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Abstract
The heat exchanger has been widely used in the energy and chemical industry and plays an irreplaceable role in the

featured applications. The design of heat exchanger is a mixed integer complex optimization problem, where the efficient

design significantly improves the efficiency and reduces the cost. Many intelligent methods have been developed for heat

exchanger optimal design. In this paper, a novel variant of sine and cosine algorithm named EDOLSCA is proposed,

enhanced by dynamic opposite learning algorithm and the elite strategy. The proposed method is tested in CEC2014

benchmark and proved to be of significant advantages over the original algorithm. The new algorithm is then validated in

the plate-fin heat exchanger (PFHE) optimal design problem. The comparison results of the proposed algorithm and other

algorithms prove that EDOLSCA also has demonstrated superiority in heat exchanger optimal design.

Keywords Plate-fin heat exchanger � Design optimization � Sine cosine algorithm � Dynamic-opposite learning

1 Introduction

In 2020s, energy consumption has been growing at an

exponential rate thanks to the higher energy efficiency and

strong demand. As early as 1973, Lincoln et al. [28]

pointed out that energy conservation should be paid

attention to and the sustainable development of environ-

ment and resources should be guaranteed through techno-

logical progress and social science [55]. With the

significant improvement of computational capacity, an

increasing number of industrial equipment began to use

computer-aided design and optimization to improve the

energy efficiency and reduce economic expenditure

[49, 51]. Plate-fin heat exchanger (PFHE) is a common

type of heat exchanger, also known as brazed aluminum

heat exchanger in the thermal engineering. Compared with

other types of heat exchangers, PFHE has compact struc-

ture, relatively small size, relatively high thermal load and

lightweight, due to which it has been widely used in

aerospace, railway, energy and chemical industries. In real-

world cases, the majority of the design for heat exchanger

is based on the experience of designers, without any unified

design method and scheme [45]. Bio-optimization, which

is of high compatible capacity in solving various opti-

mization problems, is promising to effectively solve PFHE

optimal design problem. To solve the design problem of

plate-fin heat exchanger, the geometric limitation of heat

exchanger, such as shape and size, should be determined

based on the actual engineering needs. Then the objective

function is derived based on the design objective. The fluid

data and constraints are brought into the operation, and the

appropriate algorithm is selected for them. Finally, the

optimal design data are obtained.

Bio-inspired optimization is based on a variety of

physical and biology phenomena in the nature. Several

typical examples include genetic algorithm (GA) based on

evolutionary biology [46], particle swarm optimization

(PSO) from simplified social models [25], simulated

annealing algorithm from metallurgy for specific rate
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cooling operations [42], ant colony optimization (ACO)

derived from the behavior of ants in food searching and

paths discovering [13]. Moreover, a teaching learning-

based optimization (TLBO) algorithm has also been pro-

posed to simulate the teaching process of teachers and

students [39].

In the heat exchanger optimal design optimization,

many scholars have utilized bio-inspired optimization

methods for solving the problems. The optimization of heat

exchanger can be divided into two types: single objective

and multi-objective. Featured optimization targets of opti-

mal design include the amount of entropy produced, total

heat exchange, maintenance costs and production costs.

Port diameter, port horizontal distance, port vertical dis-

tance, plate thickness, fin length and number of plates are

often used as geometric design variables [36]. Some recent

proposed methods, such as Gaussian process regression and

adaptive resampling, are adopted to minimize the cost [7].

Some scholars have combined traditional and novel

methods, such as computational fluid dynamics (CFD)

combination with GA, to optimize heat exchangers with

Colburn factor j and the friction factor f as targets [2, 29].

Moreover, the optimal design problem is mostly solved by

simple and improved optimization algorithm. Jonh and

Krishnakumar [22] used GA to optimize the perforated

plate matrix heat exchanger surfaces, where the optimal

objectives were Colburn factor j and the friction factor

f. Rao and Saroj [38] used Jaya algorithm to optimize the

shell and tube heat exchanger (STHE) economically, taking

into account the consistency and maintainability caused by

scaling. In the same year, Rao and Saroj [37] improved the

Jaya algorithm and proposed the elitist-Jaya algorithm to

optimize the setup and operation costs of the STHE.

Dhavle et al. [12] used cohort intelligence (CI) to optimize

STHE design, and the total cost of the heat exchanger was

taken as the target, and the exterior scene of the tube and

the spacing of baffles were taken as the design variables.

Vasconcelos et al. [43] proposed a falcon optimization

algorithm (FOA) based on the predation behavior of fal-

cons. The total cost of STHE was used as the objective

function. Iver et al. [21] combined GA and CI and pro-

posed an adaptive range genetic algorithm (ARGA) to

solve the costs of the economic optimization problems and

extended them to solve other complicated core mechanical

engineering application problems.

Sine cosine algorithm (SCA) is a new meta-heuristic

algorithm first proposed by Mirjalili in 2016 [31]. This

optimization method is based on sine and cosine functions

in mathematics and has been immediately widely applied

in various optimization problems. Ekiz et al. [14]

expounded the feasibility of SCA in solving constraint

optimization problems and concluded that the successful

feature of SCA lies in the smooth balance of exploration

and development. Banerjee and Nabi [4] used SCA to

optimize the shuttle’s re-entry trajectory back to Earth to

find the best trajectory during the return. Attia et al. [3]

used the modified sine cosine algorithm (MSCA) to solve

the problem of optimal power flow (OPF), which acceler-

ated the speed of SCA search and avoided the local optimal

selection of the original algorithm as much as possible.

Hekimoglu [19] used SCA to solve the parameters of

automatic voltage regulator and proportional integral

derivative (PID). In the optimization problem of automatic

voltage regulator system, SCA has strong robustness.

Mahadad and Srairi [30] use SCA to optimize load margin

stability to improve power system security. Wang et al.

[44] employed the multi-objective sine cosine algorithm

(MOSCA) combined with wavelet neutral network (WNN)

to accurately predict the wind behavior of wind power

plants. Das et al. used SCA to optimize the hydrothermal

scheduling problem in the economics of power system to

minimize the total cost of power generation and solve the

short-term hydrothermal scheduling problem [11]. Chan-

drasekaran et al. [8] solved the partial shading detection

(PSD) and MPPT (maximum power point tracking) prob-

lems using SCA.

Since the proposal of canonical SCA, many scholars

have proposed various algorithm improvement schemes or

combinations with other algorithms to solve the complex

problems. Elaziz et al. [1] combined the opposition-based

learning (OBL) idea with SCA to improve the search

accuracy of SCA. Nenavath and Jatoth [32] combined SCA

with differential evolution (DE) and demonstrated that the

hybrid SCA-DE algorithm solves the problems effectively.

Sindhu et al. [40] combined elite strategy with SCA to

make simple improvements to the algorithm and improve

the search efficiency of SCA. Bureerat and Pholdee [6]

proposed adaptive sine cosine algorithm integrated with

differential evolution (ASCA-DE) to solve the problem of

structural damage detection. Gupta and Deep [17] proposed

an improved SCA with crossover scheme and proved the

validity using CEC2014 benchmark test. In addition, they

also solved the multilevel threshold processing of image

segmentation using the new method and obtained com-

petitive result. Chegini et al. [9] combined the PSO and

Levy flight methods and proposed the PSOSCALF with

stronger jumping ability and higher searching ability.

Gupta and Deep [16] added self-adaptive to SCA to

enhance the exploitation ability. Pasandideh and Kha-

lilpourazari [33] combined crow and SCA and proposed the

sine cosine crow search algorithm to balance the explo-

ration and exploitation. Li et al. [26] proposed the

enhanced brain storm SCA (EBS-SCA) to solve the prob-

lem of premature convergence of SCA on complex opti-

mization problem, which significantly enhanced the

algorithm performance. Gupta and Deep [18] proposed
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SCA with global optimization based on their previous

studies, referred to simulated quenching algorithm search

mechanism for improved algorithm, and used it to train

multilayer perceptrons. Though a number of SCA variants

have proposed, the optimization capacity of the algorithm

is to be further improved, in particular toward the con-

vergence speed aspect.

This paper tries to use dynamic opposite learning (DOL)

to significantly enable the diversity of solutions in the SCA,

where the elitist strategy is also used to accelerate the

convergence. The DOL strategy was first proposed by Xu

et al. [50], which significantly improved the comprehensive

performance of TLBO . Combining DOL and elite policies

with SCAs, a new EDOLSCA is proposed, taking the

advantages of the adopted strategies to speed up SCA

search and improve precision for specific problems. The

ideas in this paper are evident in the CEC2014 benchmark

test and PFHE design issues.

The major contribution of this article is summarized as

follows:

Firstly, the objective function of PFHE optimization

design is derived by using the method of number of transfer

units (NTU), and two design objectives and fluid parame-

ters are given.

Secondly, elite strategy and DOL are adopted to

strengthen SCA, generating the EDOLSCA. The

improvement makes the convergence speed of SCA greatly

increase.

Finally, EDOLSCA was tested and compared using the

CEC2014 benchmark and then adopted for solving an

engineering example of PFHE optimal design.

The structure of this paper is as follows:

Section 2 demonstrates the thermodynamic formula of

PFHE, establishes the optimization objective and evalua-

tion function, as well as the constraint conditions. Sec-

tions 3 and 4 elaborate the preliminaries of the elite and

DOL strategies and illustrate the principle and specific

algorithm scheme of EDOLSCA. Section 5 provides a

comprehensive test of EDOLSCA, including tests based on

the CEC2014 benchmark and PFHE design, with compre-

hensive analysis of the results. Section 6 summarizes the

whole paper and outlooks the future directions.

2 Previous work on plate-fin heat exchanger
optimization

A standard two-flow straight finned plate-fin heat exchan-

ger is shown in Fig.1. The plate-fin part of the plate-fin heat

exchanger is shown in Fig.(a), in which the design vari-

ables mentioned below are marked. The fins are generally

welded from thin aluminum plates. The picture shows a

relatively simple form of fin. Figure(b) is the working

principle diagram of the plate-fin heat exchanger. The two

fluids flow alternately in different fins, exchanging heat

with maximum efficiency. The optimization work in this

paper is based on this featured heat exchanger. In this

section, the formula is derived first; then, the optimization

constraints and objectives are determined.

2.1 Formula derivation for plate-fin heat
exchanger

Heat duty Q is defined first, then Q defines the overall

energy exchange level of the heat exchanger, and the for-

mula is given by Yousefi et al. [53]:

Q ¼�Cmin TAin � TBinð Þ ð1Þ

Cmin ¼m � Cp ð2Þ

where C is the heat capacity rate, TAin; TBin refer to fluid A

(usually hot fluid) and fluid B (usually cold fluid), in refers

to the fluid flowing into the heat exchanger, and min refers

to the less numeric of the two fluids, max is the larger of the

two fluids.

The effectiveness � is given by Incropera et al. [20],

� ¼ 1� e
1
Crð ÞNTU0:22 e �CrNTU

0:78ð Þ�1
� �� �

ð3Þ

where e is the Eulers number,

Cr ¼ Cmin=Cmax ð4Þ

Heat transfer coefficient method is a common method of

thermodynamic solution, which is usually used to solve

problems without knowing outlet temperature. The heat

transfer coefficient is expressed as:

1

NTU
¼

Cmin
AffA

jACpAPr
�0:667
A mhAA

þ AffB

jBCpBPr
�0:667
B mBAB

� � ð5Þ

where j is Colburn factor, A;AHT is heat transfer area (m2),

Cp is specific heat of fluid (W� kg�1 �K�1 ), Pr is Prandtl

number, and Ns is number of entropy generation units.

The free flow area of two fluids is defined as:

AffA ¼ Ht � tAð Þ 1� nAtAð ÞLBNA ð6Þ

AffB ¼ HB � tBð Þ 1� nBtBð ÞLANB ð7Þ

In the formula, H is height of the fin, H is height of the fin, t

is fin thickness, n is fin frequency, L denotes heat

exchanger length, N is number of fin layers, lis dynamic

viscosity (N � s �1 � m �2), and q is density (kg � m �3).
Fluid B has one more layer than fluid B:
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NB ¼ NA þ 1 ð8Þ

The heat transfer area of the fluid comes from Yousefi [52]:

AA ¼LALBNA 1þ 2nA HA � tAð Þð Þð Þ ð9Þ

AB ¼LALBNA 1þ 2nB HB � tBð Þð Þð Þ ð10Þ

j is the Colburn factor and f is fanning friction factor [23].

For laminar flow Re� 1500ð Þ,

j ¼0:53ðReÞ�0:5 l

Dh

� ��0:15
s

H
� t

� ��0:14
ð11Þ

f ¼8:12ðReÞ�0:74 l

Dh

� ��0:41 s

H
� t

� ��0:02
ð12Þ

For turbulent flow Re[ 1500ð Þ,

j ¼0:21ðReÞ�0:4 l

Dh

� ��0:24 s

H
� t

� �0:02
ð13Þ

f ¼1:12ðReÞ�0:36 l

Dh

� ��0:65
s

H
� t

� �0:17
ð14Þ

where Re is Reynolds number, s is fin spacing.

The fin spacing of the PFHE:

s ¼ ð1=n� tÞ ð15Þ

where

Re ¼ m � Dh

Affl
ð16Þ

For the fin shape in this paper, the hydraulic diameter Dh of

the heat exchanger can be expressed as:

Dh ¼
4s H � tð Þl

2 slþ H � tð Þlþ t H � tð Þð Þ þ ts
ð17Þ

where Dh is hydraulic diameter and l is lance length of the

fin.

The pressure drop due to friction between the fluid in the

channel and the fin can be calculated as:

DPA ¼
2fALA

mA

AffA

� �2

qADh;A

ð18Þ

DPB ¼
2fBLB

mB

AffB

� �2

qBDh;B

ð19Þ

where DP is pressure drop (N �m�2)

2.2 Objective function for plate-fin heat
exchanger

For most heat exchangers, the flow of fluid in the channel is

accompanied by friction, which leads to the process of

entropy increase. The design of the heat exchanger deter-

mines the amount of entropy increase. Therefore, entropy

increase is considered as an effective evaluation index in

the design of heat exchanger. Under the same fluid con-

dition, the smaller the number of entropy increases, the

better the performance of the heat exchanger.

In this article, one of the target functions is defined as

entropy generation units [5]:

Ns ¼ 1� �ð Þ TBin � TAinð Þ2

TBinTAin

" #

þ RcteA
CpA

� �
DPA

PAin

� �

þ RcteB
CpB

� �
DPB

PBin

� � ð20Þ

where Rcte is specific gas constant (J� kg�1 �K�1)
In addition to entropy generation, the effective heat

transfer area of heat exchanger is also one of the important

indexes to evaluate heat exchanger. The heat transfer area

is also closely related to the Reynolds number and effi-

ciency of the heat exchanger. Therefore, the second

objective function in this paper is the heat transfer area of

the heat exchanger

(a) (b)

Fig. 1 Plate-fin heat exchanger and rectangular offset strip fin
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The total heat transfer area is:

AHT ¼ AA þ AB ð21Þ

2.3 Application example of plate-fin heat
exchanger

For the two PFHE design examples prepared in this paper,

the difference lies in the difference of fluid parameters and

size constraints. The specific constraints and fluid data are

shown in Table 1.

In order to meet the heat duty requirement of the heat

exchanger, effective constraints are carried out in the cal-

culation process of the algorithm, and the penalty function

is used to achieve this requirement. The formula is as

follows:

g Xð Þ ) n Xð Þ � Q ¼ 0 ð22Þ

In the design case, the overall size of the heat exchanger,

the density of fins, the length, width and height of fins, the

number of fluid layers of the two fluids and the thickness of

fins are all the constraints of the design. The volume of the

heat exchanger is limited to 1m*1m, and heat duty is

160kW of Case 1 and 1050kW of Case 2, respectively. In

the calculations, fluids are considered ideal gases.

3 Algorithm preliminaries

Heuristic optimization algorithms are inspired by biology

as well as natural sciences, such as physics and mathe-

matics. Different ideas of particle updating determine the

different characteristics of each algorithm. For different

algorithm ideas, the parameters that need to be adjusted are

also different. Some algorithms do not need to adjust

parameters, while others may need to adjust 4–6 parame-

ters to ensure the best results.

3.1 Sine cosine algorithm

For SCA, the main idea of the algorithm is the sine and

cosine functions in mathematics. Four random numbers

determine the motion direction and motion distance of

particles, and there are no parameters to be adjusted in the

algorithm. Therefore, SCA has relatively strong adapt-

ability, which provides the possibility for wide application.

The core of the algorithm is as follows:

Xtþ1
i ¼

Xt
i þ r1 � sinðr2Þ � r3P

i
t � Xt

i

�� ��; r4\0:5

Xt
i þ r1 � cosðr2Þ � r3P

i
t � Xt

ii

�� ��; r4� 0:5

(

ð23Þ

r1 ¼ a� t
a

T
ð24Þ

Table 1 Design constraints and

fluid data
Parameters Project 1 Project 2

Lower bound Upper bound Lower bound Upper bound

Heat exchanger length , m, FluidA 0.1 1 0.1 1

Heat exchanger length , m, FluidB 0.1 1 0.1 1

Height of the fin, m 0.002 0.01 0.002 0.01

Fin frequency 100 1000 100 1000

Fin thickness, m 0.0001 0.0002 0.0001 0.0002

Lance length of the fin, m 0.001 0.01 0.001 0.01

Number of fin layers 1 10 1 200

Parameters Project 1 Project 2

Fluid A Fluid B Fluid A Fluid B

Mass flow rate of fluid, kg � s�1 0.8962 0.8296 1.66 2

Temperature, K 513 277 1173.15 473.15

Pressure, Pa 100000 100000 160000 200000

Specific heat of fluid, J � kg�1 � K�1 1017.7 1011.8 1122 1073

Density, kg � m�3 0.8196 0.9385 0.6296 0.9638

Dynamic viscosity ,N � s � m�2 2.410E-05 2.182E-05 4.010E-05 3.360E-05

Prandtl number 0.6878 0.6954 0.731 0.694
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where X is location of position, t is the t � th iteration , P is

final solution, and T is maximum number of iterations.

Since the main updating method in the formula involves

sine and cosine function, it is named sine and cosine

algorithm. The rules of the algorithm are shown more

intuitively in Figs.2, 3. Figure 2 shows how the parameters

in the equation affect the search space for the solution,

which is a two-dimensional representation. Figures 2 and 3

together show the influence of sines and cosines on the next

position in the calculation. The search space can be

achieved by changing the range of values of sines and

cosines. And the random position in space or out of space is

also realized by equation parameters.In SCA, r1 determines

the direction of movement, r2 determines the distance of

movement, ranging in [0,2p], r3 determines the direction

whether to move inward or outward, bringing randomness

to the position, ranging in [-2,2], r4 determines whether to

move by sine or cosine manner, ranging in [0,1].

3.2 Dynamic-opposite learning

In some featured cases, optimization algorithm can be

improved effectively by modifying certain steps, such as

convergence speed and search accuracy. Oppositional-

based learning (OBL) [35] is a popular modification

method in recent years, from which quasi-opposite-based

learning (QOBL) [34] and quasi-reflection-based learning

(QRBL) [15] are evolved.

OBL was first proposed to accelerate the convergence of

DE. A strategy for finding the opposite number is

proposed:

XO ¼ aþ b� X ð25Þ

where XO is the opposite X, X 2 ½a; b�.
In practical application, if D becomes the dimension of

the problem, Eq.25 can be rewritten as:

XO
j ¼ aj þ bj � Xj; j ¼ 1 : D ð26Þ

In practical application, OBL, QOBL and QRBL are all

likely to fall into the local optimal position in the search

space. Xu et al. [50] proposed the dynamic opposite

learning (DOL) strategy to solve this problem:

XDO ¼ X þ w � rand � ðrand � XO � XÞ ð27Þ

where ’rand’ is a random number in [0, 1] , w is the weight

that determines the combination of DOL and the original

algorithm, that is, the weight of balance, and the

’rand � XO’ makes the search space become asymmetric,

so as to solve the problem of falling into local optimal, and

make the search become dynamic and constantly changing.

In the same way, DOL is applied to the real world and

dimension D is added, which can be rewritten as:

XDO
j ¼ Xj þ w � rand � ðrand � XO

j � XjÞ; j ¼ 1 : D ð28Þ

Applying the above DOL strategy to the initial population

and iteration makes the algorithm search better and faster.

4 Elite and DOL-based SCA

In this section, we describe in details how EDOLSCA

works. EDOLSCA combines elite and DOL policies to

bring greater speed and precision to SCA.

Fig. 2 Rules for the direction of particle motion in SCA

Fig. 3 Relationship between particle motion and sine and cosine functions in SCA
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4.1 DOL population initialization

After the population is initialized, the first step will be

calculated:

oPDO
ij ¼ oPij þ r1i � ðr2i � ðaj þ bj � oPijÞ � oPijÞ ð29Þ

where oP is a random population generated within the

upper and lower bound by using random numbers, and i

and j are the jth variables of the ith individual. a and b are

the boundaries of the variables, and r1 and r2 are random

numbers. This step can improve the adaptability of the

improved initial population through initial processing of

the population. After modifying the population, the particle

should be checked to see whether it exceeds the set

boundary.

4.2 DOL generation jumping

After the DOL processes the initial population, the algo-

rithm enters the SCA processing phase and is updated

according to the SCA rules. In order to cooperate with

different algorithms, jumping rate (Jr) is introduced into

DOL as the basis for whether the algorithm enters into

DOL step. Jr is a number in the range of [0, 1] , and the

specific value should be determined by experiments. In the

algorithm step, the program randomly generates a random

number in the range of [0, 1] . If the random number is less

than the set Jr, then the algorithm will enter the DOL step:

PDO
ij ¼ Pij þ w � r3i � ðr4i � ðaj þ bj � PijÞ � PijÞ ð30Þ

The boundary between A and B will be dynamically

updated:

aj ¼ minðPijÞ

bj ¼ maxðPijÞ
ð31Þ

As with the other steps, the updated population needs to

check the boundaries.

4.3 EDOLSCA steps

In addition to the DOL strategy, the introduction of elites is

intended to address the exploration speed. The concept of

elite is to select a part of the best individuals before each

iteration, skipping the intermediate steps and keeping until

the end of each iteration to form a new population, so as to

ensure the overall superiority of the population.

At this point, the specific process of EDOLSCA has

been introduced, and the flowchart of the algorithm is

shown in Fig. 4, and steps of EDOLSCA are shown in

Algorithm.1.

5 Experimental results and discussion

5.1 Benchmark test

In this test, the benchmark proposed by CEC2014 [27] was

selected as the test function. The 14 alternative benchmarks

are shown in Table 2, the first four benchmarks are uni-

modal functions, and the remaining twelve are multi-modal

functions. These benchmarks are effective to test the

exploration and development capabilities of algorithms. In
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order to make the comparison of algorithms more intuitive,

this paper selects four standard and classical algorithms

with improvements, namely, PSO [25], cfPSO [10],

cfwPSO and ETLBO [24]. Algorithm parameters are as

follows: for PSO, C1 ¼ C2 ¼ 2; for cfPSO and cfwPSO,

C1 ¼ C2 ¼ 2:05, K ¼ 0:729. For the parameters of

EDOLSCA, w range is 1–15; Jr range is 0.1–1. The algo-

rithms run 10 times for independent testing, and the results

are shown in Tables 3, 4. The average with the smallest

index is chosen, that is w ¼ 10 and Jr ¼ 1. The population

size in the test was set to 50, and the number of iterations

was 20,000. Results of the mean and standard deviation of

each algorithm at each benchmark are recorded to compare

the algorithms. Average index is considered as one of the

criteria of comprehensive evaluation algorithm, which is

calculated from the ranking of each algorithm. The calcu-

lated results are shown in Table 5, and the convergence

diagram is shown in Fig.5.

First of all, it can be seen from the calculation results in

the table that, for F1-F4, three of the four baselines

EDOLSCA reach the optimal value, and in F5-F14, most

EDOLSCA also get the minimum value of all algorithms.

’Ave index’ shows that EDOLSCA has the best compre-

hensive result among all comparison algorithms, and only

the improved SCA in one benchmark performs less well

than the original algorithm. It is observed in the figure that

EDOLSCA converges much faster than SCA in most

benchmarks, which proves that the improvement is suc-

cessful. In addition to using the average index method to

detect EDOLSCA, the Wilcoxon rank-sum test [47]

method is also introduced to analyze the results of the

algorithm. The significance is set to 0.05, two-tailed. The

test results are shown in Table 6.In the result table, ’"’
denotes the EDOLSCA is better than other counterpart,

’ ’ means other algorithms (the algorithm pointed by the

arrow) is better, and ’=’ means there is no significant dif-

ference between the two algorithms after the test. The

results show that the convergence accuracy has a small

improvement compared with SCA, but the overall

improvement ratio is not high. It shows that EDOLSCA has

an absolute advantage in convergence speed, but it can still

be improved in terms of accuracy.

5.2 Application to PFHE design problems

In this section, the optimization object is extended to the

design problem of PFHE. In fact, the design optimization

problem of PFHE is different from the repeatability opti-

mization. The design optimization problem only needs an

optimal design, and the stability of the repeatability opti-

mization is more important [54]. Therefore, the stability of

the algorithm is not considered in the PFHE problem,

where only the accuracy of the algorithm is considered. For

the heat transfer area objective function, both cases 1 and 2

are applicable. In order to optimize the environment

Fig. 4 The flowchart of EDOLSCA
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Table 2 Unimodal and

multimodal benchmark
Function number Function name

F1 Rotated High Conditioned Elliptic Function

F2 Rotated Bent Cigar Function

F3 Rotated Discus Function

F4 Shifted and Rotated Rosenbrock’s Function

F5 Shifted and Rotated Weierstrass Function

F6 Shifted and Rotated Griewank’s Function

F7 Shifted Rastrigin’s Function

F8 Shifted and Rotated Rastrigin’s Function

F9 Shifted Schwefel’s Function

F10 Shifted and Rotated Schwefel’s Function

F11 Shifted and Rotated Katsuura Function

F12 Shifted and Rotated HappyCat Function

F13 Shifted and Rotated HGBat Function

F14 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function

Table 3 The sensitivity analysis

of w
Weight Mean Ave index

F1 F3 F4 F7

w = 1 5.27E ? 07 2.03E ? 04 1.66E ? 02 5.07E ? 00 13.75

w = 2 3.36E ? 07 1.76E ? 04 1.41E ? 02 2.75E ? 00 11

w = 3 1.69E ? 07 1.79E ? 04 1.42E ? 02 2.24E ? 00 8.75

w = 4 2.02E ? 07 1.96E ? 04 1.17E ? 02 2.13E ? 00 10

w = 5 1.94E ? 07 1.93E ? 04 8.24E ? 01 1.33E ? 00 8.25

w = 6 1.62E ? 07 1.69E ? 04 9.63E ? 01 1.54E ? 00 6.75

w = 7 2.52E ? 07 2.02E ? 04 4.62E ? 01 1.43E ? 00 8.5

w = 8 2.17E ? 07 1.55E 1 04 5.37E ? 01 1.08E ? 00 6.5

w = 9 1.88E ? 07 1.80E ? 04 5.08E ? 01 1.01E ? 00 5.75

w = 10 1.46E ? 07 1.88E ? 04 4.64E ? 01 9.22E-01 4

w = 11 1.72E ? 07 2.04E ? 04 5.59E ? 01 9.09E-01 6.75

w = 12 2.74E ? 07 2.36E ? 04 5.45E ? 01 9.48E-01 9.5

w = 13 2.10E ? 07 2.48E ? 04 4.41E ? 01 8.97E-01 6.5

w = 14 2.70E ? 07 2.05E ? 04 3.49E 1 01 9.71E-01 7.5

w = 15 1.44E 1 07 2.73E ? 04 4.61E ? 01 1.05E ? 00 6.5

Bold values indicate the best results compared to the other counterparts

Table 4 The sensitivity analysis

of Jr
Jumping rate Mean Ave index

F1 F3 F4 F7

Jr = 0.1 2.39E ? 07 2.66E ? 04 4.96E ? 01 1.88E ? 00 9.25

Jr = 0.2 3.07E ? 07 2.40E ? 04 4.58E ? 01 1.11E ? 00 8

Jr = 0.3 1.66E ? 07 2.27E ? 04 4.60E ? 01 9.15E-01 7

Jr = 0.4 1.10E ? 07 1.90E ? 04 5.05E ? 01 6.57E-01 6.5

Jr = 0.5 1.68E ? 07 1.43E ? 04 4.79E ? 01 5.26E-01 6.25

Jr = 0.6 1.35E ? 07 1.28E ? 04 3.41E 1 01 3.43E-01 2.75

Jr = 0.7 1.58E ? 07 1.41E ? 04 5.62E ? 01 5.94E-01 6.5

Jr = 0.8 9.57E ? 06 1.30E ? 04 4.42E ? 01 6.08E-01 3.75

Jr = 0.9 1.27E ? 07 9.60E 1 03 4.61E ? 01 4.47E-01 3.5

Jr = 1 6.42E 1 06 1.13E ? 04 4.42E ? 01 3.92E-01 1.5

Bold value indicates the best results compared to the other counterparts
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realistically, the number of iterations is set to 500,000, and

the population is still 50. For the objective function of

entropy increase, only test case 1, the number of iterations

is set to 4,000, and the population is 50. In order to com-

pare the fairness of the study, we add two varieties of

algorithms in this section: elite sine cosine algorithm

(ESCA), dynamic opposite learning sine cosine algorithm

(DOLSCA) and two common algorithms: differential

evolution (DE) [41] and neighborhood field for cooperative

optimization (NFO) [48]. The results are shown in Figs.6,

7.

It can be seen from the result image that SCA and

EDOLSCA have the same advantage in the AHT objective

function. The EDOLSCA continued to converge under a

high number of iterations, and the improved algorithm has

higher accuracy than the original algorithm. On the Ns

objective function, EDOLSCA converges faster than SCA,

and the accuracy difference is larger. At the same time, in

Table 5 The mean and standard value of unimodal/multi-modal test functions

Algorithms F1 F2 F3 F4

Mean Std Mean Std Mean Std Mean Std

PSO 6.32E ? 07 3.26E ? 07 8.52E ? 07 6.17E ? 07 1.17E 1 03 7.06E ? 02 4.09E ? 02 8.59E ? 01

cfPSO 2.74E ? 08 9.05E ? 07 1.19E ? 10 5.61E ? 09 2.31E ? 04 6.30E ? 03 1.48E ? 03 6.14E ? 02

cfwPSO 2.29E ? 08 8.71E ? 07 1.51E ? 10 5.50E ? 09 3.24E ? 04 8.70E ? 03 2.00E ? 03 8.59E ? 02

ETLBO 3.84E ? 08 1.29E ? 08 3.54E ? 10 8.50E ? 09 6.58E ? 04 1.38E ? 04 3.93E ? 03 8.02E ? 02

SCA 2.82E ? 07 1.09E ? 07 5.04E ? 08 5.22E ? 08 4.73E ? 04 1.28E ? 04 1.19E ? 02 5.88E ? 01

EDOLSCA 2.63E 1 07 2.08E 1 07 7.38E 1 07 1.10E 1 08 5.11E ? 04 2.51E 1 04 1.03E 1 02 5.05E 1 01

Algorithms F5 F6 F7 F8

PSO 2.66E ? 01 2.08E ? 00 2.55E ? 00 1.41E ? 00 9.31E ? 01 1.88E ? 01 1.16E ? 02 2.35E ? 01

cfPSO 2.66E ? 01 2.81E ? 00 1.56E ? 02 6.13E ? 01 1.29E ? 02 2.72E ? 01 1.45E ? 02 2.84E ? 01

cfwPSO 2.92E ? 01 2.30E ? 00 1.67E ? 02 5.62E ? 01 1.38E ? 02 2.64E ? 01 1.55E ? 02 3.18E ? 01

ETLBO 3.41E ? 01 2.43E ? 00 3.62E ? 02 1.04E ? 02 2.57E ? 02 1.73E ? 01 2.62E ? 02 3.26E ? 01

SCA 2.12E 1 01 2.77E ? 00 6.53E ? 00 9.34E ? 00 1.02E ? 02 1.90E ? 01 1.17E ? 02 1.41E ? 01

EDOLSCA 3.27E ? 01 5.83E 1 00 1.58E 1 00 1.86E 1 00 5.57E 1 01 1.43E 1 01 7.80E 1 01 1.49E 1 01

Algorithms F9 F10 F11 F12

PSO 2.09E ? 03 5.04E ? 02 3.68E 1 03 6.70E ? 02 5.09E-01 1.59E-01 5.83E-01 1.26E-01

cfPSO 3.04E ? 03 6.28E ? 02 4.04E ? 03 6.52E ? 02 5.10E-01 1.04E-01 3.32E ? 00 4.02E-01

cfwPSO 2.01E 1 03 5.01E ? 02 4.82E ? 03 1.19E ? 03 1.04E 1 00 5.68E-01 3.65E ? 00 3.98E-01

ETLBO 6.51E ? 03 4.25E ? 02 6.96E ? 03 6.15E ? 02 3.08E ? 00 5.26E-01 5.32E ? 00 6.99E-01

SCA 3.33E ? 03 5.65E ? 02 4.19E ? 03 2.93E ? 02 1.41E ? 00 2.04E-01 5.37E-01 8.89E-02

EDOLSCA 3.86E ? 03 1.45E 1 03 4.60E ? 03 1.67E 1 03 2.21E ? 00 3.80E-01 3.15E-01 8.13E-02

Algorithms F13 F14 Best num Ave index

PSO 3.23E-01 1.90E-01 4.78E ? 01 1.89E ? 01 2 2.36

cfPSO 5.94E ? 01 2.01E ? 01 8.63E ? 02 1.01E ? 03 0 3.86

cfwPSO 6.82E ? 01 1.23E ? 01 4.84E ? 02 6.49E ? 02 2 4.07

ETLBO 1.30E ? 02 2.77E ? 01 4.22E ? 04 3.32E ? 04 0 5.86

SCA 1.12E ? 00 2.75E ? 00 2.65E ? 01 8.50E ? 00 1 2.64

EDOLSCA 2.74E-01 4.60E-02 1.85E 1 01 1.04E 1 01 9 2.21

Bold value indicates the best results compared to the other counterparts

cFig. 5 The convergence trends of all algorithms on all unimodal and

simple multimodal functions
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the three cases, the accuracy of EDOLSCA is the highest,

which proves its potentials in engineering design opti-

mization problems. The results of benchmark and engi-

neering tests show that EDOLSCA has excellent dynamic

search capabilities and has unique advantages in speed and

accuracy, as well as demonstrating excellent comprehen-

sive performance.

6 Conclusion

This paper proposed a new EDOLSCA adopted elite and

DOL strategies to strengthen the canonical SCA, which

greatly improves the performance of the original algorithm

in terms of convergence accuracy and convergence speed.

The proposed method was compared with the state-of-the-

art algorithms counterparts in the CEC2014 benchmark test

proved to perform well. The algorithm is further adopted in

solving the optimal design problem of PFHE, where the

dynamic and random search space of the DOL strategy has

achieved excellent results. The proposed algorithm again

demonstrated superiority in solving the complex optimal

design problem. Future work lies on the wide application of

the proposed EDOLSCA in various industrial and science

optimization scenarios. The well robustness of the algo-

rithm is promising to provide a useful computational tool

for engineering optimization.

Table 6 Wilcoxon rank-sum test on unimodal and multi-modal

functions

Algorithms EDOLSCA

F1 F2 F3 F4 F5 F6 F7 F8

PSO " =  "  " " "
cfPSO " " = "  " " "
cfwPSO " " = " = " " "
ETLBO " " = " " " " "
SCA = " = =  " " "

Algorithms EDOLSCA Same Better

F9 F10 F11 F12 F13 F14

PSO  =  " " " 2 8

cfPSO = =  " " " 3 9

cfwPSO  =  " " " 3 9

ETLBO " " " " " " 1 13

SCA = = = " = = 8 5
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Fig. 6 The solution result of the AHT objective, cases 1 and 2
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Fig. 7 The solution result of the Ns objective, cases 1
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