
ORIGINAL ARTICLE

Deep neural networks for quantum circuit mapping

Giovanni Acampora1,2 • Roberto Schiattarella1

Received: 7 January 2021 / Accepted: 31 March 2021 / Published online: 9 May 2021
� The Author(s) 2021

Abstract
Quantum computers have become reality thanks to the effort of some majors in developing innovative technologies that

enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum

algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence.

However, there are still some technological limitations that do not allow a correct design of quantum algorithms, com-

promising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum

algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are

satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be

efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this

paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new

scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As

shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on

5-qubits IBM Q processors, maintaining suitable mapping accuracy.

Keywords Machine learning for quantum computing � Quantum circuit mapping � Quantum computing

1 Introduction

Quantum computing aims to solve intractable computa-

tional problems by leveraging quantum mechanics princi-

ples like superposition and entanglement to manipulate

information in a different and potentially more efficient

way than traditional electronic computers. Indeed, the joint

use of quantum superposition and entanglement enables a

massive parallelism in computation resulting in the design

of quantum algorithms capable of achieving performance

never seen on classical computers. Some noteworthy

examples are Shor’s [1] and Grover’s algorithms [2].

Shor’s algorithm is a polynomial-time quantum computer

algorithm for integer factorization; indeed, its computa-

tional complexity is Oððlog nÞ2ðlog log nÞðlog log log nÞÞ,
where n is the number to factorize, whereas the computa-

tional complexity of the best classical algorithm for integer

factorization is Oðexpðcðln nÞ
1
3ðln ln nÞ

2
3ÞÞ, where c is a

constant. Similarly, Grover’s algorithm is a quantum

algorithm for searching an unsorted database with N entries

in Oð
ffiffiffiffi

N
p

Þ time and using OðlogNÞ storage space, whereas
the complexity of the best classical algorithm that performs

the same operation in O(N) steps. Recently, other quantum

algorithms have been designed in different application

domains, from chemistry [3, 4] to artificial intelligence

[5–11]. However, even though theoretical algorithms have

already been designed, physical realizations of quantum

computers able to run these algorithms have been consid-

ered as a kind of utopia for a long time. Nevertheless, this

changed in recent years in which quantum computers more

and more evolved from an academic idea to an upcoming

reality thanks to the effort of main majors acting in infor-

mation and communication technology in developing so-

called Noise Intermediate Scale Quantum (NISQ) devices,

& Giovanni Acampora

giovanni.acampora@unina.it; giovanni.acampora@na.infn.it

Roberto Schiattarella

roberto.schiattarella@unina.it

1 Department of Physics ‘‘Ettore Pancini’’, University of

Naples Federico II, Complesso di Monte Sant’Angelo, Via

Cintia 21, 80126 Napoli, Italy

2 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,

80126 Napoli, Italy

123

Neural Computing and Applications (2021) 33:13723–13743
https://doi.org/10.1007/s00521-021-06009-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4082-5616
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06009-3&domain=pdf
https://doi.org/10.1007/s00521-021-06009-3

i.e. quantum computers with 50-100 qubits may be able to

perform tasks which surpass the capabilities of today’s

classical digital computers [12]. In this scenario, compa-

nies such as IBM1 and Rigetti2 are providing access to their

quantum computers to a broad audience of researchers and

practitioners by means of cloud computing technologies.

However, although both advanced techniques for designing

quantum algorithms and technologies capable of executing

such algorithms are available, there are still some techno-

logical limitations, which slow down the race to quantum

supremacy and advantage. Specifically, there is a signifi-

cant gap between the quantum resources required to exe-

cute quantum algorithms and the resources available in

current NISQ devices. In particular, current quantum pro-

cessors are characterized by a weakly interconnected cou-

pling map, which limits the interactions among different

qubits. As a consequence, a quantum algorithm needs to be

adapted to a specific quantum processor’s coupling map in

order to be correctly and efficiently run. This adaptation

requires to add a set of SWAP quantum gates to the orig-

inal quantum algorithm, increasing the quantum error rate

and potentially compromising calculations. By virtue of

this, there is a strong emergence for efficient techniques of

circuit mapping able to minimize the number of SWAP

gates useful to run the quantum algorithm in a correct way.

This paper faces this key challenge in quantum technolo-

gies by introducing Neural Layout, the very first approach

for quantum circuit mapping based on machine learning,

which uses deep neural networks to improve the perfor-

mance of current methods based on mathematical solvers

and heuristic cost functions. Indeed, as shown in Sect. 5,

Neural Layout is able to speed up state-of-the-art circuit

mapping algorithms used by IBM Qiskit3 Transpiler4 when

it is used to perform circuit mapping operations on 5-qubits

IBM quantum processors. Moreover, the experiments show

that Neural Layout outperforms other well-known machine

learning techniques in carrying out quantum circuit map-

ping. The obtained results show that approaches based on

deep neural networks can effectively support the design of

quantum devices and open the way towards a completely

new research area that blends the foundations of machine

learning with those of quantum computing.

The paper is structured as described hereafter. Section 2

presents a collection of approaches currently used to solve

quantum circuit mapping, and it provides an overview

about the application of machine learning has to the design

of classical electronics circuits. Section 3 describes the

basic concepts of quantum computing and a formal defi-

nition of the mapping quantum circuits problem. Section 4

shows the design of Neural Layout and its capabilities in

efficiently performing quantum circuit mapping. In Sect. 5,

the performance of Neural Layout is assessed and com-

pared to the performance obtained by other machine

learning techniques, and to the performance yielded by

state-of-the-art circuit mapping algorithms used in IBM

Qiskit. Section 6 provides some insights about future

research directions mainly aimed at improving the perfor-

mance of the proposed approach when applied to perform

quantum circuit mapping on larger processors previously

introduced.

2 Related works

Limiting the error during the current quantum computation

is one of the biggest challenges researchers are facing.

Efficiently mapping a quantum circuit to a processor is a

fundamental step in this direction. Previous approaches to

this problem can be classified into two classes. One is to

formulate the circuit mapping problem into an equivalent

mathematical problem and then apply well-known solvers

[13–23]. However, these methods lack scalability as the

number of qubits in the circuits increases, suffering from

very long run time. Thus, even though optimal solutions

computed by these approaches are theoretically useful, they

are impractical to be actually used in real scenarios. For

this reason, some research proposes a second set of

approaches, which are based on heuristic search for sub-

optimal solutions [24–32]. However, most of above

methods were developed for ideal 1D/2D lattice model and

they are not usable with NISQ devices, which are charac-

terized by more complicated coupling maps. In this sce-

nario, a quantum compiler used in IBM quantum

computers, named IBM Transpiler, uses two different, not

trivial, heuristic approaches to addressing circuit mapping5:

Dense Layout6 and NoiseAdaptiveLayout [34]. DenseLay-

out carries out a breadth first search starting from each

qubit belonging to the processor, so as to compute a col-

lection of connected subsets of qubits. Successively, this

approach selects the subset characterized by the highest

connectivity and low noise. Finally, the selected subset is

given in input to the reverse Cuthill–Mckee algorithm to

order the qubits in the selected set in ascending order of

degree of connectivity. NoiseAdaptiveLayout leverages a

qubit mapping techniques that uses the calibration

1 https://quantum-computing.ibm.com.
2 https://qcs.rigetti.com/.
3 In this work, the version of Qiskit meta-package used is the 0.19.6.
4 https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.

html.

5 At the time of this research, the transpiler did not yet provide the

possibility of using SABRE qubit placement algorithm presented in

[33].
6 DenseLayout.

13724 Neural Computing and Applications (2021) 33:13723–13743

123

https://quantum-computing.ibm.com
https://qcs.rigetti.com
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.DenseLayout.html

information from the backend devices and evaluates sev-

eral optimal and heuristic mappings. To the best of our

knowledge, there are no previous works about the possi-

bility to use artificial intelligence (AI) and machine

learning (ML) to address the quantum circuit mapping

problem as proposed in this manuscript.

Although quantum technologies are very recent and

machine learning has never been used to support the

development of these technologies, there is a strong sci-

entific production where machine learning has been widely

used in supporting design, simulation, and optimization of

classical circuits, as reported in [35]. Some examples of

recent and significant application of machine learning

techniques applied to circuit design are shown hereafter.

The research presented in [36] proposes a two-layer evo-

lutionary scheme based on genetic programming (GP) and

neural network (NN), which uses a divide-and-conquer

approach to design analog circuits by especially focusing

on how to select component values and topology sizes for a

given circuit topology. Several researches, instead, focus

their attention on developing electronic design automation

(EDA) techniques using machine learning [37, 38]. Fur-

thermore, NNs have been used in applications ranging from

circuits optimization [39], replacing empirical modelling

solutions or numerical modelling methods limited by their

computationally expansive behaviour, to resource opti-

mization for circuit simulation [40] or to circuit partition-

ing, as shown in [41], where a neural network model was

proposed for circuit bipartitioning. In particular, in this

research the massive parallelism of a NN has been suc-

cessfully exploited to reduce the external wiring between

the partitions and to balance the partitions of circuit. In

[42–46], NNs were also applied to develop fault-diagnostic

system for analog electronic circuits.

NNs are not the only machine learning algorithms

applied to analog and digital circuits design and opti-

mization. The research in [47] offers a review on different

methods of Machine Learning such as K-nearest neighbour

(KNN) Logistic regression (LR) or Support vector machi-

nes(SVM) and their usage in analog circuits. In particular,

in [48] SVM and LR are compared to NN for the task of

automated performance-driven placement of analog inte-

grated circuit.

All above studies prove that machine learning algo-

rithms are particularly suitable to address issues in the

design, simulation and optimization of classical circuits by

providing several benefits both in terms of accuracy of

solutions and computational time. These studies were the

inspiration for using machine learning to support the design

of quantum technologies by efficiently carrying out a

critical task such as the quantum circuit mapping, so as to

prove that aforementioned benefits can be used to address

the limits previously highlighted by current circuit map-

ping approaches.

3 Basic concepts: quantum computing,
quantum circuit mapping, and state-of-
the-art methodologies

This section introduces the basic concepts of quantum

computing and the details of the problem to be solved,

known as quantum circuit mapping. Moreover, some

details about current techniques for quantum circuit map-

ping used in state-of-the-art software tools for quantum

computing, such as IBM Qiskit, are provided.

3.1 Quantum computing

Quantum computing is an alternative computational para-

digm that uses quantum mechanics effects such as super-

position and entanglement to introduce an intrinsic and

massive parallelism in computation so as to enable the

design of quantum algorithms, which could be more effi-

cient than their classical counterparts. This paradigm uses

the qubit as basic unit to store and manage information.

Informally speaking, while a classical binary digit (bit) can

be in a classical state either 0 or 1, a qubit can be in a

quantum state that is a quantum superposition of 0 and 1,

before being measured. In a sense, before performing a

quantum measurement, a qubit may have simultaneously

the values 0 and 1 and, only when it is measured, it

‘‘collapses’’ to one of these two values, corresponding to

classical bits. When a qubit is in a superposition of states, it

can be said that it has an amplitude associated with each

state. Two key aspects are related to the concept of

amplitude, two knobs to adjust the configuration of a

qubit’s superposition:

– The magnitude associated with each basic state of a

qubit (0 or 1), which is related to the probability that a

qubit will collapse to the state 0 or 1 after a quantum

measurement;

– The relative phase between the different states in the

qubit’s superposition determines the degree to which

different computational paths interfere constructively or

destructively. Note that though the probability to

measure a certain state in the superposition is related

only to the magnitude associated with it, the relative

phase takes a key role in several quantum algorithms

such as amplitude amplification, quantum Fourier

transform or phase estimation in modelling desired

magnitude distributions and enabling the design of

efficient quantum algorithms in different applications

domains.

Neural Computing and Applications (2021) 33:13723–13743 13725

123

The magnitude and relative phase are values available for

being exploited when computing, and it is worth to think of

them as being encoded in a single qubit.

Like classical computation, quantum computing uses

logic gates (quantum gates) to change the state of qubits

and transform input information into a desired output.

These quantum gates are reversible. This means that, given

an output, the corresponding input can be retrieved. Some

examples of quantum gates are listed in Table 1.

As in classical computation where single bits can be

aggregated together to form classical register, one or more

qubits can be aggregated together to form quantum regis-

ters. A classical register can contain any arbitrary number

of bits, say n. A quantum register can hold any superpo-

sition of n-qubit quantum states. Therefore, while an n-bit

classical register can embody any one of 2n possible

numbers, it can store just one at a time. An n-qubit register,

on the other hand, can store any combination of 2n num-

bers. Moreover, some of the qubits belonging to a single

register or multiple registers can be entangled among them;

the entanglement is a non-local property of two or more

qubits that allows a set of qubits to express higher corre-

lation than is possible in classical systems.

Formally speaking, a qubit is represented by a unit

vector, namely jwi, of a two-dimensional Hilbert space:

jwi ¼ aj0i þ bj1i ð1Þ

where a; b 2 C, jaj2 þ jbj2 ¼ 1, and j0i and j1i are the

basis states of the Hilbert space:

j0i ¼
1

0

� �

j1i ¼
0

1

� �

ð2Þ

The value jaj2 is to be interpreted as the probability that,

after measuring the qubit, it will be found in state j0i,
whereas jbj2 is to be interpreted as the probability that,

after measuring the qubit, it will be found in state j1i. The
notation adopted to represent a qubit (j�i) is named ket

notation, and it is used in quantum mechanics to model

quantum state vectors.

There is an alternative representation of a qubit enabling

its visualization in a three-dimensional reference system.

This representation is named Bloch sphere7, and it uses the

following representation of a qubit to work, derived from

the polar form of complex numbers [49]:

cos
h
2

� �

j0i þ ei/ sin
h
2

� �

j1i ð3Þ

By using this representation, only two real numbers,

namely h and /, are necessary to identify a qubit, and

consequently it can be represented as an arrow from the

origin to the surface of a three-dimensional sphere of R3 of

radius 1, as shown in Fig. 1. According to the general

notation presented in (1), h refers to the magnitude asso-

ciated with each basis state and / is the relative phase

between them.

The evolution of a closed quantum system is described

by special linear operators, unitary operators8 U which

operate on qubits as follows:

Ujwi ¼ U½aj0i þ bj1i� ¼ aUj0i þ bUj1i ð4Þ

Therefore, for each of the above quantum gates, there will

be a unitary operator capable of formalizing its behaviour.

In general, the unit operators perform rotations of the

vectors corresponding to the quantum states in a two-di-

mensional Hilbert space. As an example, let us consider the

Pauli gate acting on a single qubit. It is the quantum

equivalent of the NOT gate for classical computers and, for

this reason, it is sometimes called bit-flip. The unitary

matrix associated with the Pauli-X gate is the one reported

in Table 1. Let us suppose to have a qubit in a state

jwi ¼ 1 � j0i þ 0 � j1i, where a ¼ 1 and b ¼ 0, jaj2 ¼ 1 and

jbj2 ¼ 0, and compute jw0i ¼ Xjwi (see Fig. 2):

jw0i ¼
0 1

1 0

� �

1

0

� �

¼
0

1

� �

ð5Þ

In addition to the X gate, other quantum single-qubit

gates can be used to change the state of a qubit. Among

these, the Ry and Rz gates are of particular interest, because

they allow a simple and direct modification of the afore-

mentioned magnitude and phase knobs. As an example, the

Ry gate performs a single-qubit rotation through angle h
radians around the y-axis. The Ry rotation mainly acts on

magnitude knob of qubit. Thus, this gate modifies the

probability that a qubit in a state jwi will collapse to 1 or 0,

after measuring it.

As useful as single qubits can be, they are much more

powerful in groups. Indeed, when a quantum device has

access to more than one qubit, it can make use of another

powerful quantum phenomenon, entanglement. Formally

speaking, a size n quantum register is a quantum system

comprising n individual qubits, where each qubit qi with

i 2 f0; . . .; n � 1g is represented by a unit vector of two-

dimensional Hilbert space Hi with i 2 f0; . . .; n � 1g.
Then, the resulting quantum register is represented by a

unit vector of n-dimensional Hilbert space:

H ¼ Hn�1 �Hn�2 � � � � � H0

where the symbol � computes the tensor product of two

vector spaces. Quantum registers evolve by using quantum

7 Named after the German physicist Felix Bloch.

8 A linear operator is said to be unitary if UUy ¼ UyU ¼ I, where Uy

denotes the adjoint of the operator U and I the identity matrix.

13726 Neural Computing and Applications (2021) 33:13723–13743

123

gates acting on two or more qubits. An important example

of a quantum gate acting on two qubits is the Controlled

NOT (CNOT). Precisely, the CNOT gate operates on two

qubits, a control qubit and a target qubit, and it works as

follows: apply the logical quantum NOT operation to the

target qubit, but only if the control qubit has the value 1.

The matrix representation for the unitary operator related to

the CNOT gate is shown in Table 1. The role of CNOT gate

is particularly relevant when the control qubit is in super-

position state because, in this case, it enables the quantum

entanglement and for this reason it is called entangling

gate. Together with superposition, entanglement is another

quantum property useful for improving the performance of

computing devices. Quantum entanglement often is seen as

a key ingredient if quantum computers are to demonstrate

an advantage over classical computers. In particular, if a

quantum system is not highly entangled, it can often be

simulated efficiently on a classical computer. So far, the

simplest form of entanglement, Bell states, enable tasks

such as quantum cryptography, super-dense coding, tele-

portation, and entanglement swapping [50].

All the above gates enable the design of quantum

algorithms by means of circuits composed of collection

gates at the same way classical computation uses gates

such as AND, OR, and NOT to develop algorithms on

classical computers. An example of quantum circuit is in

Fig. 8. In particular, classical algorithms can be designed

by using a subset of classical gates, such as NAND and

Table 1 Examples of quantum gates

Symbol Name Description Matrix

Pauli X (also

NOT)

Logical bitwise NOT 0 1

1 0

� �

Hadamard H The Hadamard gate is a single-qubit operation creating an equal superposition of

the two basis states, typically j0i and j1i
1
ffiffi

2
p 1 1

1 � 1

� �

Rotation Ry The Ry gate is one of the Rotation operators. It is used to modify the magnitude

knob of qubits.
cosðh

2
Þ � sinðh

2
Þ

sinðh
2
Þ cosðh

2
Þ

0

B

@

1

C

A

Rotation Rz The Rz performs a rotation of / around the Z-axis direction 1 0

0 ei/

� �

S Gate1 This is an Rz-gate with / ¼ p=2 . It does a quarter-turn around the Bloch sphere. 1 0

0 eip
2

� �

CNOT Controlled NOT: if (c) then NOT(t). This gate is used to enable the quantum

entanglement between two qubits
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

B

B

@

1

C

C

A

SWAP The SWAP gate performs the swap of two qubit states q0 and q1 1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 1

0

B

B

@

1

C

C

A

Toffoli

CCNOT

The Toffoli gate: if (c1 AND c2) then NOT(t) 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

CSWAP Conditional SWAP: if (c) then SWAP(t1,t2) 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

1 It is important to note that unlike every gate in the table, the S-gate is not its own inverse. As a result, the Sy-gate is a different gate that

performs a Rz-rotation with / ¼ �p=2

Neural Computing and Applications (2021) 33:13723–13743 13727

123

FANOUT, capable of reproducing the behaviour of any

function of the form: f : f0; 1gn ! f0; 1gm
. At the same

way, a fundamental theoretical result in quantum comput-

ing proves that Ry;Rz;CNOT
� �

is a universal gate set [51].

Any quantum gate can be unrolled in terms of this set of

gates. As an example, the SWAP decomposition in terms

of CX is the following [52]:

ð6Þ

To conclude this brief introduction to the basic elements of

quantum computation, it is important to highlight that all

the above single-qubit quantum gates can by view as a

special case most general universal gates. In this context,

the U3 gate is the most general of all single-qubit quantum

gates because it is able to model the behaviour of all the

aforementioned single-qubit gates by means of three dif-

ferent parameters, h, /, and k:

U3ðh;/; kÞ ¼
cos

h
2

� �

� eik sin
h
2

� �

ei/ sin
h
2

� �

eikþi/ cos
h
2

� �

0

B

B

B

@

1

C

C

C

A

ð7Þ

Quantum software such as IBM Qiskit provides also U2

and U1-gates, which are specific cases of the U3 gate in

which h ¼ p
2
, and h ¼ / ¼ 0, respectively:

U2 ¼U3

p
2
;/; k

	

¼ 1
ffiffiffi

2
p 1 � eik

ei/ eikþi/

 !

ð8Þ

U1 ¼U3ð0; 0; kÞ ¼
1 0

0 eik

� �

ð9Þ

You will notice that the U1-gate is equivalent to the Rz-

gate.

Even though, every gate in this paper could be specified

as U3ðh;/; kÞ, it is unusual to see U3 in a circuit diagram,

possibly due to the loss of semantics induced by this gate.

However, its role is crucial for enabling an efficient exe-

cution on quantum circuits on real quantum hardware.

Indeed, in order to run a specific quantum circuit on a real

IBM quantum hardware, it needs to be compiled and,

during this step, all single-qubit operations are converted to

an appropriate set of U1, U2 and U3 gates. For this reason,

these gates are called physical gates. Because physical

gates are able to model the behaviour of single-qubit gates,

they do not represent a universal gate set, but, however, the

union of physical gate and entangling gate, such as CNOT,

represents a universal gate set, where sequences of the

entangling gates will be used to model the behaviour of

every other multi-qubit gate. However, even though an

universal gate set enables the execution of any quantum

circuit on a given processor by using a quantum compiler,

there are some technological challenges to face in order to

make a compiler able to convert a circuit and efficiently

run it. One of the most important challenges to face in this

scenario is the circuit mapping problem.

3.2 Decoherence times and error rates

In the previous section, an overview about quantum com-

puting was provided. However, although in this years

quantum devices are growing fast, some hardware limita-

tions still affect the performance they can achieve. One of

them is surely related to the short decoherence times of

current systems. Quantum decoherence can be viewed as

the loss of information from a system into the surrounding

environment. Formally speaking, a quantum system is said

to be coherent as long as exists a definite phase relation

between different states. However, the interaction of a

quantum device with the surrounding environment causes

|ψ〉

φ

θ

|ψ〉

Fig. 1 Bloch sphere

|ψ〉 |ψ′〉 = X |ψ〉

Fig. 2 The X gate applied to a qubit in state j0i: Xj0i ¼ j1i

13728 Neural Computing and Applications (2021) 33:13723–13743

123

the first to pass from a coherent state to a statistical mixture

of states, which no longer contains the quantum informa-

tion encoded in its states. This loss of information is mainly

due to two types of decoherences: transverse relaxation and

longitudinal relaxation. The first one is caused by the loss

of coherence between the relative phases of the amplitudes

of a quantum state. The resulting decoherence time is

indicated by T2. The second one is due to population decay:

excited states tend to decay spontaneously at the ground

state in a certain typical time T1. Considering this, to

ensure a proper execution of a quantum algorithm it has to

be executed in a times that is shorter than the decoherence

times of the system. In recent years, incredible efforts have

been done in this direction. Currently, execution times for

single qubit gates are on the order of nanoseconds, while

typical decoherence times vary from tens to hundreds of

microseconds. This makes it possible to manipulate qubits

using quantum gates.

A further limitation, indeed, is related to the high error

rates in the current quantum devices. The main issue is due

to the high error rate of the CNOTs and readout operations.

Each CNOT gate has a typical error rate order 10�2, while

single-qubit gates have error rate order 10�4. The relia-

bility of a quantum circuit is therefore, mainly influenced

by the number of CNOTs in it. Similarly, also the mea-

surement operation has an error rate not negligible, order

10�2.

For the IBM devices, decoherence times and error rates

are daily measured and provided to users. Lastly, in the

current quantum hardware the qubits are not entirely con-

nected each other, but a quantum processor is characterized

by a coupling map which limits the interactions of qubits

by means of CNOT gates. In the next section, this limita-

tion will be widely discussed, highlighting the importance

of optimal mappings of quantum circuits onto quantum

processors.

3.3 Circuit mapping on quantum processors

Currently, quantum computing is becoming a popular

paradigm in computation thanks to the cloud-based avail-

ability of so-called Noisy Intermediate-Scale Quantum

(NISQ) devices, i.e. quantum processors equipped with a

low number (typically 50–100) of qubits not fully tolerant

to quantum noise, which enable researchers and practi-

tioners in developing quantum algorithms [12]. Besides the

issues related to their size and noise, another critical

problem that characterizes this kind of technology is the

low connectivity of their coupling map, for which each

qubit is connected to a limited number of other qubits. As a

consequence, two-qubit gates, such as a CNOT, cannot be

placed in a circuit if the target and control qubits are not

physically connected in the processor coupling map.

As an example, Fig. 3 shows the coupling map of an

IBM Q processor named Burlington composed of n ¼ 5

qubits. The IBM Q Burlington coupling map defines a set

fð0; 1Þ; ð1; 0Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þ; ð3; 4Þ; ð4; 3Þg con-

taining the pairs of qubits that can be used as target and

control in a CNOT gate; thus, on this processor, only 8 out

of 20 (n2 � n) pairs can be used to position a CNOT in a

circuit, severely limiting the possibilities offered by

quantum devices. However, current quantum technologies

use the so-called quantum compilers that are able to solve

the above issue. These compilers use a sequence of SWAP

operations (Table 1) between adjacent qubits so as to

enable the computation of a CNOT gate between two non-

adjacent qubits. However, this approach could very nega-

tively affect the execution of a quantum circuit for two

fundamental reasons:

– It increases the circuit depth and, consequently, it

increases the probability of a decoherence error, with

the consequent loss of the information that the circuit

carries.

– Each CNOT gate has a typical error rate order 10�2.

Thus, the execution of a single SWAP operation

involves the execution of three gates with an high

error rate, negatively affecting the computation of the

whole circuit.

As a consequence, there is a strong emergence for quantum

compilers able to identify an optimal initial mapping

among circuit qubits and physical qubits, so as to minimize

the number of SWAP operations required to execute the

compiled circuit. This optimization problem is known as

circuit mapping, and it is formalized as described hereafter.

Let Cn ¼ fcigi2N be the set of all quantum circuits that can

be designed with n qubits belonging to the set

Qc ¼ qc
0; qc

1; . . .; qc
n

� �

, and let P be a NISQ processor

composed of m� n qubits belonging to the set Qp ¼
q0; q1; . . .; qmf g and characterized by a coupling map

Mp ¼ fðqi; qjÞ j qi; qj 2 Qp and i 6¼ jg, then a collection of

initial quantum circuit mappings consists in a set of func-

tions FM ¼ ffk : Cn ! }ðQC � QPÞgk2N where each fk

relates the qubits of each circuit in Cn to the qubits of the

processor P; the solution of the circuit mapping problem is

a function f � 2 FM able to minimize the number of SWAP

operations to add to original circuits and enable its efficient

execution on the processor P. In Fig.9 4, there is a graph-

ical representation of a circuit mapping function �f 2 FM ,

which maps a circuit �c 2 C designed with n ¼ 5 qubits on a

processor P composed of m ¼ 20 qubits and a coupling

9 https://qiskit.org/documentation/apidoc/transpiler.html.

Neural Computing and Applications (2021) 33:13723–13743 13729

123

https://qiskit.org/documentation/apidoc/transpiler.html

map MP shown on the right side of the figure. In particular,
�f ð�cÞ ¼ fðqC

0 ; q1Þ; ðqC
1 ; q0Þ; ðqC

2 ; q5Þ; ðqC
3 ; q6Þ; ðqC

4 ; q7Þg.
The circuit mapping problem has been proved to be NP-

complete in [53], and, as a consequence, the computation

of its exact solution could be not suitable to deal with

future generation of quantum processors characterized by

thousands or millions of qubits10. Thus, there is a strong

need of approximate algorithms capable of efficiently

computing sub-optimal solutions for this problem and pave

the way towards the next generation of compilers for

quantum computers. In this paper, this challenge has been

faced by introducing the first approach based on machine

learning to efficiently address the circuit mapping problem

on real IBM Q processors.

4 Neural layout: a deep neural network
for quantum circuit mapping

This section introduces Neural Layout, a machine learning-

based approach aimed at solving above circuit mapping

problem. In particular, Neural Layout acts in three

sequential steps: (1) initially, it models the quantum circuit

mapping problem as a conventional classification task, (2)

successively it trains an appropriate deep neural network

aimed at efficiently addressing the classification task for

circuit mapping and, finally (3) it uses a refinement step to

make neural network predictions compliant with some

logical constraints that characterize quantum processors.

4.1 Modelling quantum circuit mapping
as a classification task

In general, a classification problem can be defined as the

task of estimating a label y from a K-dimensional input

vector x, where x 2 X 	 RK and

y 2 Y ¼ fL1;L2; . . .;LQg. This task is accomplished by

using a classification rule implemented by a function g :
X ! Y able to predict the label of new patterns, where g is

learnt and adjusted by using a training set composed of N

points, represented by a set

D ¼ fðxi; yiÞ;with i ¼ 1; . . .;Ng. In order to model the

quantum circuit mapping problem by a classification task,

let us to consider a quantum circuit c 2 Ck composed of k

qubits belonging to the set QC ¼ fqC
1 ; qC

2 ; . . .; qC
k g, and a

quantum processor P composed of n qubits belonging to

the set QP ¼ fq1; q2; . . .; qng and characterized by a

specific coupling map MP. Then, a classification task for

quantum circuit mapping is implemented by a function /
that uses an input vector x 2 X 	 RK , containing a set of

features characterizing both the circuit c and the processor

P on which running c, to estimate an array y composed of n

elements, where each elements belongs to the mapping

label set Y ¼ f�1g [f1; . . .; kg
 N. The function / is

learned and adjusted by using a training set

D/ ¼ fðxi; yiÞ;with i ¼ 1; . . .;Ng, where xi 2 X is a fea-

ture set and yi 2 Yn is an array of mapping labels repre-

senting an ideal mapping from the circuit c to the processor

P. Reasoning in this way, the function / will be able to

provide mapping capabilities similar to the best algorithms

currently used in quantum circuit mapping, but with a

lower computational complexity, as shown in the experi-

mental results section. The aforementioned input vector x

is composed of a set of features characterizing both the

circuit c and the processor P. In particular, with respect to

the circuit c, the following information has been

considered:

– an integer value representing the number of qubits

composing the circuit;

– an integer value representing the total number of CNOT

gates in the circuit c;

– a matrix of integer values where the item [i, j] contains

the number of CNOT gates between the control qubits

qC
i and the target qubit qC

j of the circuit c. To make the

network work with any circuit width less than or equal

to the number of processor qubits, this matrix of

integers is set of size n � n.

At the same time, with respect to the processor P, the

following information has been taken into account:

– an array of real values where each value represents the

error rate of a CNOT using qi as control qubit and qj as

target qubit for each ðqi; qjÞ 2 MP;

– an array of real values where each value represents the

execution time of a CNOT using qi as control qubit and

qj as target qubit for each ðqi; qjÞ 2 MP;

Fig. 3 IBM Q Burlington coupling map

10 IBM Quantum Roadmap 2023.

13730 Neural Computing and Applications (2021) 33:13723–13743

123

– an array of real values where each value represents the

transverse relaxation time (T2) characterizing a qubit qi

of the processor P

– an array of real values where each value represents the

longitudinal relaxation time (T1) characterizing a qubit

qi of the processor P

– an array of real values where each value represents the

readout error characterizing a qubit qi of the processor

P.

A schematic view of the features related to the quantum

circuit mapping problem is provided in Table 2. The output

array y ¼ ½y1; y2; . . .; yk� is composed of n items where each

yi 6¼ �1 represents the mapping between the qubits qC
yi
2 C

and qi 2 P, whereas yi ¼ �1 means that the processor

qubit qi must remain un-mapped. In other words, the col-

lection fyg of all arrays generated by the above function /
by applying it to all circuits c 2 Ck encodes a function

f 0 : C ! }ðQC � QPÞ 2 FM , and our approach uses the

dataset D/ to attempt to learn a function / capable of

approximating the aforementioned function f � in a proper

way.

In order to provide a further clarification about the

representation of the circuit mapping problem by a classi-

fication task, a practical example is proposed hereafter. Let

us to consider a quantum circuit c made up of 5 qubits QC =

fqC
0 ; qC

1 ; . . .; qC
4 g and a quantum processor P composed of 5

qubits QP ¼ fq0; q1; . . .; q4g, and let us suppose that the

above classification function / computes an array y ¼

½3; 2; 4; 0; 1� starting from the set of features modelling the

circuit c and the processor P. Then, the array y ¼
½3; 2; 4; 0; 1� corresponds to the following mapping between

circuit and processor qubits:

qC
3 ! q0;

qC
2 ! q1;

qC
4 ! q2;

qC
0 ! q3;

qC
1 ! q4:

ð10Þ

Once the circuit mapping problem has been defined as a

classification task, it is necessary to design an appropriate

algorithm based on a deep neural network to learn the

function /.

4.2 Designing a deep neural network for circuit
mapping

The identification of the aforementioned function / is

based on the design of Neural Layout, a deep neural net-

work extended with a constraint satisfaction method. This

network is composed of an input layer, a collection of

hidden layers, and an output layer. The input layer has been

designed by taking into account the size of the vector x

introduced in the definition of circuit mapping as classifi-

cation task, and containing the features that characterize

both a quantum circuit and a quantum processor on which

Fig. 4 Graphical representation of a circuit mapping function �f 2 FM

Neural Computing and Applications (2021) 33:13723–13743 13731

123

running the circuit. Let us suppose to have a circuit c

composed of k qubits, P a quantum processor composed of

m qubits, Mp the coupling map related to P, and l the

cardinality of Mp, then the input layer of the proposed

network is composed of 2þ ðm2 � mÞ þ 3 � m þ 4 � l

nodes. The first term of this formula is related to two

features representing the number of qubits and the number

of CNOT gates belonging to the circuit c; the term ðm2 �
mÞ refers to the maximum number of CNOT gates that can

be placed between each pair of qubits belonging to a

generic circuit computable by the processor P; the term

3 � m describes the number of features related to the qubits

calibration data of the processor P, namely the decoherence

times T1, T2, and the readout error; finally, the term 4 � l

refers to the error rate and execution time of the CNOT

gate for each pair of qubits connected in the coupling map

Mp. The output layer of the proposed network has been

designed to model the vector y introduced in the definition

of circuit mapping as classification task, and containing the

set of labels used to map the qubits related to the quantum

circuit to the qubits related to quantum processor where the

circuit will be run. In particular, the output layer is orga-

nized in a collection of m slots, where each slot outputs a

single item of the vector y.

More properly, each slot can be considered as a complex

neural structure composed of different hidden layers and

output layer embodying m þ 1 neurons and equipped with

a softmax activation function [54]. Formally speaking, the

output layer of the ith slot, named sloti, is an array

PðyiÞ ¼ pi
0; pi

1; . . .; pi
m�1; pi

�1

� �

, where pi
j corresponds to a

neuron representing the probability that the ith item of the

array y equals to j, and
Pm�1

j¼�1 pi
j ¼ 1, due to the use of the

softmax activation function. By virtue of this modelling

scheme, the output vector y can be obtained by selecting

the arg max of each PðyiÞ value related to each sloti with

i ¼ 0; 1; . . .;m, as shown in the Eq. (11).

y ¼ arg maxðPðy0ÞÞ; arg maxðPðy1ÞÞ; . . .; arg maxðPðymÞÞ½ �
ð11Þ

However, this approach can compute not feasible solutions

for the circuit mapping problem, because it is not certain

that arg maxðPðyiÞÞ 6¼ arg maxðPðyjÞÞ 8i; j, and i 6¼ j.

When that happens, it would lead to map the same circuit

qubit qC onto two different processor qubits qi and qj (see

the mapping in equation (12) in the case study for a

practical demonstration of this issue). In order to address

this feasibility issue, our approach introduces and uses a

repair operator to move the set of unfeasible solutions

generated by the above deep neural network to a feasibility

area. This repair operator, named N, can be summarized as

follows:

(1) Let F ¼ fPðyiÞgm�1
i¼0 be the set of vectors computed

by the different slots of the DNN;

(2) Let �y ¼ ½ �y0; �y1; . . .; �ym� be a feasible output vector

composed of m items and initially initialized as

�y ¼ ½�1;�1; . . .;�1�;
(3) Let F0 ¼ fP0ðyiÞgm�1

i¼0 be the set of vectors com-

posed by the first k components of each vector in

F ;

(4) Let j ¼ 1 be an iteration variable;

(5) Let yjt be the j-th maximum among all probability

values stored in the vectors P0ðyiÞ, with i ¼
0; . . .;m � 1; belonging to the set F0, located in

the t-th position of the vector P0ðyjÞ;
(6) If the value t is not present in �y, set the value of the

j-th item of the vector �y to t: �yj ¼ t. Go to the step

8);

Table 2 Summary table of the features used by the proposed DNN approach for circuit mapping

Feature name Feature description Dimension

Quantum circuit features

Nqubits Number of qubits in C 1

NCNOT Number of CNOTs in C 1

Ni;j
CNOT

Total number of CNOT gates between each pair of qubits qi and qj in C. 20

Quantum processor features

CNOTER CNOT error rate between each pair of qubits connected in the coupling map 8

CNOTET CNOT execution time between each pair of qubits connected in the coupling map 8

T2 Transverse relaxation time for each processor qubit 5

T1 Longitudinal relaxation time for each processor qubit 5

ERo Readout error for each processor qubit 5

The first column contains the name of then feature; the column contains the description of each feature; the last column represents the

dimensionality of each feature

13732 Neural Computing and Applications (2021) 33:13723–13743

123

(7) If t is present in �y, set j ¼ jþ 1 and go to the step

5);

(8) Remove P0ðyjÞ from the collection F0:

F0 ¼ F0 � P0ðyjÞ;
(9) If the number items equal to �1 in the vector �y is

equal to m � k go to the step 10), else go to the step

4) and find a new item for the vector �y;

(10) End.

In the case study presented in the next section, a step by

step application of the repair operator is provided (See

Eq. 13).

Once obtained a feasible output vector y is then possible

to decode the circuit mapping that it encodes by following

the procedure shown in Sect. 4. The number and type of

hidden layers of the proposed network are identified by

means of an experimental approach, as shown in Sect. 5. A

complete graphical view of the proposed approach for

quantum circuit mapping is summarized in Fig. 5.

4.3 A case study for IBM Q Burlington

This section shows the proposed circuit mapping approach

at works on a real 5-qubits processor from IBM, named

IBM Q Burlington, whose coupling map is shown in Fig. 3.

From this map, it appears that m ¼ 5 and l ¼ 4 and, as a

consequence, the required input layer is composed of 53

nodes, whereas the output layer is characterized by m ¼ 5

slots, where the i-th slot is a neural structure composed of

two hidden dense layers characterized by a relu activation

function [54] and an output layer containing m þ 1 ¼ 6

neurons representing the output vector PðyiÞ ¼

½pi
0; pi

1; pi
2; pi

3; pi
4; pi

�1� and characterized by a softmax

activation function. The structure of the generic slot is

shown in Fig. 7.

The set of hidden layers for the whole network is

composed of three different layers, where the first two are

dense layers, whereas the third layer is a dropout layer that

during training time, turns off in a random way some

neurons from the previous layer helping to prevent over-

fitting. The architecture of Neural Layout for circuit map-

ping on IBM Q Burlington is graphically presented in

Fig. 6. In the topology shown in the figure, each block is a

neural network layer and the number of neurons for each

corresponds to the number of columns of the output tensor.

The behaviour of Neural Layout applied to the IBM Q

Burlington has been assessed by considering a random

quantum circuit shown in Fig. 8. Moreover, the mapping

result computed by Neural Layout has been compared with

the so-called Trivial Mapping Algorithm provided by IBM

Qiskit.

Before applying circuit mapping algorithms, it is nec-

essary to convert the starting circuit into an equivalent

circuit containing only elementary gates used by the IBM

Q Burlington processor and belonging to the set

fU1;U2;U3;CNOT ; Ig. This step is named circuit unrol-

ling. Once the circuit is unrolled, its 53 features are

encoded in a vector x which is given input to Neural

Layout so as to compute the following set of output

vectors:

Slot0 ! Pðy0Þ ! ½0:15; 0:23; 0:12; 0:06; 0:4; 0:04� ! arg max ¼ 4

Slot1 ! Pðy1Þ ! ½0:08; 0:16; 0:25; 0:13; 0:2; 0:18� ! arg max ¼ 2

Slot2 ! Pðy2Þ ! ½0:05; 0:06; 0:31; 0:33; 0:2; 0:05� ! arg max ¼ 3

Slot3 ! Pðy3Þ ! ½0:45; 0:1; 0:03; 0:15; 0:17; 0:1� ! arg max ¼ 0

Slot4 ! Pðy0Þ ! ½0:27; 0:2; 0:18; 0:06; 0:18; 0:11� ! arg max ¼ 0

ð12Þ

The outputs related to the different slots of Neural Layout

are aggregated together to compute the circuit mapping

output vector y ¼ ½4; 2; 3; 0; 0�, which unfortunately corre-

sponds to a not feasible solution. However, N operator used

by Neural Layout is able to solve this issue by incremen-

tally computing the output vector �y as follows:

Thus, the final vector representing the computed quantum

circuit mapping is �y ¼ ½4; 2; 3; 0; 1�. The quantum circuit

obtained by using the circuit mapping encoded in the

vector �y, shown on the right side of Table 3, is character-

ized by 10 CNOT gates and a single SWAP gate. Vice

versa, a quantum circuit obtained by using the trivial

approach provided by IBM Qiskit, shown on the left side of

Table 3, is characterized by 16 CNOTs and 3 SWAP gates.

In this way, it is possible to state that Neural Layout

generates a quantum circuit more tolerant to the effects of

F0 ¼ fP0ðy0Þ;P0ðy1Þ;P0ðy2Þ;P0ðy3Þ;P0ðy4Þg ! y03 ! �y ¼ ½�1;�1;�1; 0;�1�
F 0 ¼ fP0ðy0Þ;P0ðy1Þ;P0ðy2Þ;P0ðy4Þg ! y40 ! �y ¼ ½4;�1;�1; 0;�1�
F 0 ¼ fP0ðy1Þ;P0ðy2Þ;P0ðy4Þg ! y32 ! �y ¼ ½4;�1; 3; 0;�1�
F 0 ¼ fP0ðy1Þ;P0ðy4Þg ! y21 ! �y ¼ ½4; 2; 3; 0;�1�
F 0 ¼ fP0ðy4Þg ! y14 ! �y ¼ ½4; 2; 3; 0; 1�

ð13Þ

Neural Computing and Applications (2021) 33:13723–13743 13733

123

Fig. 5 Circuit mapping workflow via Neural Layout

Fig. 6 DNN topology in Neural

Layout for mapping quantum

circuit on IBM Q Burlington

processor

13734 Neural Computing and Applications (2021) 33:13723–13743

123

quantum decoherence than traditional approaches when

used to run the circuit shown in Fig. 8.

5 Experimental results

In this section, the suitability of Neural Layout in per-

forming quantum circuit mapping operations is assessed by

comparing its performance with those yielded by other

machine learning techniques, and other techniques used in

real quantum compilers, such as IBM Qiskit Transpiler.

These comparisons were made taking into account both

quality of mappings and computational times. The exper-

iments were conducted by using a dataset composed of

5-qubits random circuits mapped on a specific processor

provided by the IBM Q Experience, namely IBM Q

Burlington.

5.1 Dataset creation for quantum circuit
mapping

The dataset used to train and test Neural Layout is com-

posed of 42,039 random unrolled quantum circuits oper-

ating on 5 qubits and characterized by a maximum of 10

CNOT gates.

From each circuit, twenty-two features have been

extracted (see Sect. 4.1). Moreover, besides circuits’ fea-

tures, the dataset also contains a collection of features

related to the processor where above circuits are mapped

on, namely IBM Q Burlington, which have been collected

by using calibration data provided by IBM11. Each instance

belonging to the dataset is then related to an output label

encoding the best circuit mapping computed by using well-

known algorithms available in IBM Qiskit, namely Dense

Layout and Noise Adaptive Layout. In this context, the best

mapping of a circuit is the one that generates a new circuit

characterized by the smaller number of SWAP gates. The

number of SWAP gates in a circuit is computed by means

of two IBM Qiskit routing algorithms, named Look ahead

Swap12 and Stochastic Swap13.

Therefore, the process of labelling each circuit c ran-

domly generated is outlined as follows:

1. Compute two initial mappings for the circuit c by using

both Dense Layout and Noise Adaptive Layout

approaches;

2. For each mapping computed at previous step, compute

the number of SWAPs needed to run the circuit c by

using both Look ahead Swap and Stochastic Swap

approaches;

3. Choose the mapping requiring the smaller number of

SWAP gate executions.

However, above random generation of quantum circuits

does not ensure a perfect balance of output classes in the

dataset. Indeed, each histogram in Fig. 9 highlights the

imbalance in output classes by showing how many times

each qubit of the circuit has been mapped to its processor

qubit by means of the above approach. Therefore, to

develop an efficient predictor, two precautions have been

taken. Firstly, a weighted average of the cost function with

respect to the target frequencies for each output layer in the

model was done. Secondly, appropriate dropout layers have

been added to our model to face overfitting due to data

imbalance, as shown in Sect. 5.2.

5.2 Analysis of experimental results

The experimental results section has been organized in

three parts. In the first part, a complete experimental setting

of the optimal configuration of Neural Layout has been

performed so as to identify the right number of hidden

layers able to maximize the network accuracy. In the sec-

ond part, the optimized Neural Layout has been compared

q0 : Rz(2.48)
q1 : •
q2 : ×
q3 : S

q4 : ×

Fig. 8 A case study quantum circuit

Fig. 7 SLOT topology

11 https://qiskit.org/documentation/stubs/qiskit.providers.models.

BackendProperties.html.
12 IBM Qiskit Lookahead Swap Algorithm
13 IBM Qiskit Stochastic Swap Algorithm.

Neural Computing and Applications (2021) 33:13723–13743 13735

123

https://qiskit.org/documentation/stubs/qiskit.providers.models.BackendProperties.html
https://qiskit.org/documentation/stubs/qiskit.providers.models.BackendProperties.html

to other well-known classifiers such as Random Forest,

Support Vector Machine and Logistic Regression Cross-

validation, in order to validate its superiority in solving the

problem under consideration with respect to other machine

learning techniques. In the last part, the performance of the

optimized Neural Layout has been compared to the per-

formance yielded by state-of-the-art quantum circuit

mapping algorithms provided by IBM Qiskit, both in terms

of circuit mapping accuracy and running time, so as to

prove that the proposed approach is ready to be used in real

quantum compilers.

5.2.1 Experimental setting of neural layout

This experimental session is aimed at identifying the best

configuration of Neural Layout. Here, four different con-

figurations, based on the use or not of the N operator and a

dropout layer, have been considered:

Configuration 1: Neural Layout composed of an input

layer of 53 units, a dense layer of 264

units (D(264)), a dense layer of 1024

units (D(1024)), a dropout layer, and

five output slots, without N operator

and dropout layer in slot 4;

Configuration 2: Neural Layout composed of an input

layer of 53 units, a dense layer of 264

units (D(264)), a dense layer of 1024

units (D(1024)), a dropout layer, and

five output slots extended with N
operator;

Configuration 3: Neural Layout composed of an input

layer of 53 units, a dense layer of 264

units (D(264)), a dense layer of 1024

units (D(1024)), a dropout layer, and

five output slots extended with a

dropout layer in Slot 4 to face over-

fitting due to the imbalance of the

dataset;;

Configuration 4: Neural Layout composed of an input

layer of 53 units, a dense layer of 264

units (D(264)), a dense layer of 1024

units (D(1024)), a dropout layer, and

five output slots extended with both N
operator and a dropout layer in Slot 4

to face overfitting due to the imbal-

ance of the dataset;

Each of the above configurations has been trained and

tested by using the above dataset composed of 42,039 5-

qubits random quantum circuits split in training(80%)—

Table 3 Final quantum circuit obtained using a naive mapping strategy on the left and the Neural Layout mapping approach on the right

The circuits must be read from the bottom. At the beginning of each line, there is the mapping used. The integers refer to circuit qubits, while qis

are processor qubits

13736 Neural Computing and Applications (2021) 33:13723–13743

123

test(10%)—validation(10%) sets. Each configuration has

been trained for 150 epochs using Adam Optimizer with

learning rate equals to 0.0005. The experiments were run

on a classical computer equipped with an Intel i9 processor

and 128 Gb of RAM. The results obtained in terms of

accuracy are shown in Table 4. The best accuracy on the

test set was obtained by the configuration 4. It should be

emphasized that by using the repair operator N accuracy

increases significantly, while the exploitation of a dropout

layer in slot 4 results in a percentage increase in test

Fig. 9 Histograms representing the target frequencies for each processor qubit of 42039 random quantum circuits used to train and test our model

Neural Computing and Applications (2021) 33:13723–13743 13737

123

accuracy and a simultaneous decrease in training accuracy,

that can be interpreted as a reduction in overfitting

phenomenon.

Once the best configuration has been identified, a further

analysis is performed by using confusion matrices to

evaluate the performance of this configuration in correctly

identifying the i-th qubit of the output vector, with i 2
f0; 1; 2; 3; 4g (see Fig. 10). Accuracy obtained by the best

configuration in identifying the i-th qubit of the output

vector is reported in Table 5. Here, the slight difference

between the values is due to the aforementioned imbalance

presents in the dataset.

In the next sections, the identified best model Neural

Layout will be compared with other machine learning

classifiers and with other deterministic quantum circuit

mapping algorithms already used in real quantum

compilers.

5.2.2 Comparing neural layout and machine learning
techniques for circuit mapping

In this section, well-known machine learning classifiers,

such as Random Forest (RF), Support Vector Machine

(SVM), and Logistic Regression (LR-CV), are compared

with Neural Layout with respect to their capabilities in

solving the quantum circuit mapping problem modelled by

a classification task. These classifiers can be easily adapted

to perform the multi-output classification that the proposed

mapping approach requires. In order to allow these

machine learning techniques to generate feasible solution

for the problem, N operator has been applied to their out-

put. For each classifier, different combinations of hyper-

parameters have been tried in order to identify a

suitable model to solve the quantum circuit mapping

problem. All these combinations are summarized in

Table 6: Random Forest has been tested with several

numbers of estimators and two different splitting criteria

for the construction of decision trees, namely Gini and

Entropy criterion; furthermore, SVM has been tested with

two different kernel functions; LR-CV has been tested by

using several values of the regularization parameter c. All

these techniques have been trained and tested by using the

dataset prepared in Sect. 5.1 and, as shown in Fig. 11,

performance yielded by these machine learning techniques

in terms of test accuracy is worse than the best configu-

ration of Neural Layout identified in the previous section

As already done for Neural Layout, a further verification

of the performance for these classifiers has been made by

calculating the test accuracy for the individual output slots.

The obtained results are shown in Table 7. This table is a

further confirmation of how Neural Layout is far more

suitable to perform the operation of mapping quantum

circuits than conventional machine learning models.

Indeed, the best classifier, Random Forest with Gini cri-

terion, has an average accuracy value for individual slots

that is more than 10% lower than Neural Layout, reflecting

an overall accuracy value that is more than a 15% lower

than that provided by Neural Layout.

5.2.3 Comparing neural layout and IBM Qiskit mapping
algorithms

In the last step of the evaluation process, the performance

of the optimal configuration of Neural Layout has been

compared with two state-of-the-art quantum circuit map-

ping algorithms, namely Dense Layout and Noise Adaptive

Layout, provided by IBM Qiskit, both in terms of quality of

the mappings and running times. For this purpose, 1000

random quantum circuits were generated and unrolled in

terms of the basic gates. The total number of CNOTs

belonging to the unrolled circuits varies between 0 and 50.

These unrolled circuits have been mapped on the IBM Q

Burlington processor, by using two circuit mappings: the

one computed by Neural Layout and the best circuit

mapping returned by the execution of the two aforemen-

tioned algorithms provided by IBM Qiskit. For each of

these two mappings, the depth of the final circuit was

calculated by using both routing algorithms made available

by Qiskit: Look ahead Swap (LAS) and Stochastic Swap

(SS). The plots in Fig. 12 show the results about the quality

of the mappings proposed by Neural Layout, as the routing

algorithm used varies. On the x axis, there is the number of

CNOTs in the unrolled circuit, on the y there is the per-

centage of final circuits in which the initial mapping pro-

vided by Neural Layout returns a circuit characterized by a

depth less than or equal to that of the best Qiksit mapping.

The plots in blue and red refer to the different routing

methods used to obtain the final circuits: in blue the

required SWAP insertions were computed with the LAS

routing algorithm, while in red they were computed with

SS routing algorithm. In green, there is the percentage of

random quantum circuits mapped by Neural Layout which

have a depth less than or equal to the one obtained by the

Table 4 Test and training accuracy of the four Neural Layout

configurations

Configuration Test accuracy Training accuracy

Configuration 1 0.7041 0.8471

Configuration 2 0.7548 0.8867

Configuration 3 0.7188 0.8295

Configuration 4 0.7645 0.8752

Bold values reports the maximum value of test accuracy achieved

13738 Neural Computing and Applications (2021) 33:13723–13743

123

Fig. 10 Confusion matrices related to the different output slots for Neural Layout

Neural Computing and Applications (2021) 33:13723–13743 13739

123

best mapping provided by Qiskit using at least one of the

two routing algorithms. The random quantum circuits

generated were 1000, with a number of CNOTs after the

unrolling, less or equal to 50. Table 8 shows the average

percentage values and relative standard deviation for the

three cases above considered. It should be also emphasized

that although the network has been trained through unrol-

led circuits with a maximum of 10 CNOTs, it manages to

keep its performance almost constant even as the number

of CNOTs within the circuits increases.

As further proof of the suitability of the proposed

approach, a comparative analysis of running times of

Neural Layout, Dense Layout, and Noise Adaptive Layout

has been performed. This comparison was made by gen-

erating random quantum circuits of different depths and

mapping these on the IBM Q Burlington processor by using

the three above algorithms. For each depth value, 10 ran-

dom circuits were generated and the mean value of the

mapping time for each depth has been collected. These

values are shown in Fig. 13 according to the mapping

algorithm used.

As highlighted in the figure, the computational time

taken by Neural Layout remains constant as the depth of

the circuits increases. On the contrary, the times taken by

Qiskit algorithms grow linearly with the depth. This result,

combined with a good accuracy of Neural Layout,

encourages the use of this mapping approach for larger

circuits and processors. Indeed, the constant execution time

means that the mapping of quantum circuits via Neural

Layer can be a strong candidate to solve the problem of

scalability that occurs in current mapping algorithms when

applied large circuits to large processors.

6 Conclusions

This research introduced Neural Layout, the very first

approach aimed at facing the quantum circuit mapping

problem by means of machine learning techniques. In order

to achieve this goal, the circuit mapping problem has been

modelled as a conventional classification task and, suc-

cessively, a deep neural network, characterized by a proper

output layer, has been integrated with a repair operator

capable of moving values computed by the neural network

towards feasibility regions and allowing the proposed

approach to work correctly. The performance yielded by

Neural Layout has been compared to that obtained by other

well-known machine learning techniques when applied to

the circuit mapping problem and, in all cases, Neural

Layout proved to be the most efficient one. Moreover,

Neural Layout has been compared to two state-of-the-art

algorithms for quantum circuit mapping belonging to IBM

Qiskit and, in this case, Neural Layout showed similar

performance in terms of mapping accuracy, but a consid-

erable speedup in terms of running time, making the

Table 5 Accuracy of individual output slots related to Neural Layout

extended with N operator and a dropout layer for slot 4

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4

Test accuracy 0.85 0.85 0.84 0.88 0.92

Table 6 Hyperparameter setting

for machine learning techniques
Classifier Hyperparameters

SVM Kernel Function C Value

Rbf [0.01, 0.1, 1.0, 10.0, 20.0, 50.0, 100.0, 500.0]

Poly [10.0, 20.0, 50.0, 100.0, 500.0]

LR-CV CV C Value

5 [10.0, 20.0, 50.0, 100.0, 500.0]

RF Criterion N Estimators

Gini [100, 500, 1000]

Entropy [100, 500, 1000]

Fig. 11 Comparing test accuracy of Neural Layout (NL) and other

machine learning techniques

13740 Neural Computing and Applications (2021) 33:13723–13743

123

proposed approach appropriate to be used in real quantum

computing environments, such as IBM Q Experience.

Considering the results obtained by Neural Layout both

in terms of quality and runtime of the mappings, it can be

further developed to significantly impact the current state-

of-the-art for the quantum circuit mapping algorithms.

Indeed, the proposed DNN model has to be considered as a

proof that machine learning can be used to address quan-

tum circuit mapping problem opportunely modelled as a

classification task, but further investigations on the opti-

mization of the proposed model will be conducted by the

authors in future studies.

This manuscript lays the foundation to a new mapping

paradigm, and despite this approach has been tested on

ibmq_burlington processor, the procedure to build and test

models is completely independent from the processor used.

Therefore, practically implementation of Neural Layout for

other processors requires only the construction of proper

datasets using the workflow proposed in Sect. 5.1. More-

over, the described way to collect data can be integrated

with further deterministic mapping algorithms such as

SABRE Layout [33] or better algorithms which will be

developed in future, so as to increase the quality of the

training data for classification models. The practical

application of NL can be further supported by means of

online-training techniques of the prediction models, which

could be re-trained daily thanks to the calibration data

provided simultaneously by IBM for each quantum

processors.

In the future, other important studies will be conducted

on the possibility to embed NL in a recursive framework,

where unsupervised machine learning techniques will be

used to partition n-qubit circuits (n[[5) in a collection

of equivalent k-qubits circuits (k � 5) to be mapped to m-

qubit quantum processors (m[[5) so as to enable an

efficient quantum circuit mapping on future generation of

quantum computers.

Acknowledgements This research was conducted in the context of the

Canada-Italy Innovation Award obtained by Prof. Giovanni Acam-

pora in 2019.

Funding Open access funding provided by Università degli Studi di

Napoli Federico II within the CRUI-CARE Agreement.
Fig. 12 Percentage of final circuits mapped by DNN resulting in a

depth less than or equal to the depth resulted after the Qiskit best map

Table 7 Test Accuracy of output Slots for each classic classifier

Test accuracy

Classifier Slot 0 Slot 1 Slot 2 Slot 3 Slot 4

SVM (Rbf) 0.69 0.74 0.70 0.73 0.82

SVM (Poly) 0.67 0.72 0.67 0.72 0.80

LR 0.43 0.60 0.30 0.47 0.66

RF (Gini) 0.72 0.76 0.75 0.75 0.84

RF (Entropy) 0.71 0.76 0.75 0.75 0.83

Table 8 Mean values and relative standard deviations of the per-

centages of 1000 random circuits mapped via DNN resulted in a final

circuits less or equal deep to the final circuits obtained mapping the

random circuit via Qiskit algorithms depending on the routing algo-

rithm used

Routing algorithm Mean SD

LAS 0.582 0.239

SS 0.578 0.195

LAS or SS 0.757 0.168

Fig. 13 Mapping time in second of each mapping algorithm as the

depth of the circuit to map varies. A point in these plots is the average

mapping time value of 10 circuits mapped

Neural Computing and Applications (2021) 33:13723–13743 13741

123

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Shor PW (1997) Polynomial-time algorithms for prime factor-

ization and discrete logarithms on a quantum computer. SIAM J

Comput 26(5):1484–1509

2. Grover LK (1996) A fast quantum mechanical algorithm for

database search. In: Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, pp 212–219

3. Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová

M, Kivlichan ID, Menke T, Peropadre B, Sawaya NPD et al

(2019) Quantum chemistry in the age of quantum computing.

Chem Rev 119(19):10856–10915

4. Lanyon BP, Whitfield JD, Gillett GG, Goggin ME, Almeida MP,

Kassal I, Biamonte JD, Mohseni M, Powell BJ, Barbieri M et al

(2010) Towards quantum chemistry on a quantum computer. Nat

Chem 2(2):106–111

5. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd

S (2017) Quantum machine learning. Nature 549(7671):195–202

6. Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to

quantum machine learning. Contemp Phys 56(2):172–185

7. Dunjko V, Briegel HJ (2018) Machine learning & artificial

intelligence in the quantum domain: a review of recent progress.

Rep Prog Phys 81(7):074001

8. Acampora G (2019) Quantum machine intelligence. Quantum

Mach Intell 1(1):1–3

9. Venturelli D, Kondratyev A (2019) Reverse quantum annealing

approach to portfolio optimization problems. Quantum Mach

Intell 1(1):17–30

10. Zhao Z, Pozas-Kerstjens A, Rebentrost P, Wittek P (2019)

Bayesian deep learning on a quantum computer. Quantum Mach

Intell 1(1):41–51

11. Mengoni R, Di Pierro A (2019) Kernel methods in quantum

machine learning. Quantum Mach Intell 1(3):65–71

12. Preskill J (2018) Quantum computing in the nisq era and beyond.

Quantum 2:79

13. Maslov D, Falconer SM, Mosca M (2008) Quantum circuit

placement. IEEE Trans Comput Aid Des Integr Circuits Syst

27(4):752–763

14. Chakrabarti A, Sur-Kolay S, Chaudhury A (2011) Linear nearest

neighbor synthesis of reversible circuits by graph partitioning.

arXiv:1112.0564

15. Shafaei A, Saeedi M, Pedram M (2013) Optimization of quantum

circuits for interaction distance in linear nearest neighbor archi-

tectures. In: 2013 50th ACM/EDAC/IEEE design automation

conference (DAC). IEEE, pp 1–6

16. Shafaei A, Saeedi M, Pedram M (2014) Qubit placement to

minimize communication overhead in 2d quantum architectures.

In: 2014 19th Asia and South Pacific design automation confer-

ence (ASP-DAC). IEEE, pp 495–500

17. Wille R, Lye A, Drechsler R (2014) Optimal swap gate insertion

for nearest neighbor quantum circuits. In: 2014 19th Asia and

South Pacific design automation conference (ASP-DAC). IEEE,

pp 489–494

18. Lye A, Wille R, Drechsler R (2015) Determining the minimal

number of swap gates for multi-dimensional nearest neighbor

quantum circuits. In: The 20th Asia and South Pacific design

automation conference. IEEE, pp 178–183

19. Venturelli D, Do M, Rieffel EG, Frank J (2017) Temporal

planning for compilation of quantum approximate optimization

circuits. In: IJCAI, pp 4440–4446

20. Venturelli D, Do M, Rieffel E, Frank J (2018) Compiling quan-

tum circuits to realistic hardware architectures using temporal

planners. Quantum Sci Technol 3(2):025004

21. Booth KEC, Do M, Beck JC, Rieffel E, Venturelli D, Frank J

(2018) Comparing and integrating constraint programming and

temporal planning for quantum circuit compilation. arXiv:1803.

06775

22. Oddi A, Rasconi R (2018) Greedy randomized search for scalable

compilation of quantum circuits. In: International conference on

the integration of constraint programming, artificial intelligence,

and operations research. Springer, pp 446–461

23. Bhattacharjee D, Chattopadhyay A (2017) Depth-optimal quan-

tum circuit placement for arbitrary topologies. arXiv:1703.08540

24. AlFailakawi M, Ahmad I, Hamdan S (2014) Lnn reversible cir-

cuit realization using fast harmony search based heuristic. In:

Asia-Pacific conference on computer science and electrical

engineering

25. Saeedi M, Wille R, Drechsler R (2011) Synthesis of quantum

circuits for linear nearest neighbor architectures. Quantum Inf

Process 10(3):355–377

26. Lin C-C, Sur-Kolay S, Jha NK (2014) Paqcs physical design-

aware fault-tolerant quantum circuit synthesis. IEEE Trans Very

Large Scale Integr VLSI Syst 23(7):1221–1234

27. Wille R, Keszocze O, Walter M, Rohrs P, Chattopadhyay A,

Drechsler R (2016) Look-ahead schemes for nearest neighbor

optimization of 1d and 2d quantum circuits. In: 2016 21st Asia

and South Pacific design automation conference (ASP-DAC).

IEEE, pp 292–297

28. Shrivastwa RR, Datta K, Sengupta I (2015) Fast qubit placement

in 2d architecture using nearest neighbor realization. In: 2015

ieee international symposium on nanoelectronic and information

systems. IEEE, pp 95–100

29. Kole A, Datta K, Sengupta I (2016) A heuristic for linear nearest

neighbor realization of quantum circuits by swap gate insertion

using n-gate lookahead. IEEE J Emerg Sel Topics Circuits Syst

6(1):62–72

30. Kole A, Datta K, Sengupta I (2017) A new heuristic for n-di-
mensional nearest neighbor realization of a quantum circuit.

IEEE Trans Comput Aided Des Integr Circuits Syst

37(1):182–192

31. Bhattacharjee A, Bandyopadhyay C, Wille R, Drechsler R,

Rahaman H (2018) A novel approach for nearest neighbor real-

ization of 2d quantum circuits. In: 2018 IEEE computer society

annual symposium on VLSI (ISVLSI). IEEE, pp 305–310

32. Paler A (2019) On the influence of initial qubit placement during

nisq circuit compilation. In: International workshop on quantum

technology and optimization problems. Springer, pp 207–217

33. Li G, Ding Y, Xie Y (2019) Tackling the qubit mapping problem

for nisq-era quantum devices. In: Proceedings of the twenty-

fourth international conference on architectural support for pro-

gramming languages and operating systems, pp 1001–1014

13742 Neural Computing and Applications (2021) 33:13723–13743

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1112.0564
http://arxiv.org/abs/1803.06775
http://arxiv.org/abs/1803.06775
http://arxiv.org/abs/1703.08540

34. Murali P, Baker JM, Javadi-Abhari A, Chong FT, Martonosi M

(2019) Noise-adaptive compiler mappings for noisy intermediate-

scale quantum computers. In: Proceedings of the twenty-fourth

international conference on architectural support for program-

ming languages and operating systems, pp 1015–1029

35. Rosa JPS, Daniel, Guerra JD, Horta NCG, Martins R, Lourenco

NCC (2020) Using artificial neural networks for analog integrated

circuit design automation. Springer, Berlin

36. Wang F, Li Y-X (2006) Analog circuit design automation using

neural network-based two-level genetic programming. In: 2006

international conference on machine learning and cybernetics.

IEEE, pp 2087–2092

37. Li B, Franzon PD (2016) Machine learning in physical design. In:

2016 IEEE 25th conference on electrical performance of elec-

tronic packaging and systems (EPEPS), pp 147–150

38. Qi W, et al. (2017) IC design analysis, optimization and reuse via

machine learning. North Carolina State University

39. Chakraborty M (2012) Artificial neural network for performance

modeling and optimization of cmos analog circuits. arXiv:1212.

0215

40. Chakma G, Awasthi S (2018) Resource optimization for circuit

simulation using machine learning. In: 2018 IEEE international

conference on big data (big data). IEEE, pp 4900–4905

41. Yih J-S, Mazumder P (1990) A neural network design for circuit

partitioning. IEEE Trans Comput Aid Des Integr Circuits Syst

9(12):1265–1271

42. Aminian M, Aminian F (2007) A modular fault-diagnostic system

for analog electronic circuits using neural networks with wavelet

transform as a preprocessor. IEEE Trans Instrum Meas

56(5):1546–1554

43. Aminian F, Aminian M (2001) Fault diagnosis of analog circuits

using Bayesian neural networks with wavelet transform as pre-

processor. J Electron Test 17(1):29–36

44. Spence H (1996) Automatic analog fault simulation. In: Con-

ference record. AUTOTESTCON’96. IEEE, pp 17–22

45. Catelani M, Gori M (1996) On the application of neural networks

to fault diagnosis of electronic analog circuits. Measurement

17(2):73–80

46. Aminian F, Aminian M, Collins HW (2002) Analog fault diag-

nosis of actual circuits using neural networks. IEEE Trans

Instrum Meas 51(3):544–550

47. Patel N (2020) Review on machine learning for analog circuit

design. Int J Eng Tech Res 9:1024–1028

48. Li Y, Lin Y, Madhusudan M, Sharma A, Xu W, Sapatnekar S,

Harjani R, Hu J (2020) Exploring a machine learning approach to

performance driven analog ic placement. In: 2020 IEEE computer

society annual symposium on VLSI (ISVLSI), pp 24–29

49. Kaye P, Laflamme R, Mosca M et al (2007) An introduction to

quantum computing. Oxford University Press, Oxford

50. Mooney GJ, Hill CD, Hollenberg LCL (2019) Entanglement in a

20-qubit superconducting quantum computer. Sci Rep 9(1):1–8

51. Nielsen MA, Chuang I (2002) Quantum computation and quan-

tum information: 10th anniversary edition. Cambridge University

Press, USA. ISBN: 1107002176

52. Garcia-Escartin JC, Chamorro-Posada P (2011) Equivalent

quantum circuits. arXiv:1110.2998

53. Botea A, Kishimoto A, Marinescu R (2018) On the complexity of

quantum circuit compilation. In: Eleventh annual symposium on

combinatorial search

54. Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Acti-

vation functions: comparison of trends in practice and research

for deep learning. arXiv:1811.03378

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:13723–13743 13743

123

http://arxiv.org/abs/1212.0215
http://arxiv.org/abs/1212.0215
http://arxiv.org/abs/1110.2998
http://arxiv.org/abs/1811.03378

	Deep neural networks for quantum circuit mapping
	Abstract
	Introduction
	Related works
	Basic concepts: quantum computing, quantum circuit mapping, and state-of-the-art methodologies
	Quantum computing
	Decoherence times and error rates
	Circuit mapping on quantum processors

	Neural layout: a deep neural network for quantum circuit mapping
	Modelling quantum circuit mapping as a classification task
	Designing a deep neural network for circuit mapping
	A case study for IBM Q Burlington

	Experimental results
	Dataset creation for quantum circuit mapping
	Analysis of experimental results
	Experimental setting of neural layout
	Comparing neural layout and machine learning techniques for circuit mapping
	Comparing neural layout and IBM Qiskit mapping algorithms

	Conclusions
	Funding
	References

