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Abstract
Anomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly

detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general

python package that implements the general framework with a wide range of built-in options. This approach identifies the

primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent

space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up

to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms,

especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some

examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced

datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.

Keywords Anomaly detection � Outlier detection � Cluster analysis � Novelty detection

1 Introduction

Anomaly and novelty detection is an important area of

machine learning research and critical across a spectrum of

applications that stretch from humble data cleaning to the

discovery of new species or classes of objects. An example

of the latter application is provided in astronomy by the

LSST1 and SKA2, the next-generation optical and radio

telescopes which are so much more powerful than existing

facilities that they are expected to observe completely new

types of celestial objects and will generate datasets in the

range of 100PB–10EB. Other real-world applications

include adverse reaction identification in medicine, fraud

detection, terrorism, network attacks, abnormal customer

behavior, and even applications in the recent COVID-19

pandemic [13, 27, 43, 53]. The wide variety of potential

anomalies has led to the development of a range of pro-

posed anomaly-detection methods.

These include density-based methods like local outlier

factor (LOF) [8] which compares the local density at a

point to the density at that point’s neighbors. Clustering-

based methods, such as DBSCAN [15], detect outliers that

belong to very small clusters or lie far from existing

clusters. Distance-based methods look for outliers by

computing distances between all objects. Algorithms in this

& Alireza Vafaei Sadr

alireza.vafaeisadr@unige.ch

Bruce A. Bassett

bruce.bassett@uct.ac.za

M. Kunz

martin.kunz@unige.ch
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class include top-n kNN distance [45] and isolation forest

(i-Forest) [36], which uses path length through decision

trees to identify anomalies. Another possible classification,

proposed by Li et al. split the methods into two general

categories, principle-based (white-box) and empirical-

based (black-box). There is also the spectrum in between

(gray-box) [33].

Using dimensionality reduction algorithms is quite a

popular approach especially for high-dimensional datasets

like networks [12, 18, 24, 28, 29, 32] and medical scans

[34]. Faust et al. suggested a classification approach based

on dimensionality reduction can work for anomaly detec-

tion. Moreover, deep learning-based algorithms use the

depth of their architectures to learn important features in

the data which can then be used to search for anomalies

based on the features [3, 10, 14, 39, 44]. As one example

Sakurada and Yairi [49] proposed using autoencoders for

anomaly detection. They evaluated their proposed method

versus linear PCA and kernel PCA on simulated and real

data. They showed that autoencoders can detect subtle

anomalies that linear PCA fails to find. Interested readers

are encouraged to read the review papers by Pang et al.

[40] and Thudumu et al. [52].

Despite the wide range of approaches, the problem is

still one of the most challenging areas of machine learning.

The no free lunch (NFL) theorems3 imply that no ‘‘best’’

anomaly detection algorithm exists across all possible

anomalies, classes, data, and problems. For any algorithm,

it is possible to construct anomaly attacks that deceive the

algorithm by exploiting the features learned in the process

of training the algorithm. How can one build a trap for a

new type of animal if one knows nothing at all about that

animal?

One might be tempted to try to circumvent this aspect of

the NFL theorems by building a very large number of

features in the hope that some features will, by chance, be

sensitive to the anomalous signal. Unfortunately, signifi-

cantly increasing the number of features leads to the curse

of dimensionality [1]: the performance of most machine

learning algorithms deteriorates as the dimensionality of

the feature space increases dramatically. The key reasons

for the ‘‘curse’’ are that distance measures become less and

less informative [6] and feature space volume grows

exponentially in higher dimensions. Additionally, anomaly

detection is hampered by the fact that lack of training

examples means it is difficult or impossible to learn the

anomalous features or tune any hyperparameters [16]. As

an example, deep neural networks succeed as classifiers

precisely because they use a large amount of training data

to learn the right features to classify the training data. On

the other hand, with few or no examples of the anomalies

for the training process, there is no way to train the algo-

rithm to be sensitive to the ‘‘right’’ features that will allow

the anomalies to be detected. Likewise, a good algorithm

for a given class of anomalies may perform badly simply

due to poor hyperparameter settings.

Contrary to the dual challenges posed by the NFL the-

orems and the curse of dimensionality, humans are rela-

tively good at anomaly detection in the real world and have

the ability to learn from a single example. It is therefore

reasonable to believe that there exist optimal anomaly

detectors for subclasses of anomalies relevant to the real

world. Most physically relevant functions are fairly smooth

and can be efficiently compressed [35]. This inspires our

search for ‘‘better’’ algorithms and is the key context of the

present work. Application to the case of relatively smooth

functions and real-world anomaly datasets is how our

anomaly detection algorithm is judged, which we call the

dimensionality reduction anomaly meta-algorithm

(DRAMA). DRAMA4 is released as a python package5.

It is useful in some cases to make a technical distinction

between anomalies and novelties. Here, anomaly detection

corresponds to the case where both the training and test

data contain outliers while ‘‘novelty detection’’ is the case

where one has ‘‘pure’’ training data (with no outliers) while

the test data may have interesting exceptions one wishes to

identify. DRAMA can perform both tasks, but flexibility in

the various steps allows us to freely use any examples of

known anomalies in the training data to find the optimal

hyperparameters with respect to the desired figure of merit,

choice of dimensionality reduction, and distance metric.

Comparison of our algorithm, DRAMA, with a large

number of existing algorithms, is computationally infeasi-

ble. We, therefore, pick two popular general algorithms to

benchmark DRAMA against local outlier factor (LOF) [8]

and isolation forest (iForest) [36]. Benchmarks are per-

formed both against simulated data and a collection of real-

world anomaly datasets. The outline of this paper is as

follows: in Sect. 2 DRAMA is outlined while Sect. 3

describes the simulated and experimental datasets and

metrics. Results and discussion are presented in Sect. 4.

Finally, our conclusion can be found in Sect. 5.

2 The DRAMA algorithm

Our algorithm–dimensional reduction anomaly meta-algo-

rithm (DRAMA)–consists of four main steps: (i) dimen-

sionality reduction (encoding) of data to a lower-

3 http://no-free-lunch.org/.

4 DRAMA is based on the popular scikit-learn [42] and TensorFlow

[4] packages and comes with a Jupyter notebook interface for ease of

use.
5 https://github.com/vafaei-ar/drama.
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dimensional space, followed by (ii) clustering to find the

main prototypes in the data, (iii) uplifting to the original

space (decoding; optional) and finally (iv) distance mea-

surements between the test data and the prototypes (the

main clustered components) to rank potential anomalies.

These steps are illustrated in Fig. 1 and discussed in turn in

the following.

2.1 Dimensionality reduction

This is the first step of the DRAMA procedure. Assume X

is a nf -dimensional feature vector. Dimensionality reduc-

tion translates X into another vector z in an m-dimensional

space, where m � n. Good reductions keep as much

important information as possible while removing noise

and irrelevant information, efficiently encoding the data. In

general, the reduction will result in loss of information but

is very useful when one wants to work with or visualize the

data in lower dimensions or attempts to combat the curse of

dimensionality. The inverse process of lifting back up to

the original space, i.e., going from z to X will be referred to

as decoding hereafter. DRAMA uses both encoding and

decoding, with primary component extraction performed in

between.

The current version of DRAMA comes with 5 built-in

Dimensionality Reduction Techniques (DRT)6:

• Independent Component Analysis (ICA)

ICA is designed to separate data into a linear

combination of statistically independent and non-Gaus-

sian sources [26]. Mathematically the problem can be

formulated as x ¼ As, where x is the data, s represents

the independent sources, and A is the transformation

matrix exhibiting the linear combinations [25, 38]. The

advantage of ICA is that it finds maximally independent

components even if the sources are not independent.

The main limit of ICA is that the non-Gaussian source

assumption also leads to the inability to separate

Gaussian sources.

• Non-negative Matrix factorization (NMF)

NMF allows the extraction of sparse and inter-

pretable factors [19], revealing hidden features in

datasets without any prior knowledge about their mean

and variance [17, 20]. NMF finds two positive matrices,

Wd�r, Hr�f , such that their product closely reproduces

the original data matrix, Wd�f

W � WH ð1Þ

This leads to automated clustering of the data, with H

indicating cluster membership and W giving the

centroids of the clusters. The main disadvantage of

NMF is that it does not give a unique solution [5].

• Autoencoders (AE)

AE are neural network models for data compression

[22]. Unlike linear algorithms (for example PCA), they

can approximate highly nonlinear transformations

depending on the neural network layers used. AE are

successful at denoising and feature extraction [11]. In

the most general application, AE tries to reconstruct the

input signal after it has been forced through a tight

bottleneck. This requires the network to learn the

features that capture the majority of the variability of

the input signal. The bottleneck represents the latent

layer whose dimension is lower than the original signal.

The trained encoder is a neural network which converts

X to z and can be used as DRT.

• Variational Autoencoders (VAE)

VAE is introduced in 2013 [30, 47] as an idea for

complex generative models. Like AE they also consist

of an encoder, decoder, and a loss function, but the key

difference between VAE and AE is that instead of

learning just a function, VAE learns the parameters of

an assumed probability distribution that describes the

latent variables. This is what allows it to be used as a

generative model. The loss typically includes two terms

like

K ¼ Krecon þ KLðqencoderðzjXÞ; pðzÞÞ ð2Þ

where KL is the Kullback–Leibler divergence. The first

term is the reconstruction loss, and the second term is a

regularizer that measures how much the encoder

qencoderðzjXÞ is similar to the assumed prior distribution

pðzÞ. In VAE pðzÞ is typically taken to be a zero mean

and unit variance normal distribution. For more info

see, e.g., [7].

• Principal Component Analysis (PCA)

One of the simplest and most common DRT is

principal component analysis (PCA). PCA creates a

new basis of the most important m linear combinations

of the data through covariance matrix diagonalization

[23, 41]. Since PCA is a linear mapping it fails to

capture any nonlinear relationships in the data.

DRAMA uses ICA, NMF, AE, VAE, and PCA as the

possible dimensionality reduction techniques, though user-

supplied DRT can easily be included. These DRT reduce

the input features to low dimensions as a preprocessing

step for clustering and extraction of the prototype

components.

6 DRAMA is modular and easy to extend to any other DRT.
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2.2 Prototype extraction

In this section, the second and third steps in DRAMA are

explained, prototypes and how they can be extracted.

Having encoded the features down to a low-dimensional

latent space (here D ¼ 2) using a choice of DRT, we can

efficiently perform unsupervised clustering to detect

clusters.

As illustrated in Fig. 2, the data are hierarchically split

into clusters. Initially, the data are split into two clusters

and then successively split until after ns steps, there are 2
ns

detected prototypes, C ¼ fP1;P2; . . .P2nsg. There is no

concern that the 2ns clusters represent true subclasses; ns is

simply a hyperparameter designed to find anomalies. While

smaller ns may cause more false positives, larger ns may

allow masking of anomalies (since they happen to be close

to some prototype) and hence lead to false negatives.

Having found the 2ns clusters one can select the center7 of

each cluster and can now choose whether or not to decode

it to the original, high-dimensional, feature space. Empir-

ically we find that decoding to the original space gives

better results. Either way there are 2ns prototypical com-

ponents representative of the ‘‘average’’ (inlier) data.

2.3 Identifying anomalies

Having decoded the prototypes, the next step is computing

the distance between them and each test data point. It is

possible to compute the distances using encoded prototypes

as well but we find the results are better while using the

decoded prototypes. This requires a distance metric

(hereafter ‘‘metric’’), dðxi;PjÞ, where xi is ith data point

and Pj is the jth prototype. For any choice of metric, the

predicted anomalies are then ranked by Si where

Si ¼ min
8j2C

dðxi;PjÞ ð3Þ

Considering the above equation, the choice of metric is

another flexibility of DRAMA. Currently, DRAMA

includes nine different metrics: Cityblock (L1), L2, L4, as

well as the inverse variance weighted L2 and L4 distance

metrics, Bray–Curtis (BC), Chebyshev [9], Canberra [31],

correlation [51] and Mahalanobis. These metric definitions

are given in Table 1. The minimum distance between a test

data point and the prototypes shows how much a given data

point is anomalous.

Figure 3 shows DRAMA workflow on a hypothetical

challenge made out of the MNIST dataset8.

3 Datasets for testing DRAMA

Considering the NFL theorems, it is always possible to find

or simulate a dataset that suites or completely confuses any

specific algorithm. It is therefore important to examine the

performance of DRAMA in a variety of different chal-

lenges. Three simulated anomaly detection challenges are

designed for this purpose and then several blind-selected

real-world anomaly benchmarks are used to evaluate

DRAMA.

Fig. 1 Schematic of the DRAMA framework. Dimensionality reduc-

tion (left) is performed on the nd data points and reduces the number

of features from nf to nz in the latent space. Clustering then splits the

data (here into two clusters). One prototype is extracted for each

cluster. Then, the prototypes (main components) are decoded back

into the original space (top right). Comparison between the prototypes

and test data ranks data points by their maximum distance to the

closest prototype. One example using MNIST data is shown in Fig. 3

7 Here, taken to be the mean of each cluster. 8 The code for this example is shared on DRAMA repository.
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3.1 Simulated challenges

There is an infinite number of ways to simulate inliers and

anomalies. In this work 10 different classes of continuous

‘‘time series’’ are considered, shown in Fig. 4, representing

a wide range of behaviors one might find in the real world.

These 10 shapes are perturbed by random Gaussian

noise and random scaling in both x and y directions. Then,

there are two anomaly detection challenges, each with two

sub-challenges which differ only in the dimensionality of

the data and one other challenge to evaluate how DRAMA

can deal with multi-class outliers and discriminate between

different anomalous classes after the detection phase. The

details of the challenges are explained in more detail as

follows:

• Challenge-I: Compact Anomalies

In the first challenge, compact Gaussian ‘‘bump’’

anomalies are added to the 10 classes with a random

location. The bump amplitude is chosen in the range

0:3� 0:4 while the width is chosen from 0:08� 0:1.

There are 1000 inliers and 50 anomalies for each

chosen shape. Finally, noise is produced from a zero-

mean Gaussian with r ¼ 0:3, comparable to the

anomaly amplitude. This task is broken into two sub-

challenges, labeled C-Ia and C-Ib, which differ only in

the dimensionality of the data. For C-Ia (C-Ib), nf ¼
100 ð3000Þ are chosen, respectively. An example of an

event anomaly is shown in Fig. 5.

• Challenge-II

The second challenge uses 9 of the shapes in Fig. 4

to produce 500 inliers while the remaining shape is used

to produce 50 anomalies. To be more robust, the choice

of the class used for the anomalies is permuted and the

averaged result is reported. Uncorrelated Gaussian

noise (l ¼ 0, r ¼ 0:8) is added in all cases. As before,

this challenge is split into two sub-challenges, labeled

C-IIa and C-IIb, which again differ only in the

dimensionality of the data with nf ¼ 100 and 3000,

respectively.

• Challenge-III

In the third challenge (C-III), it is assumed that there

are underpopulated classes in the dataset. The under-

populated classes occur frequently enough to be

considered inliers but they are relatively rare in

comparison with other classes. This represents, e.g.,

some phenomenon that is already discovered but not

very common.

To explain the third challenge, let us assume that we

are fully aware of the existing classes in the training set

(either large or small classes). This is supplemented by

new observations that include both the known classes

and outliers. This condition might make a problem for

usual anomaly detection methods and requires data

augmentation techniques since there are underpopulated

classes/unbalanced training data.

In the third challenge, a similar situation is simu-

lated; but this time there is more than one class of

Fig. 2 Illustration of the

prototype extraction process in

DRAMA. Given a chosen depth

(in this case ns ¼ 3), clustering/

splitting iteratively extracts

more detailed information about

the different shapes in the data

to use as prototypes

Table 1 Metric options available in DRAMA: d(u, v) is the distance

between data points u and v; �u and �v are the averages of u and v,
respectively

Metric Definition

L1
P

i ui � vij j
L2 jju� vjj2
L4 jju� vjj4
wL2 jj u�v

r jj
2

wL4 jj u�v
r jj

4

Bray–Curtis
P

jui � vij=
P

jui þ vij
Chebyshev maxi jui � vij
Canberra

P
i
jui�vi j
jui jþjvi j

Correlation 1� ðu� �uÞ�ðv� �vÞ
jjðu� �uÞjj2 jjðv� �vÞjj2

Mahalanobis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� vÞC�1ðu� vÞT

q
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outliers in the dataset and one wishes to classify them

into multiple classes.

C-III is designed in a way that the inlier dataset

(‘‘training data’’) is highly unbalanced in term of

subclasses. It includes 4� 2000 data points inherited of

four of the ten base shapes shown in Fig. 4 and 4� 50

data points drawn from another four shapes with

nf ¼ 100, leading to a total of 4� 2000þ 4� 50 ¼
8200 inliers instances. The test set includes a similar

distribution of inliers and also 50 outliers drawn from

each of the remaining 2 shapes. Hence the test set

contains 8200 inliers and 100 outliers.

3.2 Real datasets

In this study, 20 real-world datasets9 are chosen at random

from the ODSS10 database. This is a standard testbed for

outlier detection and has been used in many earlier works,

Fig. 3 This figure shows how

DRAMA finds outliers in a

subset of MNIST handwritten

digits data. As a simple

challenge, two digits (0 and 1)

are assumed to be inliers and

one digit (2) is assumed as

anomalous data points. Notice

in the bottom right how

DRAMA pulls out the many 2’s

(the anomalies in this example)

Fig. 4 The ten base classes used

as the simulated classes in all

three of the synthetic time series

challenges. Noise and a variety

of anomalies were then added

on top of these base classes to

form the input data

9 We were limited to 20 by computational resources.
10 http://odds.cs.stonybrook.edu/.
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including [2, 46, 50]. A summary of the different datasets

used, including the dimensionality of the data and number

of inliers and outliers, is shown in Table 2.

3.3 Scoring metrics

To test the robustness, all the algorithms are run 10 times

on each test dataset. We then report the average perfor-

mance for three relevant score metrics suited for anomaly

detection, namely: area under the ROC Curve (AUC),

Matthews correlation coefficient (MCC) and rank-weighted

score (RWS) [48].

The MCC lies between �1 and 1[37] and is defined by

MCC ¼ TP� TN � FP� FN

ðTPþ FPÞðTN þ FNÞðTPþ FNÞðTN þ FPÞ
ð4Þ

where TP(TN) and FP(FN) are the True Positive (Nega-

tive) and False Positive (Negative) ratios [37]. Perfect

predictions yield MCC¼ 1.

Given a ranked list of length N of the most likely out-

liers, the RWS is defined by

RWS ¼ 1

NðN þ 1Þ
XN

i¼1

wiIi ð5Þ

where the weight wi � N þ 1� i and is large if i is small

and decreases to unity for i ¼ N. Here, Ii is an indicator

function which is unity if the ith object is an outlier and 0

otherwise and the sum is over the top N anomaly candi-

dates. Here, N represents the number of anomalies. The

RWS rewards algorithms whose anomaly scores correlate

well with the true probability of being an anomaly.

Although the performance of the algorithms in terms of the

three metrics is similar, they differ when the feature space

dimension is small.

4 Results and discussion

DRAMA is, by design, very flexible, since it is composed

of a large number of related algorithms, differing by choice

of DRT, clustering, distance and scoring metrics. As a

result, a DRAMA algorithm beats LOF and i-Forest on

every simulated data challenge and 17 out of 20 real-world

challenges in terms of AUC. Considering the problems that

are investigated in this study, the Cityblock metric, and AE

& NMF DRTs are the most successful on average. Because

of the NFL theorems, DRAMA’s superiority cannot hold in

general of course, but the results show that if one DRT or

metric does not perform well, another one likely will.

The flexibility of the DRAMA framework is particularly

useful when one has seen a few anomalies or outliers. In

this case, it is possible to learn the best DRT-clustering-

metric combination to enable optimal detection of the

anomalies for the chosen figure of merit. To illustrate this

capability, we give DRAMA, LOF, and i-Forest the ability

to learn from a variable number of seen anomalies/outliers.

This is used to select the best configuration of hyperpa-

rameters for all the algorithms to maximize the figure of

merit (AUC, MCC, RWS). The results for the simulated

challenges are shown in Figs. 6, 7, and Table 3, and for the

real datasets in Fig. 8. The results show both the mean and

best results over 10 runs for each of the challenges and

each algorithm.

While LOF and i-Forest are competitive on the simu-

lated challenges in low dimensions (nf ¼ 100) DRAMA

particularly shines in high dimensions (nf ¼ 3000). On the

real-world datasets, we considered which have small

numbers of points and dimensions \300 the performance

of DRAMA and i-Forest are comparable and significantly

better than LOF. In terms of time consumption perfor-

mance, DRAMA is slightly faster than LOF and iForest,

averaging 0.33s per run over a range of experiments and

tests.

In Challenge III, there are two complications: (1) there

are four rare classes that are present in both the training and

test data and are red-herrings for the algorithms, and (2)

there are two different classes of outliers, present only in

the test set.

Here, DRAMA completely outperforms the other algo-

rithms, achieving almost perfect performance, see Table 3,

while both LOF and iForest perform very poorly in terms

of MCC and RWS. Beyond this, DRAMA is able to cluster

the outlier examples into classes by using their distances

from the inlier prototypes. DRAMA classifies the outliers

into the correct classes almost perfectly, achieving a pre-

cision of 99� 1%. Neither LOF nor iForest can classify

outliers into different classes by default.

Fig. 5 Example of an event anomaly used in Challenge-I. The blue

curve is an inlier while the red curve shows a compact, anomalous

event
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However, because of the no free lunch theorems, no

anomaly detection algorithm can outperform all other

algorithms on all datasets and for all metrics. We see this

in, for example, the performance of DRAMA on the wbc

and satellite datasets that was poorer than LOF and/or

i-Forest for some metrics. This is further illustrated in

Fig. 8 which shows that, averaged over multiple runs,

DRAMA performs slightly worse than i-Forest on the low-

dimensional real-world datasets (though better than LOF).

5 Conclusion

We present DRAMA, a general python package for

anomaly detection that uses dimensionality reduction and

unsupervised clustering to identify prototypes. The dis-

tance to the prototypes then leads to the detection of the

potential anomalies and can spontaneously cluster outliers

into subclasses. All aspects of this workflow are flexible,

making DRAMA attractive in the supervised/online

anomaly detection, where there are known outliers which

can be used to optimize discrete and continuous hyperpa-

rameter combinations. DRAMA’s accuracy is evaluated

against the commonly used algorithms isolation forest (i-

Forest) and local outlier factor (LOF), using a wide variety

of simulated and real datasets in up to 3000 dimensions.

DRAMA particularly excelled on the simulated time series

Table 2 Real-world dataset summary from the ODSS Benchmark

showing the number of examples, the dimensionality of the feature

set, and the number of outliers in each dataset

Dataset # points # dim. # outliers

Lympho 148 18 6

Breastw 683 9 239

Wine 129 13 10

Vertebral 240 6 30

Glass 214 9 9

Pima 768 8 268

Thyroid 3772 6 93

Ionosphere 351 33 126

Cardio 1831 21 176

wbc 378 30 21

Arrhythmia 452 274 66

Vowels 1456 12 50

Satellite 6435 36 2036

Satimage-2 5803 36 71

Optdigits 5216 64 150

Mammography 11183 6 260

Shuttle 49097 9 3511

Mnist 7603 100 700

Pendigits 6870 16 156

Musk 3062 166 97

Fig. 6 Performance in the compact anomaly challenges, for nf ¼ 100

(top, C-Ia) and nf ¼ 3000 (bottom, C-Ib), as a function of the number

of seen anomalies. The solid line is the average performance while the

dashed line is the maximum performance. DRAMA is far superior to

both other algorithms. In particular, in high dimensions and for AUC,

DRAMA is the only one of the algorithm that improves as it sees

more outlier examples
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data, winning every challenge. On the very inhomogeneous

and fairly low-dimensional real-world datasets considered

in this study, DRAMA was highly competitive with LOF

and i-Forest. DRAMA is capable of being used for data

exploration and unsupervised classification and its flexi-

bility allows extending evaluation metrics to include, for

Fig. 7 Performance in the second challenge, for nf ¼ 100 (top, C-IIa)
and nf ¼ 3000 (bottom, C-IIb), as a function of the number of seen

anomalies. The solid line shows the average performance and the

dashed line the maximum performance. DRAMA is again equal to, or

superior to, both LOF and iForest. DRAMA particularly shines in the

high-dimensional case

Table 3 Results for Challenge-III using ICA as dimensionality

reduction transformation and Mahalanobis as the metric. In this

challenge, there are four rare classes in the training data that may

confuse the algorithms and two outlier classes not present in the test

data. The final column gives the average precision DRAMA achieves

in classifying the outliers into these two classes, something LOF and

i-Forest cannot do at all

AUC(%) MCC(%) RWS(%) Precision(%)

DRAMA LOF i-Forest DRAMA LOF i-Forest DRAMA LOF i-Forest DRAMA

100 73� 17 78� 12 99� 1 20� 27 25� 26 99� 2 22� 22 25� 21 99� 1

The best results are in bold style

Fig. 8 Average (solid lines) and best (dashed lines) performance on

the 20 real datasets where both iForest and DRAMA outperform LOF.

Although DRAMA is not as good as iForest on average in this case,

note that all the datasets have dimensionality less than 300 and hence

are not ideally suited to DRAMA
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example, robustness and resilience [21, 54]. Finally, it will

be interesting to modify and test DRAMA for novelty

detection and anomaly detection in images. We leave this

to future work.
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