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Abstract
Systems of sensor human activity recognition are becoming increasingly popular in diverse fields such as healthcare and

security. Yet, developing such systems poses inherent challenges due to the variations and complexity of human behaviors

during the performance of physical activities. Recurrent neural networks, particularly long short-term memory have

achieved promising results on numerous sequential learning problems, including sensor human activity recognition.

However, parallelization is inhibited in recurrent networks due to sequential operation and computation that lead to slow

training, occupying more memory and hard convergence. One-dimensional convolutional neural network processes input

temporal sequential batches independently that lead to effectively executed operations in parallel. Despite that, a one-

dimensional Convolutional Neural Network is not sensitive to the order of the time steps which is crucial for accurate and

robust systems of sensor human activity recognition. To address this problem, we propose a network architecture based on

dilated causal convolution and multi-head self-attention mechanisms that entirely dispense recurrent architectures to make

efficient computation and maintain the ordering of the time steps. The proposed method is evaluated for human activities

using smart home binary sensors data and wearable sensor data. Results of conducted extensive experiments on eight

public and benchmark HAR data sets show that the proposed network outperforms the state-of-the-art models based on

recurrent settings and temporal models.
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1 Introduction

Human activity recognition (HAR) is a significant research

field in ubiquitous computing for monitoring behaviors of

people which plays an important role in various applica-

tions such as healthcare monitoring [1], security surveil-

lance system [2] and resident situation assessment [3]. In

healthcare monitoring, HAR, as one of the significant

applications of intelligent environment and wearable sen-

sor technologies, has been used to monitor the activity of

daily living (ADL) in order to support and assist senior

people, disabled and cognitive impaired [4]. HAR from

smart home setting equipped by ubiquitous sensors in the

field of ambient assisted living has gained increased

attention for improving the quality of independent living of

the residents within the smart home environment [5]. Smart

homes with unobtrusive sensing technology for HAR have

been used as a suitable solution for enhancing independent

living when privacy is concerned [4, 6]. Wearable sensors
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are mainly embedded into mobile devices, wristwatches,

clothes, glasses, belts, or shoes. Wearable sensors can be

worn on the human body to capture their interaction with

their physical surroundings, motion, posture, and location.

Wearable sensors such as gyroscope, accelerometer, GPS,

and RFID-readers (used together with RFID tags) have

commonly been used to record information about users’

movement e.g., walking, running, and laying [7]. Wearable

sensors have been used for HAR since they can collect

information such as body movement and position [7, 8].

The aim of HAR is to identify and recognize simple and

complex human daily activities using smart home and

wearable sensors data. HAR based on the sensors’ data is a

challenging task since sometimes the data could be noisy

which leads to ambiguity in the interpretation of human

activities [9]. Noise in the data could be caused by errors in

the sensor connection system which fails to provide correct

sensor activations. HAR systems based on sensors’ data

have been notably progressed and obtained promising

results by the current development of machine learning in

elderly-care alert systems and assistance in emergencies

[10]. Monitoring long-term daily routine activities of a

resident in a smart home setting provide utility to deter-

mine and assess wellness. Particularly, remote monitoring

of daily routine activities such as eating, sleeping, or

medication intake enables caregivers to track and assess the

functional health status and to support the needs of the

elderly people living alone [9]. Moreover, smart home and

wearable sensors are able to provide sufficient information

to properly detect the postural and ambulatory activities

[11, 12].

Traditional machine learning approaches such as naive

Bayes, support vector machine, and hidden Markov models

have made tremendous progress on HAR and obtained

satisfying results [8]. However, these approaches entirely

rely on hand-crafted heuristic feature extraction, which is

highly data dependent, usually limited by domain experts.

Handcrafted features are not always generalizable across

application domains and time consuming. Moreover,

handcrafting does often not generate a sufficient number of

features from a given dataset [13]. Recently, deep learning

methods have been increasingly used in various applica-

tions of computer vision [14] and natural language pro-

cessing, speech [15] and audio recognition [16]. Besides,

deep learning methods have been used for HAR systems

based on smart home sensors and wearable sensors. Most

of these HAR systems have shown encouraging results for

different purposes and from different datasets of daily

routine activities. Among the deep learning methods, long

short-term memory (LSTM) as a sequential deep learning

model and variation of recurrent neural network (RNN) has

achieved state-of-the-art performance for temporal infor-

mation processing in various applications [17].

Particularly, LSTM for recognizing activities of daily liv-

ing (ADLs) shows state-of-the-art performance on various

activity recognition benchmark datasets using wearable

sensors and smart home sensors [6, 13]. ADLs are intro-

duced as the normal daily activities where we perform for

self-care such as eating, drinking, and bathing [18]. Even

though LSTM models improve the performance of HAR

systems, training LSTM models are computationally

expensive due to using the gating mechanism that allows

long-term dependencies. Moreover, LSTM models occupy

more memory and cannot process timesteps of input data in

parallel since each timestep needs the results of the pre-

vious timestep to be processed [19, 20]. One dimensional

convolutional neural network (1D CNN) has been used

instead of LSTM to capture the sequential temporal

information in the input data for HAR systems [21, 22].

Despite training of 1D CNN models are extremely faster

compared to recurrent methods such as LSTM due to the

absence of recurrent connections, the achieved results

based on 1D CNN fall short of the results shown by LSTM

in HAR systems. Moreover, 1D CNN is not sensitive to the

timestep order which is the key in HAR systems. To

address these problems, we propose dilated causal self-

attention convolution that entirely forgoes recurrent set-

tings to improve the performance of HAR. We adopted

dilated causal convolution which is used as a part of the

WaveNet to generates raw audio waveforms [23]. Dilated

causal convolution is used to allow long-range temporal

dependencies in the WaveNet that outperforms LSTM [24].

While dilated causal convolution captures long-range

temporal sequential information [25], it is crucial to focus

on particular information from the feature maps generated

by dilated causal convolution using the self-attention

mechanism [26]. The self-attention mechanism that is

leveraged by transformer [19] can enable temporal models

to expose context from the feature maps within the

sequence.

To summarise, the main contributions of this paper are:

i. Proposing a model to accelerate training time and

improve the results of activity recognition compared

to state-of-the-arts using dilated causal and self-

attention convolution.

ii. Causal convolutions within the proposed method are

used to prevent information leakage from future to

past.

iii. Dilated convolutions within the proposed method are

used to maximize the receptive field by orders of

magnitude and aggregate multi-scale contextual

information without considerably increasing compu-

tational cost.

iv. Multi-head self-attention within the proposed

method is used to effectively expose deep semantic
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correlations from action sequences involving human

activities.

v. Conducting extensive experiments using eight

benchmark datasets of human daily activities from

smart homes and wearable sensors to validate the

proposed approach, which shows our proposed

method can improve the accuracy by 5% up to 9%

and reduce the training time compared with recurrent

neural network-based architecture methods.

2 Related work

Human action recognition is a challenging research area

based on sensor data and has attracted much attention in

machine learning fields. Numerous methods have been

proposed to model and recognize ADLs [8, 27]. Early

research modeled activity recognition using support vector

machine(SVM), decision tree, k-nearest neighbor (KNN)

naı̈ve Bayes [28]. HAR systems based on these traditional

approaches have gained reasonable recognition results.

However, these approaches solely process extracted

heuristic-manual features of human activities. Hand-crafted

features are usually limited by the availability of knowl-

edge domain experts and a time-consuming task. Hence,

deep learning models have been proposed in various

applications to address these problems [29].

Deep learning models have shown satisfying results and

reported state-of-the-art accuracy obtained on various HAR

benchmark datasets [4, 6]. Moreover, deep learning models

have been jointly used to handle imbalanced data and

improve generalization of HAR [18]. Recurrent network-

based architectures such as RNN and LSTM have been

firmly established as state-of-the-art methods in sequence

problems modeling including activity recognition [19].

RNN is employed to recognize the human daily activities

from smart home sensor data [30]. The results show that

RNN is useful in modeling and recognizing human activ-

ities. Yet RNN cannot properly process very long

sequences and suffers from both gradient vanishing and

exploding problems [4]. LSTM that solves vanishing and

exploding gradient by the capability of handling long-term

dependencies is often used to process temporal sequential

data [31]. For instance, satisfying results are shown by

employing LSTM to recognize human activities on diverse

collected sensor data [4, 6, 32, 33]. Further, different

LSTM architectures are proposed to improve the perfor-

mance of HAR systems such as stacked LSTM [34],

bidirectional LSTM [33], ensemble LSTM [35]. Moreover,

combined CNN with LSTM is also employed to further

improve the performance of HAR systems [6, 28].

The Dilated CNN can be used instead of the standard

CNN to increase the convolution receptive field without

losing resolutions [27]. Since the dilated convolution only

appends empty elements between the elements of the

standard convolution kernel, extra computational cost is

not required for dilated convolution process. Dilated con-

volution is proposed [36, 37] for human activity recogni-

tion from wearable sensors data. Dilated convolution is

also used for voice activity detection and audio source

separation [38, 39].

Weakly supervised learning based on combined CNN

and LSTM with self-attention layers using reinforcement

learning trained on wearable sensors data for human

activity recognition form [40]. However, this method

requires large computing resources and has high com-

plexity because it works based on reinforcement learning.

Moreover, Convolution LSTM with self-attention mecha-

nism is proposed to capture the spatio-temporal context in

human activities and to focus on significant timesteps from

temporal wearable sensors data [13]. References [41, 42]

employed a self-attention mechanism to improve the per-

formance of HAR systems based on wearable sensors. The

results are improved using self-attention compared to the

state-of-the-art. Betancourt et al. proposed an LSTM model

based on the attention mechanism. The model is only tested

on two wearable sensor datasets. The limitation of these

methods is firstly the recurrent setting from the proposed

methods leads to slow down the learning process. Sec-

ondly, the proposed methods from these studies are only

applied to HAR systems based on wearable sensors, and

the learning time is not considered. Reference [43] pro-

posed DeepConvLSTM model based on attention mecha-

nism for human activity recognition on smart home

datasets. The method considered each time-step in the

sequential data as a word and a specified time-window as

the sentence. However, the method is evaluated only on

three smart home datasets and only compared to bidirec-

tional LSTM. Moreover, due to the sequential operation of

recurrent settings in this method, parallelization is limited

which makes this model computationally expensive. Gao

et al. proposed a CNN dual attention without a recurrent

setting for HAR systems, however, the method is only

tested on wearable sensor datasets [44].

To address these limitations of HAR and improve the

performance as well as reduce the learning time of HAR

systems from smart homes sensor and wearable sensor

data, we propose dilated causal and multi-head self-atten-

tion convolution.
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3 Background

In section, we describe the temporal models i.e., 1D CNN,

LSTM, and the hybrid 1D CNN and LSTM model.

3.1 Temporal modeling via LSTM

LSTM is an artificial RNN and used to learn from temporal

sequential data. LSTM can handle and learn from long-

term dependencies which alleviate vanishing and explod-

ing gradient problem [31]. LSTM as a temporal model has

been used to recognize ADLs from sensor data [4, 6].

LSTM processes temporal data using forget gate, input

gate, and output gate to append or delete information to the

cell state throughout the processing of the sequence data.

The cell state is the main part of LSTMs that carry and

transfer relevant information from earlier timesteps to later

timesteps. Figure 1 shows the connection of the gates with

the cell state in a single LSTM cell. The gates learn to keep

relevant information and forget irrelevant information

during training to update the information on the cell state.

Hence each LSTM cell works as a memory to remove,

read, and write information that is controlled by the forget,

output, and input gates, respectively. Forget gate process

both inputs the previous output ht�1 and new time step Xt

using sigmoid activation function to indicate relevant or

irrelevant information. The forget gate keeps the informa-

tion if the outcome of the sigmoid function is 1 while

deletes the information if the outcome of the sigmoid

function is 0. Equation (1) shows how the forget gates

within a single LSTM cell is computed. The next step

consists of two parts to determine new information kept in

the cell state. The first part is the input gate that indicates

new information from the current input (Xt; ht�1) is

appended to the cell state. The tanh activation function is

the second part that renders ~Ct a vector of new candidate

values and can be added to the cell state. Equations (2) and

(3) show how the input gate and the new candidate values

are computed, respectively. A new cell state Ct is generated

based on the summation of the multiplication of these two

parts and the multiplication of the forget gate with the

previous cell state Ct�1. Equation (4) shows how the new

cell state is computed. The multiplication of the previous

cell state with the forget gate deletes part of the informa-

tion which was decided to be forgotten earlier. Then the

new candidate values are scaled by how much the cell state

is updated using it � ~Ct. Finally, the sigmoid activation

function processes both the previous hidden state ht�1 and

the current input timestep xt to produce the output gate.

Finally, the output gate is computed based on filtered

information using two different activation functions and

also specifies the next hidden state. Then the tanh activa-

tion function processes the newly updated cell state. The

output of the tanh functions multiplies by the output of the

sigmoid function to render the next hidden state. The

updated cell state and the newly generated hidden state

pass information to the next timestep. Equations (5) and (6)

show how the calculation of output gate and hidden state.

ft ¼ rðWf � ½ht�1; xt� þ bf Þ ð1Þ

it ¼ rðWi � ½ht�1; xt� þ biÞ ð2Þ
~Ct ¼ tanhðWC � ½ht�1; xt� þ bcÞ ð3Þ

Ct ¼ ft � Ct�1 þ it � ~Ct ð4Þ

ot ¼ rðWo � ½ht�1; xt� þ boÞ ð5Þ

ht ¼ ot � tanhCt ð6Þ

where x is the input data, r is the sigmoid activation

function, tanh is the hyperbolic tangent activation function,

W is the weight matrix.

LSTM has been used for HAR application and achieved

promising results [4, 6, 9, 45]. Hence in this paper, LSTM

as a temporal model is used to be compared with the

proposed method. Two layers of LSTM with a flattened

layer are stacked. Then the outputs of the flattened layer are

passed into a fully connected layer with ReLU activation

function and followed by a softmax layer. Figure 2 shows

the architecture of the LSTM model.

Fast LSTM implementation backed by cuDNN

(CUdNNLSTM) [46] is also used in this study with the

same architecture of LSTM model. CUdNNLSTM is a

version of LSTM that uses the CuDNN library, and it can

only be run on a GPU to accelerate training and inference

time.

3.2 Temporal modeling via 1D CNN

1D CNN has been widely used in HAR systems and has

shown satisfying results [6, 21]. 1D CNN can properly

extract features from raw and consider local dependency

that is likely to be correlated. 1D CNN can also learn

Fig. 1 Single LSTM cell
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hierarchical data representations of human activities that

lead to improving HAR systems [45]. 1D CNN compared

to LSTM has obtained competitive results in several

applications such as activity recognition, machine transla-

tion, and audio generation with much faster learning time.

However, 1D CNN is not sensitive to order that is signif-

icant in activity recognition [8]. Hence 1D CNN alone is

not an optimal solution instead of LSTM. In this paper, 1D

CNN is employed, and its results are shown. The 1D CNN

model is designed by stacking two convolutional layers

each with 64 filters. The kernel size of the 1D CNN in this

study is equal to 3 that indicates the length of the 1D

convolution window with stride size of 1. A Max-pooling

layer with the window size equal to 2 is applied after the

convolution layers to down-sample the features maps. The

feature maps are flattened to be processed by the fully-

connected, i.e., a dense layer with ReLU activation func-

tion followed by a soft-max layer. Figure 3 shows the

architecture of 1D CNN.

3.3 Temporal modeling via Hybrid: 1D
CNN 1 LSTM

The hybrid model based on stacking 1D CNN and LSTM

sequentially has been used to improve the performance of

HAR system [6, 18]. In this study, the hybrid model is

employed by stacking one layer of each 1D CNN and

LSTM to human activities from smart home data. Figure 4

shows the architecture of the hybrid model. The input data

are firstly fed into the 1D CNN layer to extract features

before the LSTM layer to support sequence recognition.

The input sub-sequences sensor data are processed inde-

pendently by 1D CNN hence timestep orders are not con-

sidered. The feature maps of 1D CNN are down-sampled

by a max-pooling layer with the window size equal to 2

before the LSTM layer. The feature maps are processed by

the LSTM and then flattened followed by fully-connected

layers, i.e., a dense layer with ReLU activation function

and a soft-max layer. Furthermore, 1D CNN layers in the

Fig. 2 Architecture of the LSTM model Fig. 3 Architecture of the 1D CNN model

Fig. 4 Hybrid 1D CNN ? LSTM model
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hybrid model are often applied when recurrent-based

models cannot realistically handle and process long-term

dependencies from input sequence data. In such cases, 1D

CNN in the hybrid model can make the long-term depen-

dencies shorter through down-sampling by extracting

higher-level features. Then the extracted features generated

by 1D CNN could be better processed by the recurrent-

based models [47]. However, order sensitivity is not con-

sidered in the extracted features by the 1D CNN. Hence,

the hybrid of 1D CNN and LSTM is not the most accept-

able solution to improve the performance of activity

recognition [18].

3.4 Temporal modeling via Bidirectional LSTM

Bidirectional LSTM trains input data in forward and

backward directions by using previous and subsequent

information of a specific time step in two separate recurrent

layers [48]. Figure 5 shows bidirectional LSTM where

inputs of backward states are not connected to the outputs

of the forward states. Including future information in

addition to past information in bidirectional LSTM appears

at first sight to violate causality [49]. Although Bidirec-

tional LSTM has been successfully proposed in HAR and

achieved satisfying results, Bidirectional LSTM is indeed

expensive to train since it has a double recurrent setting in

each layer [33]. Bidirectional LSTM is used in this study

by stacking two forward and backward LSTMs layers. The

outputs of these two layers are flattened and then fed to a

fully-connected layer, i.e., a dense layer with ReLU acti-

vation function and a soft-max layer.

4 Proposed method

In this section, we describe the proposed method, dilated

causal convolution, and self-attention mechanism, for HAR

in smart home data. We aim to design and propose a more

efficient convolutional network model better than recur-

rent-based architecture models in terms of recognition

score and training time. The distinguishing characteristics

of our proposed method are: (1) the proposed model stops

information leakage from future to past using causal con-

volution; (2) the proposed model can handle temporal

sequential data of any length and map it to a series output

of the same length; (3) the model can simultaneously focus

on different important time steps of the sequence input

using the multi-head self-attention mechanism. The details

of the proposed model are described in the following

subsections.

4.1 Sequence modeling

Before describing the details of the proposed model, we

show the sequence modeling task for human activities.

Input human activity sequences x0; . . .; xT are fed into a

model to predict corresponding activity outputs y0; . . .; yT
at each time. Predicting the activity output yt for particular

time t should be derived only by considering the observed

times steps before time t: x0; . . .; xt [20]. Hence, sequence

modeling is a function f : x0; . . .; xT ! y0; . . .; yT (where x

and y are the input and output, respectively) that renders

the mapping as shown in Eq. (7).

ŷ0; . . .; ŷT ¼ f ðx0; . . .; xTÞ ð7Þ

The model f is expected to minimize a loss L between,

Lðŷ0; . . .; ŷT ; f ðx0; . . .; xTÞÞ, the actual label and the pre-

dicted outputs where the input sequential data and the

outputs are rendered based on some distribution. This

formalism could not directly be used for domains such as

sequence-to-sequence prediction or machine translation

since these domains require the entire sequence input (past

and future states) [20]. However, the setting can be

extended for these domains.

4.2 Dilated causal convolutions

Causal convolutions used in the proposed method to con-

trol the model and predict output at time t based on only the

convolutions of the sequence inputs from time t and earlier

in the previous layers [20]. Causal convolutions also pre-

serve the ordering of sequential input patterns. However,Fig. 5 Bidirectional LSTM model
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causal convolutions require very large filters or many

hidden layers to expand the receptive field [23]. To max-

imize the receptive field and aggregate multi-scale con-

textual information without considerably increasing

computational cost, dilated convolutions are integrated into

the proposed method. Dilated convolutions enable the

model to increase the receptive field exponentially using a

few layers and keeping the computational efficiency [25].

The dilated causal convolution DCC for one dimensional

input sequence x 2 Rn with a filter f : f0; . . .; k � 1g ! R

on element s of the sequence is defined as:

DCCðxHdf ÞðsÞ ¼
Xk�1

i¼0

f ðiÞ � xs�d�i ð8Þ

where d is the dilation factor, k is the filter size, and s�
d � i shows the past direction. The dilation factor d is

exponentially increased when the depth of the model is

increased i.e., d ¼ 2l at layer l of the model. Formally, we

increase the dilation factors d exponentially by a factor of 2

in each layer l ¼ 1; . . .; L where L is the number of layers

of the dilated causal convolutions in the proposed model.

Equation (9) shows the dilation factor in this study.

d 2 ½20; 21; 22; . . .; 2L�1� ð9Þ

In addition, the dilation convolution renders the standard

convolution when d = 1. Figure 6 shows the dilation

causal convolutions in the proposed model for dilations 1,

2, and 4. Dilated convolution with different dilation factors

can be integrated with a filter at different ranges. The filters

convolve input values over an area larger than its length

using dilated convolutions by skipping input values with a

certain step which is the dilation factor. Hence, dilation

convolution is equivalent to a standard convolution with

one dilating, but importantly more efficient. Dilation con-

volution effectively enables the model to aggregate multi-

scale contextual information with fewer layers and the

same receptive field compared to a standard convolution

[25]. Therefore, the number of learnable parameters is

reduced by using stacked dilated causal convolutions that

lead to yield more efficient training and light-weight

model.

4.3 Self-attention network

The self-attention mechanism is a robust technique to

compute correlation and the weighted combination

between all the time steps in the input sequence [19]. After

applying dilated causal convolution to render aggregated

multi-scale contextual information, multi-headed self-at-

tention is used to enable the model to focus on important

and relevant time steps more than the insignificant time

steps from the sequential feature maps during recognition.

Hence, the attention mechanism aims to learn the most

important time steps from the sequence feature maps that

aid in determining more accurate recognition. Moreover,

self-attention identifies relative weights for each time step

in the sequence feature map by considering its similarity to

all the other time-steps within the sequence. Then, the

representation of each time step with relevant and impor-

tant information from other time steps is transformed by

the relative weights according to their importance. Self-

attention mechanism has three learned linear transforma-

tion: query Q, key K, and values V, where Q and K have

same vector dimension dk, and V and outputs have same

size of dimension dv [19]. To obtain attention scores, dot

product attention is applied between each query as con-

sidered to the transformed matrix of a specific time step

and the key matrix of every other time step. Then the

softmax function is applied on the scaled dot product value

of the queries and keys to generate the attention scores.

Lastly, the attention scores are used to produce a weighted

representation of the value matrix for each of the time steps

in the sequence. Equation (10) shows the multi-head self-

attention is entirely implemented as a matrix multiplication

operation.

f ðhjÞsa ðQ;K;VÞ ¼ softmax
Q � KT

ffiffiffiffiffi
dk

p
� �

V ð10Þ

The model computes the attention numerous times in

parallel (multi-head) to capture distinct correlation infor-

mation of the input sequence. Hence, hj in Eq. (10) shows

output from attention head j, and sa refers to self-attention.

Distinct parameters are used in Eq. (10) for computing

each the key, query, and value of the n attention heads. TheFig. 6 Dilated causal convolution and slef-attention model
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outputs from the distinct multi-head attention are con-

catenated and transformed to the dimension of the input

sequence using the learned parameter Wo as defined in

Eq. (11). The outputs of the multi-head self-attention (Mha)

are fed into fully-connected layers, i.e., a dense layer with

ReLU activation function and a soft-max layer.

Mha ¼ Wo � concatðf ðh1Þ
sa ; . . .; f ðhn�1Þ

sa ; f ðhnÞsa Þ ð11Þ

The proposed method based on dilated causal convolu-

tion foregoes recurrent architectures to accelerate the

training and inference time. Causal convolution maintains

the ordering of data which is crucial for HAR systems.

Dilated convolution increases the receptive field and pro-

duces feature maps with multi-scale receptive fields using

the different dilated rates in the convolution layers. Dilated

convolution preserves the resolution of the data since the

layers are dilated instead of pooling. The multi-head self-

attention mechanism is employed in the proposed method

to capture informative timesteps in the feature map to

improve the recognition. Dilated causal convolution with a

self-attention mechanism is used to make the proposed

method computationally efficient and improve the result

scores. Algorithm 1 besides Fig. 6 provides more infor-

mation about how the layers of the proposed method are

stacked.

5 Experimental setup and evaluation

In the section, we will show the details of the experimental

setup and evaluation with the details of five used datasets,

evaluation methods and results.

5.1 Datasets and preprocessing

5.1.1 Ordonez smart home datasets

Human activity datasets collected in five smart homes

using embedded binary sensors are used in this study to

evaluate the proposed method. Ordóñez home A and

B [50] are two real-world smart homes that can record

human daily physical activities using non-intrusive binary

sensors. Different binary sensors are used in these two

smart homes to detect different human activities. For

example, passive infrared (PIR) sensors are used to detect

human movements in a limited area. Pressure sensors on

beds and couches are used to detect the user’s presence.

Reed switches on cupboards and doors are used to measure

open or close status, and float sensors in the bathroom to

measure toilet being flushed or not. Table 1 shows details

about the residents, sensors, and the number of activities of

the Ordóñez smart homes A and B. In Ordóñez smart home

A, twelve binary sensors were used to record nine human

activities in fourteen days over a period of 20,358 min. In

Ordóñez smart home B, twelve binary sensors were used to

record ten human activities in twenty-two days over a

period of 30,469 min. The common activities from Ordó-

ñez homes A and B are Breakfast, Lunch, Sleeping,

Grooming, Leaving, Idle, Snack, Showering, Spare Time/

TV, and Toileting, respectively. In addition to these activ-

ities, Ordóñez home B has the activity Dinner.

5.1.2 Kasteren smart home datasets

Kasteren home A, B, and C datasets were recorded from

other three different smart homes using non-intrusive and

embedded binary sensors as well [51]. Table 1 also shows

the details of these three datasets regarding to the residents,

the number of sensors and activities. In Kasteren home A,

fourteen sensors used to record ten human activities in

25 days over a period of 40,005 min. In Kasteren home B,

twenty three binary sensors used to record thirteen human

activities in 14 days over a period of 38,900 min. In Kas-

teren home C, twenty one binary sensors used to record

sixteen human activities in nineteen days over a period of

25,486 min.

5.1.3 Wearable smartphone (inertial sensors) dataset

Dataset for human activity recognition was build by

recording activities of daily living (ADL) of 30 study

participants while carrying a waist-mounted smartphone

with embedded inertial sensors [52, 53]. The participants

within an age bracket of 19–48 years performed six daily

activities in which three activities are static postures (s-

tanding, sitting, lying), and three activities are dynamic

activities (walking, walking downstairs, and walking

upstairs). The participants wore a smartphone (Samsung

Galaxy S II) on the waist to record the activities. Embed-

ded accelerometer and gyroscope were used to capture

3-axial linear acceleration and 3-axial angular velocity at a

constant rate of 50 Hz. The activities were video-recorded
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to manually annotate the dataset. The dataset is randomly

split into a training set with 70% of participants’ data and a

testing set with 30% of participants’ data. Participants

performed six activities: (i) Walking; (ii)

Table 3 Frequency of activities

in the Kasteren datasets
Activity Home C Activity Home B Activity Home A

Eating 345 Brush_teeth 25 Idle 7888

Idle 5883 Eat_brunch 132 Brush_teeth 21

Brush_teeth 75 Eat_dinner 46 Get_drink 21

Get_dressed 70 Get_a_drink 6 Get_snack 24

Get_drink 20 Get_dressed 27 Go_to_bed 11599

Get_snack 8 Go_to_bed 6050 Leave_house 19693

Go_to_bed 7395 Idle 20,049 Prepare_Breakfast 59

Leave_house 11,915 Leaving_the_house 12,223 Prepare_Dinner 325

Prepare_Breakfast 78 Prepare_brunch 82 Take_shower 221

prepare_Dinner 300 Prepare_dinner 87 Use_toilet 154

Prepare_Lunch 58 Take_shower 109 – –

Shave 57 Use_toilet 39

Take_medication 6 Wash_dishes 25 – –

Take_shower 184 – –

Use_toilet_downstairs 57 – – – –

Use_toilet_upstairs 35 – – – –

Total 26,486 Total 38,900 Total 40,005

Table 2 Frequency of activities in the Ordonez datasets

Activity Home A Home B

Leaving 1664 5268

Breakfast 120 309

Toileting 138 167

Spare Time/ TV 8555 8984

Dinner – 120

Sleeping 7866 10,763

Snack 6 408

Grooming 98 427

Showering 96 75

Idle 1598 3553

Lunch 315 395

Total 20,456 30,427

Table 1 Details of the datasets

Ordonez-Home A Ordonez-Home B Kastern-Home A Kastern-Home B Kastern-Home C

Setting Home Home Apartment Apartment House

Gender – – Male Male Male

Activities 10 11 10 13 16

Age – – 26 28 57

Rooms 4 5 3 2 6

Sensors 12 12 14 23 21

Duration (days) 14 21 25 14 19

Table 4 Frequency distribution of activities in the Wearable smart-

phone (inertial sensors) dataset

Activity Training samples Testing samples

Walking 1226 496

Walking_upstairs 1073 471

Walking_downstairs 986 420

Sitting 1286 491

Standing 1374 532

Laying 1407 537
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Walking_upstairs; (iii) Walking_downstairs; (iv) Sitting;

(v) Standing; (vi) Laying. Table 4 shows the frequency

distribution of activities in the training and testing sets. The

accelerometer and gyroscope signals were preprocessed

using noise filters. Furthermore, the signals were sampled

in fixed-width sliding windows of 2.56 s and 50% overlap.

5.1.4 Wearable wireless identification and sensing data

Fourteen elderly volunteers from 78 to 78 ± 4.9 years old

wore Wearable Wireless Identification and Sensing Plat-

form (W2ISP) tag [54–56]. The W2ISP placed on top of

their garment at the sternum level to capture trunk move-

ments and recognize activities: (i) sit on bed; (ii) sit on

chair; (iii) lying; (iv) ambulating. The activities were per-

formed in two clinical room configurations (Roomset1 and

Roomset2) for ambulatory monitoring of older patients.

Table 5 shows the frequency distribution of activities from

both datasets:Roomset1 and Roomset2.

5.1.5 Preprocessing smart home data

The timeline of the human daily activities for all the smart

homes data is segmented in time slots using the window

size Dt = 1 min. The raw sensor data from smart homes

provide the start time and end time of the sensor activations

as well as the type (such as pressure sensor), location (such

as bed), and place (such as bedroom) of the sensors. To

generate the input datasets by preprocessing the raw sensor

data, multiple and incremental fuzzy temporal windows

(FTW) are used. FTW is used as a successful technique to

segment the sensor data and prepare the input datasets

[4, 6, 9, 18, 57]. FTW has shown that it can capture signal

sensors of a long and short duration of human activities

such as sleep or snack from raw sensor data [4, 57]. This

increases the recognition results of the temporal models.

Furthermore, temporal models i.e., LSTM and 1D CNN

achieved better recognition results for activity recognition

when the input datasets are generated by FTW compared to

other methods such as Equally Sized Temporal Windows

(ESTWs), Raw and Last Activation (RLA), and Raw and

Last Next Activation (RLNA) [4, 6].

5.2 Models hyper-parameters

In this section, the parameters of all the models in this

study are shown. A range of the following parameters used

in a series of trial and error experiments over these ranges

to find optimal parameters.

• Learning rates from 0.0001 to 0.01.

• Batch sizes values 32, 64, 128, and 256

• Dropout rate values 20%, 30%, 40%, and 50%.

• Number of epochs from 1 to 100.

Based on the series of trial and error experiments, we

observed that 0.001 for the learning rate, 64 for the batch

size with a 20% dropout rate with 50 epochs are the most

appropriate hyper-parameters for the models to converge.

To find a proper number of epochs, early stopping as a

regularization technique is used to terminate the training

when validation error starts increasing. Hence, the training

was stopped at the minimum of the validation loss. To find

a proper learning rate over the ranges in experiments, other

hyper-parameters were fixed. This process is repeated until

all the hyper-parameters are set. A large batch size can

make training faster and require more memory space [6].

On the contrary, smaller batch size requires less memory

space with slightly slower training but can cause the model

to converge quickly, hence it is mostly a trade-off prob-

lem [6]. The 20% dropout rate is used to prevent the

models from overfitting as a regularization technique [58].

The dropout technique ignores randomly selected neurons

during the training process. The dropout technique tem-

porally disconnects the ignored neurons on the forward

pass hence in the backward pass their weights will not be

updated. Layer normalization that normalizes the input

data across the features is used after each dilation causal

convolution [59]. Layer normalization can reduce the

training time as empirically shown in [59].

5.3 Measure evaluation

F1-score as a metric is used to compare the performance of

the proposed approach with other temporal methods.

Accuracy is often used to evaluate the performance of

classifiers. However, accuracy in the presence of imbal-

anced classes cannot be an appropriate measure for clas-

sification because less presented classes have a very little

impact on accuracy as compared to the prevalent classes

[6]. Hence, F1-score is employed to measure and evaluate

all the temporal models since F1-score is the weighted

average of recall and precision that can provide more

insight into the functionality of the temporal models than

the accuracy metric [4]. F1-score is calculated in Eqs. (12)

and (13).

Table 5 Frequency distribution of wearable wireless identification

and sensing datasets

Activity RoomSet1 RoomSet2

Sit on bed 15,162 1244

Sit on chair 4381 530

Lying 30,983 20,537

Ambulating 1956 335
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F1-score ¼ 2 � precision � recall

precision þ recall
ð12Þ

recall ¼ TP

TP þ FN
; precision ¼ TP

TP þ FP
ð13Þ

where TP, FP, FN are the number of true positives, false

positives, and false negatives, respectively. Moreover, F1-

score is widely used in activity recognition [4, 6, 18, 35].

Fig. 7 Average F1-score of proposed method compared with the state-of-the-art techniques from eight the datasets

Table 6 Results of F1-score and training time in seconds from Ordonez Home A dataset

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Breakfast 82.74 80.19 84.65 85.65 79.98 83.11 85.71

Grooming 46.66 57.14 51.28 74.21 62.19 75.32 80.01

Leaving 97.20 97.28 96.43 96.11 96.77 95.29 99.75

Lunch 95.65 96.92 94.87 95.42 95.34 95.44 96.93

Showering 78.94 75.45 77.94 79.42 78.12 80.65 93.84

Sleeping 96.77 96.34 96.63 95.57 94.89 97.53 97.63

Snack 64.66 67.22 55.83 67.02 69.99 70.74 84.82

Spare time 98.50 98.04 97.84 96.66 98.81 96.83 98.57

Toileting 63.75 61.09 64.71 62.71 67.42 69.89 79.76

Average 80.54 81.07 80.02 83.64 82.61 84.97 90.78

Training time 96.81 984.54 631.51 1890.62 250.814 1012.42 148.26

Table 7 Results of F1-score and training time in seconds from Ordonez Home B dataset

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Breakfast 75.12 64.44 69.38 68.93 66.83 74.87 76.87

Grooming 65.75 85.55 85.36 86.12 81.62 85.33 88.87

Leaving 88.34 93.05 90.87 89.52 92.86 89.79 93.33

Lunch 98.95 81.18 77.00 79.68 83.21 95.21 99.63

Showering 78.94 79.91 78.56 77.69 80.78 79.43 82.84

Sleeping 98.11 85.71 86.76 83.29 86.82 96.37 98.30

Snack 67.92 75.86 73.41 75.42 73.21 76.16 78.59

Spare time 74.63 78.51 77.24 73.32 77.98 78.21 81.48

Toileting 48.91 80.00 83.62 76.47 83.32 83.56 86.11

Dinner 82.23 84.78 85.32 82.51 85.49 86.19 89.45

Average 77.89 80.89 80.75 79.29 81.21 84.51 87.34

Training time 201.76 1451.22 852.16 2548.01 379.057 1241.42 271.89
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5.4 Results and discussion

In this section, the experimental results of the proposed

dilated causal convolution with the self-attention model for

HAR are presented and discussed. The achieved results of

each activity based on multiple models compared with the

proposed are presented. Besides, the training time of all the

temporal models is shown to be easily compared with the

training time of the proposed method. The results of the

proposed method are compared with temporal models: 1D

CNN, LSTM, hybrid 1D CNN ? LSTM, CudNNLSTM,

and Bidirectional LSTM. The proposed method improved

the results of HAR by 5% up to 7% compared with LSTM,

1D CNN, hybrid 1D CNN ? LSTM, CudNNLSTM, and

Bidirectional LSTM and reduced the training time.

Figure 7 shows the results of the proposed method com-

pared to the state-of-the-art techniques on eight datasets.

The results indicate that the proposed method outper-

formed the temporal and recurrent-based models for human

activity recognition from all the datasets.

5.4.1 Results from Ordóñez datasets

Tables 6 and 7 show the F1-score and training time (sec-

onds) of the proposed method against the temporal models

from Ordóñez smart homes A and B datasets. The results

show that the proposed method outperforms the temporal

models (LSTM, 1D CNN, hybrid 1D CNN ? LSTM,

CudNNLSTM, and Bidirectional LSTM). The training time

in seconds is shown in Tables 6 and 7 for all the employed

Table 8 F1-score results and training time in seconds of Kasteren smart home A dataset

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Brush_teeth 20.22 24.08 37.86 21.56 31.46 43.59 54.44

Get_drink 51.76 56.84 48.87 42.81 57.21 59.33 66.92

Get_Snack 50.00 53.21 51.23 55.71 56.42 57.22 63.69

Go_to_bed 79.72 74.63 73.21 78.8 73.31 80.16 86.54

Leave_house 79.80 81.58 80.28 76.37 78.89 80.02 84.28

Prepare_breakfast 76.66 74.51 72.41 74.95 75.57 76.97 83.32

Prepare_Dinner 83.20 85.24 80.39 87.94 86.48 89.56 95.42

Take_shower 84.37 81.43 79.71 74.86 83.69 85.13 89.11

Use_toilet 56.60 66.11 63.06 58.42 67.85 67.82 71.97

Average 64.70 67.59 65.22 63.49 67.98 71.09 77.29

Training time 106.89 1381.49 975.21 2137.95 497.916 1056.29 148.05

Table 9 Results of F1-score and training time in seconds of Kasteren smart home B datasets

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed methods

Brush_teeth 23.10 37.62 33.25 32.57 39.55 42.89 51.18

Eat_brunch 88.42 90.14 87.53 91.72 89.87 90.93 95.92

Eat_dinner 83.19 85.23 86.68 86.01 86.31 86.79 90.02

Get_a_drink 17.84 31.18 22.34 25.61 33.03 44.15 53.00

Go_to_bed 95.11 99.01 99.21 98.91 97.94 96.32 99.73

Leaving_the_house 91.13 91.75 86.14 87.46 92.00 92.98 96.39

Prepare_brunch 77.48 80.19 83.11 85.92 79.96 85.62 88.10

Get_dressed 16.66 22.58 20.08 27.10 23.41 31.79 42.63

Prepare_dinner 93.11 97.29 94.90 97.00 96.87 96.21 97.51

Take_shower 76.82 79.12 82.71 75.91 78.91 81.95 83.13

Use_toilet 47.78 52.51 47.08 55.71 53.22 56.13 62.18

Wash_dishes 76.61 76.12 73.19 49.28 75.80 75.38 82.36

Average 65.63 70.22 68.01 67.76 70.57 73.42 78.51

Training time 99.16 1189.38 781.41 1983.90 478.563 902.14 137.35
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methods. The training time of the proposed method is

much lower compared to the training time of LSTM,

hybrid 1D CNN?LSTM, and Bidirectional LSTM with

slightly higher training time than the 1D CNN training

time. This indicates that the proposed method reduced the

training time and improved the HAR systems significantly

from Ordóñez smart homes. Importantly the proposed

method accelerated the training time compared to the

CudNNLSTM model which is a fast LSTM version and

backed by Cuda library.

5.4.2 Results from Kasteren datasets

Tables 8, 9 and 10 show the results of the proposed method

compared to the temporal models (LSTM, 1D CNN, hybrid

1D CNN ? LSTM, CudNNLSTM, and Bidirectional

LSTM) from Kasteren smart homes A, B, and C, respec-

tively. The results of the F1-score show that the proposed

method improved HAR from Kasteren datasets. The results

show that the result scores are improved for each activity

and the average result score. The proposed method con-

siderably reduced the training time compared with the

recurrent neural network-based architecture methods with

reasonably higher training time than the 1D CNN training

time. The results indicate that dilated causal convolution

with self-attention can effectively improve the performance

of HAR systems and reduce the training time.

5.4.3 Results from wearable sensors datasets

Figures 8, 9, and 10 show the results of the experiments

that achieved based on wearable sensors for HAR. The

results of the proposed method compared to the results of

the temporal models (LSTM, 1D CNN, hybrid 1D

Table 10 F1-score results and training time in seconds of Kasteren home C datasets

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed methods

Eating 76.71 81.32 79.69 80.18 80.36 80.98 85.31

Brush_teeth 51.27 61.56 62.82 60.73 62.59 63.55 68.11

Get_dressed 53.47 55.90 51.47 54.78 56.32 56.82 61.17

Get_drink 42.13 47.61 50.40 38.99 47.91 48.11 51.71

Get_snack 64.14 67.74 65.53 68.16 68.39 67.86 72.23

Go_to_bed 94.86 95.11 91.48 94.21 96.04 95.41 96.12

Leave_house 93.81 90.18 92.74 89.05 91.52 92.57 94.17

Prepare_Breakfast 76.35 75.74 73.15 77.78 76.81 78.45 83.42

Prepare_Dinner 77.01 79.74 68.32 71.53 78.49 79.68 84.29

prepare_Lunch 74.12 76.21 77.21 73.55 77.07 78.39 85.73

Use_Toilet_Downstairs 42.68 40.90 41.46 37.98 41.69 45.17 59.29

Use_toilet_upstairs 35.21 43.27 30.97 45.57 45.32 46.21 51.19

Shave 73.83 75.32 77.15 71.73 76.42 78.25 81.01

Take_medication 48.37 43.74 45.32 49.32 42.39 45.21 57.09

Take_shower 72.18 75.29 74.34 75.87 75.71 75.42 78.16

Average 65.02 67.30 65.47 65.96 67.80 68.79 73.93

Training time 84.42 954.32 545.49 1652.71 332.765 789.35 95.14

Fig. 8 F1-score from wearable dataset of RoomSet1

Fig. 9 F1-score from wearable dataset of RoomSet2
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CNN ? LSTM, CudNNLSTM, and Bidirectional LSTM).

Tables 11, 12, and 13 show the detailed results and the

training time of all the models. Table 11 particularly shows

the results of the experiments obtained based on smart-

phone sensors data. The results of the wearable sensors

data demonstrate the outstanding performance of our

Fig. 10 F1-score from wearable smartphone dataset

Table 11 Results of F1-score and training time in seconds from smartphone dataset

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Laying 89.03 87.14 86.76 85.35 87.51 89.67 95.69

Sitting 84.32 82.29 81.22 82.53 81.98 86.45 95.94

Standing 88.38 86.71 87.42 86.32 86.43 88.92 92.77

Walking 75.90 80.17 78.87 75.64 81.03 80.89 84.89

Walking_downstairs 76.31 80.01 79.11 78.76 80.21 80.11 84.14

Walking_upstairs 96.44 95.42 94.63 95.89 96.05 96.93 100.00

Average 85.89 86.14 85.00 84.08 86.03 87.16 92.24

Training time 92.45 547.62 463.64 874.35 212.63 697.89 121.13

Table 12 Results of F1-score and training time in seconds from wearable dataset of RoomSet1

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Ambulating 92.91 92.58 93.67 92.02 93.19 93.67 97.63

Lying 93.94 91.34 87.94 94.71 92.97 94.12 97.70

Sit_on_bed 94.91 94.74 95.89 94.64 95.94 95.31 99.90

Sit_on_chair 56.51 49.12 47.48 51.58 50.04 60.52 72.84

Average 84.56 81.94 81.24 83.23 83.03 85.90 92.02

Training time 89.11 406.95 389.21 944.42 231.56 618.64 198.24

Table 13 Results of F1-score and training time in seconds from wearable dataset of RoomSet2

Activity CNN LSTM Hybrid Bi-LSTM CuDNN LSTM DeepConvLSTM ? Attention Proposed method

Ambulating 79.42 83.75 84.95 78.95 84.67 85.43 89.79

Lying 89.75 82.29 89.50 84.97 83.16 89.42 94.85

Sit_on_bed 94.74 94.66 96.75 95.49 95.21 96.21 99.79

Sit_on_chair 51.31 48.27 59.70 53.75 49.51 62.56 69.87

Average 78.80 77.24 82.72 78.24 78.13 83.40 88.57

Training time 36.30 91.64 85.94 158.11 78.42 135.31 56.05
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proposed method compared to the state-of-the-art tech-

niques. The training time of the proposed method is shorter

than the training time of all the temporal and recurrent

models except the training time of 1D CNN. The proposed

method improved the performance of each activity as well

as the average performance of all activities compared to

recurrent and temporal models based on all wearable sen-

sor data.

5.4.4 Proposed method compared
to the DeepConvLSTM 1 attention

Results of our proposed method are compared with the

results achieved by the DeepConvLSTM ? Attention [13]

for all the datasets. Results of the

DeepConvLSTM ? Attention are shown from all the

datasets in this research and the training time. Since the

DeepConvLSTM ? Attention works based on the combi-

nation of 2D CNN and LSTM with an attention mecha-

nism, it requires more time to process the input data

compared to our proposed method. Moreover, compared to

DeepConvLSTM ? Attention, our proposed method

achieved better result scores with much faster training

times in all the datasets. For instance, our proposed method

achieved the F1-score of 90.78 and 87.51 from Ordóñez

smart homes A and B datasets, respectively, while the

DeepConvLSTM ? Attention achieved the F1-score of

84.97 and 84.51 for the same datasets with higher training

times.

Our proposed method dispenses the recurrence setting

entirely to accelerate the training time and boost the per-

formance of HAR systems. Dilated convolution aggregates

multi-scale contextual information to render informative

feature maps. Causal convolution in the proposed method

ensures the model cannot violate the ordering of the

sequential temporal input data. The proposed method can

focus on the important timesteps using the attention

mechanism to improve the recognition process. The

proposed method improved the results of each activity in

addition to the average results of all the activities and all

the datasets.

5.4.5 Ablation study of the proposed method

Ablation studied is conducted to show performance of the

proposed method without dilated convolution, causal con-

volution and attention mechanism. Table 14 shows the

results of these models and the results of the proposed

method without these three techniques as well as the results

of the proposed method from all the datasets. The results

show that how the proposed method is affected by each of

the dilated convolution, causal convolution and attention

mechanism. For example, the proposed method achieved

the F1-score of 90.78, while the proposed method without

dilated convolution achieved the F1-score of 84.93, with-

out attention achieved the F1-score of 83.24, without

causal convolution achieved the F1-score of 85.41. More-

over the proposed method without these three techniques

achieved the F1-score of 80.54. The proposed method

without using attention mechanism has achieved lowest

results scores from all the datasets compared to the pro-

posed method without using dilated and causal convolu-

tions. Hence, the results indicated that the attention

mechanism has a higher contribution in the proposed

method compared to dilated and causal convolutions.

Beside the ablation study, the proposed method is com-

pared with the DeepConvLSTM ? Attention method and

many temporal and recurrent models: LSTM, 1D CNN,

hybrid 1D CNN ? LSTM, CudNNLSTM, and Bidirec-

tional LSTM.

Table 14 Results of F1-score of ablation studies of the proposed method

Datasets Without dilated convolution Without attention Without Causal Without all Proposed method

Ordonez Home A 84.93 83.24 85.41 80.54 90.78

Ordonez Home B 83.79 81.11 84.19 77.89 87.34

Kastern Home A 72.87 69.78 74.21 64.70 77.29

Kastern Home B 74.68 68.81 75.11 65.63 78.51

Kastern Home C 70.44 67.13 70.88 65.02 73.93

Smartphone dataset 87.13 86.27 89.25 85.89 92.24

Wearable RoomSet1 87.17 84.29 88.72 84.56 92.02

Wearable RoomSet2 84.09 82.25 85.19 78.80 88.57
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6 Conclusion

This study proposes dilated causal convolution with multi-

head self-attention to accelerate training time and improve

the performance of HAR systems from smart home and

wearable sensor data. Thorough experiments are conducted

on eight real-world smart home and wearable datasets to

evaluate the proposed method against the temporal and

recurrent-based architecture methods. The results of the

experiments show that the proposed method significantly

improved the accuracy of HAR and reduced the training

time compared to the state-of-the-art techniques. The pro-

posed method improved the performance of HAR systems

by up to 7% compared with LSTM, 1D CNN, hybrid 1D

CNN ? LSTM, CuDNNLSTM, and Bidirectional LSTM

using wearable sensors and smart home sensors data.

The operation of the self-attention mechanism scales

quadratically with the input sequence length which can

increase training time because it appends more weight

parameters to the model. To address this limitation, our

future work will investigate a newly proposed method in

human activity recognition to further accelerate the training

time and enhance the performance of HAR by introducing

a lightweight multi-head self attention mechanism.
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