GMLVQ class

assignment or the SCE decision is found in supplementary

material S14 GMLVQ Mapping for DN .

4 Discussion

The classification analysis of the DG data by means of the

machine learning model GMLVQ verifies the class deter-

mination suggested in [23]. Only seven data samples are

not classified accordingly due to the model self-controlled

evidence decision. Thereby, the GMLVQ model shows a

stable performance in learning (Table 2), which underlines

its well-known robustness [60]. Thus, we observe an

overall precise agreement supporting the findings in [23].

This agreement, however, is obtained by alignment-free

sequence comparisons. More precisely, the nucleotide-

based BoW sequence coding delivers a perfect separation

of the given classes for the learned mapping distance

dX x;wð Þ.
Yet, the computational complexity of a single dissimi-

larity calculation for the encoded sequences is only

O 64 � m � NWð Þ with m ¼ 2 being the mapping dimension

of X and NW ¼ jW j is the number of all prototypes in

GLVQ/GMLVQ. The overall BoW sequence coding takes

O l � Nð Þ. Paying attention to the fact that the GLVQ/

GMLVQ training time scales with the number N of data,

we have an overall complexity of O 64 � m � NW � Nð Þ for

model learning based on the coded data. Together with the

time complexity O l � Nð Þ for BoW-coding of all data with

the sequence length l, we finally obtain an overall com-

plexity of O N � ð64 � m � NW þ lÞð Þ which usually is much

lower than OðN4 þ N � l2Þ for alignment-based methods

[18], because NW 
 N and n 
 l is valid.

Table 2 Classification results of

trained LVQ variants for the DG

dataset obtained by tenfold

cross-validation

NV BoW

GLVQ GMLVQ GLVQ GDLVQ GMLVQ

Averaged accuracy 53:1% 56:4% 81:7% 87:7% 97:4%

Standard deviation 	9:8% 	6:3% 	4:4% 	6:2% 	1:5%
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Further, because GMLVQ is an interpretable classifier,

we can draw further conclusions from the trained model:

The resulted classification correlation matrix K depicted in

S1 Fig suggests that particularly the histogram dimensions

27 and 28 are important in correlation with the other

dimensions. These dimensions refer to the frequency of the

triplets ‘‘CGG’’ and ‘‘CGT’’ in the sequences. Moreover,

both dimensions should be negatively correlated for good

class separation. This discrimination is a key feature of

GMLVQ. Although the prototypes look very similar, as

shown in S3 Fig, theX is sensitive to smallest deviations in

the histograms. Yet, we cannot expect greater deviations,

because the sequences differ only in few characters

according to the special mutations [23, 28]. The AP cen-

troids differ slightly more than the GMLVQ prototypes, as

shown in S6 Fig. This can be dedicated to larger overall

scattering of the DNB data.

Further, the GMLVQ prototypes serve as class ‘‘detec-

tors.’’ If the encoded sequences are most similar to them

with respect to the mapping distance, the sequences are

assigned to the respective classes according to the WTA

rule (6). However, in general the prototypes are not iden-

tical with the mean vectors of the class distribution, as

emphasized in [52].

Application of the GMLVQ to the DN and DNB data

from the NCBI offers new insights. First, coloring of the

data in the t-SNE visualization S7 Fig of DNB according to

the obtained class assignments seems to be confusing: The

classes cannot be detected as separate regions in that case.

However, applying the X mapping S8 Fig, the class

structure becomes visible also for this dataset. The reason

for this discrepancy could be that both t-SNE and AP

implicitly reflect data densities in the data space. Class

densities, however, do not have to coincide with the overall

data density. Thus, the X mapping, which is optimized

during GMLVQ training for best classification perfor-

mance, offers the better visualization option and, hence,

disclosures the class distribution more appropriately.

Comparing the class distributions of the sequences with

respect to origins (regions) and collection dates for DNB in

S9 Fig and DG in S10 Fig, both class distributions within

the cells show a similar behavior. The DNB dataset from

NCBI contains only a few samples from Europe, all

occurring from February onward, i.e., no European data

samples from December/January were available. We

observe that class C for the DG data is mainly represented

in January for European samples, which confirms the

findings in [23]. Thus, the small number of class C samples

in the DNB classification may be addressed to this pecu-

liarity in Europe. Further, the GMLVQ, which was trained

by DG data, rejects a large amount of data from DNB,

particularly in March. We suspect an accumulation of

mutations which could explain the scattering. Accordingly,

the GMLVQ is able to detect this behavior by means of the

SCE decision rule.

We observe from the visualization S11 Fig of the clas-

sification for the DN data that the data points rejected for

classification scatter around the dense class regions. Thus,

we can conclude that the nucleotide base mutations in the

viral sequences, which cause the scattering, do not show a

new coherent profile, at least at this time.

5 Conclusion

In this contribution, we investigate the application of

interpretable machine learning methods to identify types of

SARS-CoV-2 virus sequences based on alignment-free

methods for RNA sequence comparison. In particular, we

trained a generalized matrix learning vector quantizer

classifier model (GMLVQ) for a dataset with given virus

type information, which was obtained by phylogenetic tree

analysis [23]. GMLVQ supposes vectorial data represen-

tations and compares vectors in terms of a well-defined

dissimilarity measure. In this application, the GMLVQ

training is based on the Bag-of-Words coded sequences and

yields class specific prototype vectors as well as an opti-

mum class/typus separating dissimilarity measure in the

data space of encoded sequences. Compared to phyloge-

netic trees or multiple sequence alignment, which require

high computational costs due to the involved sequence

alignment process, the GMLVQ approach has lower com-

plexity and allows an easy out-of-training generalization.

By means of the trained GMLVQ, we first verified the

SARS-CoV-2 virus types determined in this first dataset.

Further, considering a classification correlation matrix

delivered by GMLVQ optimization, we are able to identify

features which contribute decisively to a type separation.

Second, we applied the trained GMLVQ to another

dataset obtained from the NCBI database without virus

type information. Using the self-controlled evidence

property of the GMLVQ, we are able to classify these

sequences to the previously identified types, avoiding the

application of the model to inconsistent data compared to

the training data. Further, the rejected data allow specula-

tions about new virus types with respect to nucleotide base

mutations in the viral sequences.

Yet, an appropriate training and data coding for suc-

cessful GMLVQ application require a careful and precise

data handling as well as model training regime, i.e.,

respective expert knowledge.

Future work will consider the replacement of the WTA

rule (6) by a fuzzy variant (winner ranking) resulting in a

probabilistic class/type assignment instead of the crisp rule

(5). This probabilistic view could be further integrated into

the SCE-based rejection decision to differentiate between
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rejected sequences regarding their consistence to the

GMLVQ version in use. Thus, the user can decide whether

to retrain the model adding a new class or continue with the

current configuration.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

021-06018-2.
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