
ORIGINAL ARTICLE

Automatic lumbar spinal MRI image segmentation with a multi-scale
attention network

Haixing Li1,2,3,4,5 • Haibo Luo1,2,4,5 • Wang Huan6 • Zelin Shi1,2,4,5 • Chongnan Yan6 • Lanbo Wang6 •

Yueming Mu6 • Yunpeng Liu1,2,4,5

Received: 21 August 2020 / Accepted: 19 February 2021 / Published online: 10 March 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the

vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic

resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation

methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the

dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is

embedded into the network. It contains multi-scale feature extraction based on three 3 9 3 convolution operators and vital

information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery

department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-

branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient

was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.

Keywords Lumbar spinal stenosis � Magnetic resonance imaging image � Deep learning � Dual-branch multi-scale attention

module � Feature extraction

1 Introduction

Lumbar spinal stenosis (LSS) is a common degenerative

disease in the elderly. With the aging of the population, the

incidence rate has also increased significantly. At present,

the clinical diagnosis of LSS is mainly based on the

patient’s symptoms, electrophysiology and imaging

examination. Magnetic resonance imaging (MRI) and

computed tomography (CT) are both considered as

acceptable modalities in imaging [1]. MRI is the most

frequently utilized imaging modality because it provides a

detailed evaluation of the etiology and severity of spinal

stenosis [2]. In the long-term practical work, clinicians

found that some special imaging manifestations can

objectively reflect stenosis, which is of great significance

for the diagnosis of LSS. In addition to subjective evalu-

ation of the spinal canal size, the commonly used quanti-

tative measurement indicators are the anteroposterior

diameter of the spinal canal, the area of the dural sac, and

the distance between the ligamentum flavum at the level of

the facet joint. Among them, the anteroposterior diameter
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of the spinal canal (SCAD) and the cross-sectional area of

the dural sac (DSCA) are the most popular [3, 4]. Radi-

ologists must diagnose each region of the spine through

multiple slices of MRI images, and draw the defective

areas by hand. However, it is difficult to separate the region

of interest from MRI scans because this process requires

simultaneous observation and exploration of large amounts

of multimodal data to determine the lesion area. Therefore,

it is necessary to establish a full-automatic auxiliary

diagnostic system.

The following reasons make it difficult to correctly

segment the spine (i.e. vertebral body, lamina, and dural

sac) in MRI images. First, due to the low contrast of MRI

images, the boundary between the spine and surrounding

structures is often unclear, especially the boundary of the

dural sac almost coincides with its adjacent background. As

shown in Fig. 1 (row 1), the boundaries are difficult to

distinguish even after careful contrast adjustment. Second,

the internal distribution of the spinal structure (such as

vertebral body and lamina) is uneven, as shown in Fig. 1

(row 2–3). Third, the shapes of spine have high variability

and can change significantly across patients, as observed in

the slices of three patients in Fig. 1 (row 1). Finally,

simultaneous semantic segmentation of multiple spinal

structures, are more difficult than individual tasks which

will generate more complexity and indeterminacy.

To solve the problem mentioned above, researchers

have proposed many algorithms for spine segmentation.

For example, Naegel et al. [5] combined watershed and

morphological method to segment spine. Ma et al. [6]

manually determined the position of the spine in the image

during the segmentation process, and then used the prior

information such as the shape and the gradient introduced

as constraints to achieve segmentation. Lim et al. [7]

introduced the statistical shape of the spine as a priori

information to initialize the level set function to improve

the segmentation accuracy. Aslan et al. [8] constructed a

new probability energy function that contains intensity,

spatial interaction and shape information, and optimized

this function to obtain the optimal segmentation. Although

the above algorithms have achieved certain results, they

have common problems: (1) The complexity of algorithms

and the cumbersome segmentation process limit their

application in the clinic; (2) The segmentation process

requires manual intervention, and the performance depen-

ded on the design of manual feature; (3) The accuracy of

each algorithm needs further improvement.

In recent years, with its powerful feature extraction and

nonlinear modeling capabilities, convolutional neural net-

works (CNN) have been widely used in medical images

such as CT, MRI, and ultrasound, and have achieved great

success. Fan et al. [9] proposed a parallel reverse attention

network for accurate polyp segmentation in colonoscopy

images, which provided valuable information for polyp

diagnosis and surgery. Imran et al. [10] presented a novel

progressive adversarial semantic segmentation model,

which can make improved segmentation predictions with-

out requiring domain-specific data during training time,

and they verified 8 public diabetic retinopathy and chest

X-ray datasets. Chen et al. [11] devised a boundary-assisted

region proposal network that achieves robust instance-level

nucleus segmentation. Sara et al. [12] used Dense-Vnet to

perform robust automatic whole brain extraction on skull

striping common MRI sequences of brain tumor patients.

Selvan et al. [13] treated the high opacity regions as

missing data and presented a modified CNN-based image

segmentation network that segmented lungs from such

abnormal CXRs as part of a pipeline aimed at automated

risk scoring of COVID-19 from CXRs. The latest

achievements in spine segmentation research are: Amir

et al. [14] showed that radiological gradings of spinal

lumbar MRIs and pathological regions in the disc volumes

can be achieved via a CNN framework. Han et al. [15]

proposed a recurrent generative adversarial network for

automated segmentation and classification of intervertebral

discs, vertebrae, and neural foramen in MRIs in one shot.

Ala et al. [16] used SegNet to aid clinicians in performing

lumbar spinal stenosis detection through semantic seg-

mentation and delineation of MRI scans of lumbar spine.

Tang et al. [17] developed a dual densely connected

U-shaped neural network to segment the spinal canal, dural

sac and vertebral body in CT image to assist LSS diagnosis.

To sum up, most of the lumbar spinal researchers based on

deep learning more focus on the prediction performance

and do not give specific clinical diagnostic criteria.

The contribution of this work is three-fold:

• We constructed a new challenging data set with the

experts of Spine Surgery of Shengjing Hospital to

further study and evaluate the segmentation of spine

T2-weighted MRI images;

• We proposed a multi-scale attention U-shaped network

(MANet) for semantic segmentation of the vertebral

body, lamina, and dural sac. Specifically, the two

convolutional layers between two down-sampling (or

up-sampling) in the original U-Net are replaced by a

convolutional layer and a dual-branch multi-scale

attention module. The advantage of the module is that

it adapts to different scale targets while retaining the

key information of the image. This method can improve

the efficiency of reading, reduce repetitive works, and

eliminate inconsistencies like inter and intraobserver

variance;

• To assist in the diagnosis of LSS, we calculated the

average cross-sectional area of the three anatomical

structures, and we also accurately defined the DSCA for

11590 Neural Computing and Applications (2021) 33:11589–11602

123



the first time. These clinical indicators can help doctors

implement targeted treatment measures for patients.

The remainder of this paper is structured as follows:

Sect. 2 covers the methodology part of this paper, where

we introduce the architecture of MANet, explaining the

details of the network training. In Sect. 3, visual compar-

ison, qualitative and quantitative comparisons are con-

ducted on the proposed method and state-of-the-art.

Finally, the conclusion is described in Sect. 4.

2 Method

In this section, we will give a detailed description of the

proposed framework for the segmentation of the vertebral

body, lamina, and dural sac in MRI images. The whole

architecture of the proposed framework is shown in Fig. 2

2.1 Network architecture of proposed method

We design a deep fully convolutional network to segment

vertebral body, lamina, and dural sac for the lumbar MRI

images, which is a symmetric architecture like U-Net [18].

As illustrated in Fig. 2, it comprises of a contracting path to

extract spatial features and an expanding path to restore

image resolution. The contracting path contains four

Fig. 1 Typical MRI images and their spine segmentation. The first

row shows three different original MRI slices overlaid with their

respective segmentation. Red denotes the lamina, yellow denotes the

dural sac, and green denotes the vertebral body. The second and third

rows show the original slice and gray histogram of the vertebral body

and lamina respectively (color figure online)
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repeated stages, each stage involves a 3 9 3 convolution

layers, a dual-branch multi-scale attention module and a

max pooling layer with a pooling size of 2 9 2 and stride

of 2. After each down-sampling, the filter number of the

convolution layer are doubled. In the middle of network, a

3 9 3 convolution operation and a dual-branch multi-scale

attention module connect the contracting path to the

expanding path. Similarly, the expanding path also has four

repeated stages. Contrary to the contracting path, the fea-

ture maps are up-sampled by using a 2 9 2 deconvolution

operation first. The number of feature channels is reduced

by half. After that, the corresponding results in the con-

tracting path are copied and concatenated to the deconvo-

lution results and follow this with a dual-branch multi-scale

attention module. Finally, a 1 9 1 convolution operation is

performed to generate the final segmentation map. All

convolutional layers except for the last one use rectified

linear unit (ReLU) activation function; the last convolution

layer uses a softmax activation function.

2.2 Dual-branch multi-scale attention module

As shown in Fig. 3, the dual-branch multi-scale attention

module consists of two branches. The upper branch is used

for multi-scale feature extraction while the lower branch is

responsible for screening key information. Given an

intermediate feature map F 2 <H�W�C as input, the dual-

branch multi-scale attention module infers a multi-scale

feature map FM and an attention map FA in parallel. The

final refined feature map Ffinal can be summarized as:

Ffinal ¼ FM þ FA ð1Þ

In this research, the vertebral body, lamina, and dural

sac are the regions of interest, but in most cases, that are

irregular and of different sizes. If a fixed-scale CNN is

used, the range of the receptive field will be limited, which

is not conducive to feature extraction. Multi-scale CNNs

differ from fixed-scale CNNs by comprehensively using

multiple scales to extract different information required for

spine image segmentation. Currently, there are many cases

of multi-scale CNN in natural images [19, 20], which can

be summarized into three types: (1) methods using input

images with different patch sizes and the same resolution;

(2) methods using input images with the same region and

different resolutions; (3) methods with different scale

kernels. For the first two methods, the input image and the

corresponding ground truth have different resolutions, they

cannot be directly put into a CNN, and different input data

needs to be prepared. The third method only needs to train

multi-scale CNN with different kernel sizes for segmen-

tation. It also can avoid the problem of fixed-scale CNN’s

limitation on the receptive field, and can extract features at

multiple scales, which is in favor of improve the accuracy

of image segmentation. Therefore, we followed the idea of

the third method that is to concatenate three 3 9 3 con-

volution operations [21] to construct a multi-scale feature

extraction structure equivalent to extracting features from

Fig. 2 An illustration of the proposed framework for vertebral body,

lamina, and dural sac segmentation in MRI images. The light grey

cuboids represent feature maps, and the dark grey cuboids are copied

feature maps from contracting path. The numbers below cuboid are

the number of filter and the numbers above cuboid are the image

resolution
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3 9 3, 5 9 5 and 7 9 7 convolution operation

simultaneously.

The feature maps will lose a great deal of details and

edge information after a series of convolution and pooling,

nevertheless, the attention mechanism [22] will compen-

sate for this information to a certain extent. The attention

mechanism is an image processing technology that learns

from human vision. Therefore, we first briefly introduce the

selective attention mechanism of human vision. Human

vision quickly scans the global image to obtain the target

area that needs to be focused, and then invests more

attention resources in this area to get more detailed infor-

mation about the target, while suppressing other useless

information. The attention mechanism in deep learning is

similar to the selective attention mechanism of human

vision in essence. The core goal is to select information

that is more critical to the current task from a huge amount

of information.

As shown in the lower branch of Fig. 3, the attention

block merge the channel domain and spatial domain. The

attention block [23] computes a channel attention map

MC 2 1� 1� C and a spatial attention map MS 2 H �
W � 1 sequentially. MC gives the meaningful semantics by

exploiting the inter-channel relationship of features. To

compute MC, the average pooling and max pooling oper-

ations are used to aggregate the spatial information of the

feature map, thereby generating two different spatial con-

text descriptors, which represent average pooled features

Fa
C and max pooled features Fm

C respectively. After that Fa
C

and Fm
C are forwarded to a multi-layer perceptron (MLP)

with one hidden layer. After the MLP is applied, we merge

the two output feature vectors using element-wise sum-

mation and then perform a sigmoid function. The channel

attention is computed as:

MC ¼ r MLP Avgpool Fð Þð Þ þMLP Maxpool Fð Þð Þð Þ
¼ r wMLP Fa

C

� �
þ wMLP Fm

C

� �� � ð2Þ

where r denotes the sigmoid function and wMLP is the MLP

weights shared for both inputs.

Spatial attention block utilizes the inter-spatial rela-

tionship to generate MS, which is different from channel

attention block.MS focuses on the position of the features,

which is complementary to the channel attention. To

compute MS, we apply average pooling and max pooling

operations along the channel axis, and concatenate them to

generate an effective feature descriptor. After which a

convolution operation with the filter size of 7 9 7 and a

sigmoid function are used. The calculation process is as

follows:

MS ¼ r f Avgpool FCð Þ;Maxpool FCð Þ½ �ð Þð Þ
¼ r f Fa

S ;F
m
S

� �� �� � ð3Þ

where r denotes the sigmoid function, FC is refined feature

map computed by channel attention block, f �ð Þ is a con-

volution operation with the filter size of 7 9 7 and Fa
S , F

m
S

×+MLP

+

3×3 3×3 3×3

Maxpooling

Avgpooling

Channel
attetion

Maxpooling

Avgpooling

7×7
Sptial

attetion

Channel Attention Block Spatial Attention Block 

Input

H×W×C

1×1×C
H×W×1

Muilti-scale Feature Extraction Block

×

Fig. 3 Dual-branch multi-scale attention Block. Dotted lines dupli-

cate an intermediate feature map and feed it into the two branches

separately. The upper branch is multi-scale feature extraction block,

the colored boxes of which represent different scale feature maps and

the lower branch is attention block
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represent average pooled features and max pooled features

respectively.

The entire attention block can be expressed as:

FC ¼ MC Fð Þ � F ð4aÞ
FA ¼ MS FCð Þ � FC ð4bÞ

where FA is the final refined output and � denotes element-

wise multiplication.

2.3 Backbone network

Neural network training requires large amounts of datasets

and expensive calculation costs, such as AlexNet [24],

VGG [25] and other models easily have hundreds of mil-

lions of parameters. For specific problems, due to the

limitation of training cost, the ideal neural network archi-

tecture cannot be fully realized. Accordingly, we often

need to use some optimization techniques to compress the

size of the model. In this paper, we reduce the parameters

of the original U-Net model (which has about 28 million

parameters) by adjusting the depth of model or the channel

of convolutional layer. We set the number of feature

channels of the first convolution layer from 64 to 16.

Furthermore, after each convolution layer, batch normal-

ization (BN) is applied to reduce the total parameters of the

model to 4.6 million. In detail, we extract the multi-scale

pixel-level attention feature maps with the encoder, and the

size of the output feature map is 1/16th of the input image.

Combined the high-level features and the low-level fea-

tures via skip-connections to generate the final predicted

map.

2.4 Training

We randomly divided the dataset into three parts, namely

70% for training, 20% for validation, and 10% for testing.

In practice, 70% of the images are input to the MANet for

training, 20% of the images are used for hyperparameter

optimization and preventing of overfitting, and 10% of the

images are used to evaluate the performance of the neural

network. The MANet is trained in an end-to-end manner

when optimizing all parameters in the network. The task of

semantic segmentation is to predict whether a pixel rep-

resents a point of interest, or just a part of background.

Thus, the problem in this paper can be reduced to a pixel-

wise multi-class segmentation problem. In summary, we

can choose a loss function to directly optimize the evalu-

ation criteria. Dice loss is a good option, but for a typical

lumbar spine MRI image most pixels are the background,

and the areas of the vertebral body, lamina, and dural sac

are extremely small and have different proportions. Dice

loss is very detrimental to the small target, because in the

case of only the foreground and the background, once the

small target has some pixel prediction errors, it will cause a

large change in loss, resulting in a sharp gradient change

and unstable training. To overcome this problem, we

introduced a hybrid loss function, which is composed of the

generalized dice loss [26] and the cross-entropy loss. It

assigns different weights to the dice loss of each class and

combines the cross entropy of each image. The hybrid loss

function compensates for the imbalance between the large

and the small target and promotes the neural network to

learn the features of the small tissue such as the dural sac.

Specifically, this loss function can be expressed as:

Lhy ¼ LGD þ LCE ð5aÞ

LGD ¼ 1� 1

m
�

2
Pm

j¼1 wj

PN
i¼1 yijŷij

Pm
j¼1 wj

PN
i¼1 yij þ ŷij

� � ð5bÞ

LCE ¼ � 1

N

XN

i¼1

Xm

j¼1

yij logŷij ð5cÞ

where Lhy is hybrid loss, LGD is generalized dice loss and

LCE is cross-entropy loss. m represents the class, i.e., ver-

tebral body (m = 1), lamina (m = 2), dural sac (m = 3) and

background (m = 4), wj donates the class-balancing

weight, N is pixel number of the image,yij is the ground

truth of the pixel i belonging to class j, and ŷij is the cor-

responding predicted probability value of yij.

wj ¼
1

PN
i¼1 yij

� �2 ð6Þ

The code of MANet is implemented by Python 2.7 and

Keras 2.2.4, and our model was trained and tested on a

Nvidia GeForce GTX TITAN X GPU, developed on a

64-bit ubuntu 14.04 platform with Intel Core i7-5930K

CPU with 64 GB RAM. Due to GPU memory constraints,

our model is trained with a mini-batch size of 4. The

optimizer that we adopt is stochastic gradient descent

(SGD) [27] with momentum coefficient is set to 0.9 and the

initial learning rate (lr) is set to 0.001. The learning rate

varies with the training epochs, when training epochs is

200, the decay argument is specified, decay = 0.1/epochs,

and the learning rate of each training is decreased to lr = r/

(1 ? decay 9 epoch). We randomly initialize parameter

weights according to the Xavier scheme.

3 Experiments and results

In this section, we introduce the dataset provided by the

spine surgery department of Shengjing Hospital of China

Medical University and performance evaluation metrics of

this article, after which we discuss the effectiveness of the
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MANet with U-Net as the baseline, then we compare the

MANet with the state-of-the-art methods. At last we cal-

culate the cross-sectional area (CSA) of vertebral body,

lamina and the dural sac and the distance of the antero-

posterior diameter of the spinal canal.

3.1 Data sources

Although previous studies have attempted to simultane-

ously segment the vertebral body, lamina, and dural sac

from the MRI image, there is no public dataset. Therefore,

we built a new pixel-level label dataset with the spine

surgery department of Shengjing Hospital of China Medi-

cal University. We collected axial T2-weighted lumbar

MRI images of L3-4, L4-5 and L5-S1 discs of young male

patients aged 18 to 35 in the same hospital. In order to

ensure the consistency of the label, we performed bright-

ness, contrast adjustment and normalization processing,

and the size of all images was unified to 512 9 512. Four

spine surgeons and two imaging surgeons used Photoshop

graphics software to label the vertebral body, lamina and

dural sac in the image manually, which were double-

checked by one spine surgery specialist with more than

30 years of experience and two spine surgeons with more

than 10 years of experience. Ultimately, we retained 1080

images of 120 patients with precise and consistent pixel-

level labels. We randomly divided the dataset into three

parts, 70% of which is for training, 20% for validation, and

10% for testing.

3.2 Metrics

In the semantic segmentation of this paper, the region of

vertebral body, lamina and dural sac only comprise a small

part of the entire image. Therefore, metrics such as preci-

sion and recall are inadequate and often lead to a false

sense of superiority, inflated by the perfect background

detection. Hence, we evaluate the performance of model

with two widely used evaluation criterion of medical image

segmentation: Dice similarity coefficient (DSC) and aver-

age surface distance (ASD). DSC is a function to evaluate

the similarity, which is used to calculate the similarity or

overlap of two samples:

DSC ¼ 2
Vseg \ Vgt

Vseg þ Vgt
ð7Þ

where Vgt and Vseg denote the pixel sets of the manually

labeled ground truth and automatically segmented spinal

structure, respectively. The value range of DSC is [0, 1],

the higher the DSC, the higher the similarity between the

segmentation result and ground truth, that is, the better the

segmentation performance.

ASD evaluates the symmetrical mean distance between

two samples:

ASD ¼ mean
i2seg

min
j2gt

d i; jð Þð Þ
� �

;mean
j2gt

min
i2seg

d i; jð Þð Þ
� �� �

ð8Þ

where d �ð Þ is the Euclidean Distance. The higher the value

of ASD, the lower the matching degree of the two samples.

This metric can also be called average symmetric surface

distance (ASSD).

3.3 Comparison with U-Net

As shown in Tables 1 and 2 (from 5th row to 6th row), the

dual-branch multi-scale attention module endows MANet a

superior performance for the segmentation of vertebral

body, lamina, and dural sac. As a baseline, U-Net on

average achieves 0.9008 DSC and 6.40 mm ASD. After

only preserving the upper branch (Multi-scale branch),

DSC is increased by 1.51% and ASD is decreased by

2.38 mm. This demonstrates the upper branch can obtain

semantic representation of different scale targets. Then,

after preserving the lower branch (attention branch), DSC

and ASD are 0.9152 and 3.68 mm, an increase of 1.44%

and a decrease of 2.72 mm respectively, which proves the

lower branch can effectively correct the errors of semantic

segmentation by suppressing background information.

Finally, after preserving the whole dual-branch multi-scale

attention module (MANet), the DSC and ASD are greatly

changed, which demonstrates the effectiveness of the dual-

branch multi-scale attention module.

Then we observed the performance of the model with

200 epochs. In Fig. 4, the performance of the validation

data on each epoch is shown. We give the average accuracy

index and average loss value of each epoch. It is worth

noting that for all cases, our proposed model can quickly

Table 1 Quantitative comparison of different methods on our dataset

(the best results are in bold)

Method DSC mDSC

Vertebral body Lamina Dural sac

FCN 0.9715 0.8444 0.8953 0.9037

U-Net 0.9686 0.8279 0.9059 0.9008

Res2net 0.9798 0.8567 0.9050 0.9140

Deeplabv3 ? 0.9730 0.8487 0.9117 0.9111

U-Net ? multi-

scale

0.9778 0.8560 0.9140 0.9159

U-Net ? attention 0.9785 0.8590 0.9081 0.9152

MANet 0.9802 0.8702 0.9257 0.9252
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converge. This can be attributed to dual-branch multi-scale

attention feature extraction. Another notable finding in the

experiment is that, except for some minor change, the

deviation of the MANet is much smaller, that shows the

reliability and robustness of the proposed model. Besides,

these results show that, compared with the classic U-Net,

the proposed network may obtain better results with fewer

training epochs.

U-Net has achieved satisfactory results in medical image

segmentation, but with in-depth study of some images,

especially those with less clear boundaries, U-Net seems to

be struggling a bit. We marked the edges of MANet and

U-Net for comparison. As shown in Fig. 5a, b and e, f,

when we segment the vertebral body and dural sac, U-Net

does not accurately locate the edge, however, the perfor-

mance of MANet is nearly perfect. When segmenting the

lamina, neither method performs well, but our method is

still slightly better, which is shown in Fig. 5c, d.

The segmentation task of this paper is to cluster the

homologous pixels in the spine MRI image. However, in

real medical images, distinguishing the region of interest

from the background is challenging, so we will face two

segmentation extremes: (1) The result is not a continuous

segmentation region, but a collection of fractured seg-

mentation regions. (2) Due to texture and disturbance,

sometimes the background looks so similar to the fore-

ground, and some results that do not belong to the target

are obtained. These two situations lead to information loss

and classification errors, respectively. Figure 6 shows the

third part of the experiment, we compare the performance

of the algorithms in extreme cases. When segmenting the

lamina or vertebral body, if there is a slight change in the

foreground object, U-Net cannot segment the target into a

continuous region (shown in Fig. 6a, b). It predicts a set of

scattered regions, confuses the target as background, and

Table 2 Quantitative

comparison of different

methods on our dataset (the best

results are in bold)

Method ASD (mm) mASD (mm)

Vertebral body Lamina Dural sac

FCN 8.38 5.65 2.21 5.41

U-Net 10.39 6.16 2.65 6.40

Res2net 2.98 4.62 2.03 3.21

Deeplabv3 ? 3.39 7.14 1.92 4.15

U-Net ? multi-scale 4.86 5.36 1.83 4.02

U-Net ? attention 3.91 5.19 1.95 3.68

MANet 2.32 4.23 1.59 2.71

Fig. 4 Validating on the proposed dataset. a The average accuracy,

b and the average loss of each epoch. We observe that our method

improves the performance and accelerates convergence

Fig. 5 Segmenting spine structure with clearly visiable boundary. The

first row is original spine MRI images. The second row is the enlarged

segmentation result with annotations. Red represents ground truth,

blue represents segmentation results from MANet and green repre-

sents segmentation from U-Net (color figure online)
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thus loses some valuable information. On the other hand,

for images with uneven background, the U-Net model

seems to make some false predictions shown in Fig. 6d–f.

In addition, in some extremely unfavorable situations, the

U-Net model cannot make any predictions at all because

the difference between the target and the background is too

subtle. Although the segmentation of MANet is not perfect

in this challenging situation, its performance is far superior

to the classic U-Net model.

3.4 Comparison with other state-of-the-art
methods

To further verify the performance of the algorithms, we

tested the proposed method on the collected dataset and

compared the performance with four state-of-the-art image

segmentation methods, i.e. FCN [28], U-Net, Res2net [29]

and Deeplabv3 ? [30]. Both visual comparison and

quantitative comparison show that our method is superior

to these advanced methods. The comparison results in

Tables 1, 2 and Fig. 7 show the advantages of the

MANet algorithm. Compared with the existing segmenta-

tion network, MANet is significantly better than the FCN

and U-Net network by 2.15% and 2.44% average DSC and

2.7 mm and 3.69 mm average ASD. MANet outperforms

the Deeplabv3 ? network by 1.41% average DSC and

1.44 mm average ASD. Also, MANet beat Res2net net-

work by 1.08% average DSC and 0.5 mm average ASD.

Therefore, MANet has strong predictive performance and

application ability in the computer-aided diagnosis of LSS.

Overall, the proposed MANet model can successfully

segment the spinal structure in most cases, but its seg-

mentation performance has certain limitations. For exam-

ple, some patients have suffered from LSS for a long time,

the spine structure has undergone severe deformation, the

vertebral body or lamina and the adjacent soft tissues are

connected or the dural sac is seriously compressed. In the

above cases, the MANet model cannot accurately segment

the spinal structure, especially the vertebral body. Figure 8

Image

U-Net

MANet

GT

(a) (b) (d) (e) (f)(c)

Fig. 6 Visual comparison between MANet and U-net. From top row

to bottom row is the original images, the results from U-Net and the

results from MANet. a–c Show examples cannot be segmented

continuously. d–f Shows examples of false classification. In both

extremes, MANet can correctly segment
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shows some examples of poor MANet segmentation on

these difficult slices.

3.5 Measurement of clinical indicators

In order to assist doctors in diagnosing LSS, in the last part

of the experiment, we measured the cross-sectional area of

the vertebral body, lamina, and dural sac as well as the

anteroposterior diameter distance of the spinal canal with

108 test images. After training the proposed network, we

return the probability value of each pixel as the output

result. By binarizing all pixel values, a binary image with

target pixel of 1 and background pixel of 0 can be obtained.

In MRI slice, we calculate the number of pixels with the

gray value of 1 in the binary image to get the cross-sec-

tional area of a target. Under the premise that the pixel

resolution is known, the physical area of the region of

interest can be obtained. The whole process is as follows:

Output ¼ NetðInputÞ ð9aÞ

B ¼ binarizeðOutputÞ ð9bÞ
Num ¼ sumðB ¼ ¼ 1Þ ð9cÞ

A ¼ Num� u2 ð9dÞ

where Input is the input image, and Output is the output

image whose value is the probability. B is the binarized

output image, Num is the pixel area of target, u is the

physical length of the pixel and A is the physical area of

target.

Figure 9 shows several cases of the anteroposterior

diameter of the spinal canal. When calculating the

anteroposterior diameter of the spinal canal, we approxi-

mate this distance to the distance from the center of the

bottom of the vertebral body to the most concave point on

the upper edges of the lamina. In the first step, we need to

calculate the center of the bottom of the vertebral body. In

this process, we first find the center of the vertebral body,

and regard the horizontal coordinate of the center as the

horizontal coordinate of the bottom center of the vertebral

body. Then we compute the vertical coordinate

(a) (b) (c) (d) (e) (f) (g)

Image Res2netFCN U-Net Deeplabv3+ MANet GT

Fig. 7 Visual comparison between MANet and four state-of-the-art

methods. The images in the rightmost column are the ground truth of

each row, where the green regions indicate vertebral body, yellow

regions indicate the dural sac, blue regions indicate the lamina, and

dark regions indicate the background. From b to f are the results of

FCN, U-Net, Res2net, DeeplabV3 ? and the proposed MANet,

respectively. Our results are the closest to the ground truth (g) (color
figure online)
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corresponding to this horizontal coordinate on the curve of

the vertebral body contour and regard the position with the

smaller absolute value as the vertical coordinate of the

bottom center of the vertebral body. This coordinate can be

expressed as follows:

Cenx;Ceny ¼ getCenLocationðCVBÞ ð10aÞ

Bottomy ¼ minðfindCoo yðC ¼ ¼ CenxÞÞ ð10bÞ

Bottom Coordinate ¼ Cenx;Bottomy

� �
ð10cÞ

where CVB is outline of vertebral body, Cenx;Ceny
� �

is the

center of vertebral body and Cenx;Bottomy

� �
is the bottom

center of vertebral body. getCenLocation function repre-

sents to extract the center of a contour, and findCoo_y

function represents to find a vertical coordinate in the

contour.

After which, we find the most concave point on the

upper edge of the lamina. Eventually, we get the antero-

posterior diameter of the spinal canal by calculating the

geometrical distance of the two point. The specific process

is as follows:

Eupper ¼ getE upperðCLÞ ð11aÞ

Concax;Concay ¼ getCoo concaveðEupperÞ ð11bÞ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cenx � Concaxð Þ2þ Bottomy � Concay

� �2
q

ð11cÞ

where CL is outline of the lamina, Eupper is the upper edge

of the lamina, Concax;Concay
� �

is the most concave point

on the upper edge of the lamina, and D is the anteropos-

terior diameter of the spinal canal. getE_upper function

represents to extract the upper edge of a contour and

getCoo_cancave function represents to get coordinate of

the most concave point of a curve.

To validate the consistency between the calculated

clinical indicators of the predicted results and the clinical

indicators obtained from manually annotation, we used the

linear regression equations to show the correlation of

several sets of clinical indicators. The linear regression

equation is calculated as follow:

Y ¼ a0X þ a1 ð12Þ

where X is the predicted results, and Y is ground truth.a1 is

the constant term of the overall regression equation, which

is the intercept of the overall regression line on the Y axis;

a0 is the overall regression coefficient, and is also the slope

of the overall regression line.

a0 ¼
P

Xi � X
� �

Yi � Y
� �

P
Xi � X
� �2 ð13aÞ

a1 ¼ Y � a0X ð13bÞ

(a) (b) (c) (d)

Fig. 8 Examples of poor MANet segmentation on difficult slices. a–
b There is adhesion between the vertebral body and the paraspinal

muscles, which makes their edges ambiguous or imperceptible. c The
dural sac compressed by the vertebral body and lamina is impossible

to segment accurately. d Severely deformed and blurred lamina is

difficult to separate from background. The red dotted line represents

the boundary of the anatomical structure, and the red rectangular box

is the region of interest (color figure online)
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where X is the mean of predicted results, and Y is the mean

of ground truth.Xi and Yi are the corresponding samples in

X and Y respectively. The closer the regression curve is to

Y ¼ X, the closer the predicted result is to the ground truth.

Figure 10 shows the linear regression curve of the cross-

sectional area of the vertebral body, lamina, dural sac, and

the anteroposterior distance of the spinal canal. The

regression coefficients are 1.0186, 0.872, 1.0275, and

1.0435, respectively, which shows that the prediction

results are highly consistent with manual annotations,

which also proves that the network we proposed is effec-

tive and can be applied to the clinic.

4 Conclusion

Precise segmentation of the vertebral body, lamina and

dural sac is a key step in the diagnosis of LSS. This paper

proposed a new spine MRI image segmentation method

and calculated the CSA of the spinal structure and the

DASC. Compared with several commonly used medical

image segmentation methods, the proposed method has

achieved better segmentation results. The method was

tested on real spine MRI data and evaluated through sim-

ilarity metrics such as dice similarity coefficient and

average surface distance. The results of these similarity

metrics were 92.52% and 2.71 mm respectively. These

results prove the effectiveness of our method.

In short, the main contribution of this paper is to propose

a dual-branch multi-scale attention module which can

extract different information required for spine image

segmentation and select key information in feature maps.

Quantitative and qualitative experimental results show that

our method improves segmentation accuracy and corrects

segmentation error. The results also show higher overlap

and lower distance between the automatic segmentation

and manual annotation.

In the future, we intend to use broad training data to

evaluate our method, such as low-contrast data, elderly

data, and lumbar disease patients’ data to improve perfor-

mance. The other direction is to speed up the calculation

time of the training stage through optimization. Although

Fig. 9 The anteroposterior

diameter of the spinal canal.

Red is the ground truth, blue is

predicted results and the two

end points of the line segment

are marked with star marks of

the corresponding color (color

figure online)
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our model has performed a channel pruning, the training

parameters and computational complexity have been

reduced to a certain extent, but it still takes more than 20 h

to train 200 epochs with a GPU. In this regard, reducing the

calculation time of the training stage will be the future

work.

Abbreviations LSS: Lumbar spinal stenosis; MRI: Magnetic reso-

nance imaging; CT: Computed tomography; SCAD: Anteroposterior

diameter of the spinal canal; CSA: Cross-sectional area; CNN:

Convolutional neural network; DSCA: Cross-sectional area of the

dural sac; ReLU: Rectified linear unit; MLP: Multi-layer perceptron;

BN: Batch normalization; SGD: Stochastic gradient descent; GT:

Ground truth
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