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Abstract
Reinforcement learning (RL) using deep Q-networks (DQNs) has shown performance beyond the human level in a number

of complex problems. In addition, many studies have focused on bio-inspired hardware-based spiking neural networks

(SNNs) given the capabilities of these technologies to realize both parallel operation and low power consumption. Here, we

propose an on-chip training method for DQNs applicable to hardware-based SNNs. Because the conventional backprop-

agation (BP) algorithm is approximated, a performance evaluation based on two simple games shows that the proposed

system achieves performance similar to that of a software-based system. The proposed training method can minimize

memory usage and reduce power consumption and area occupation levels. In particular, for simple problems, the memory

dependency can be significantly reduced given that high performance is achieved without using replay memory. Fur-

thermore, we investigate the effect of the nonlinearity characteristics and two types of variation of non-ideal synaptic

devices on the performance outcomes. In this work, thin-film transistor (TFT)-type flash memory cells are used as synaptic

devices. A simulation is also conducted using fully connected neural network with non-leaky integrated-and-fire (I&F)

neurons. The proposed system shows strong immunity to device variations because an on-chip training scheme is adopted.

Keywords Reinforcement learning (RL) � Hardware-based deep Q-networks (DQNs) � On-chip training � Synaptic devices

1 Introduction

Recently, neuromorphic computing inspired by the human

brain has emerged as one of the most promising types of

computing architectures. It overcomes the limitations of

the conventional von Neumann architecture, which is

associated with a bottleneck between the memory and the

processor, and offers advantages in terms of time and

power consumption [1–3]. Two training methods are most

commonly used to training a neural network: the

backpropagation (BP) algorithm and the spike-timing-de-

pendent plasticity (STDP) learning rule [4, 5]. The BP

algorithm propagates error values obtained from the output

layer in the backward direction and updates the synaptic

weights through these error values. It is suitable for pro-

cessing labeled data and is mainly used for offline super-

vised learning. Software-based deep neural networks

(DNNs) using the BP algorithm have shown high perfor-

mance in many fields [6–8]. However, this training algo-

rithm requires considerable amounts of time and power to

determine the error values [4]. The STDP learning rule is

inspired by the weight changes of biological synapses and

is mainly used for online unsupervised learning. Unlike the

BP algorithm, the synaptic weights are updated according

to the time difference between the presynaptic and post-

synaptic spikes [9]. The STDP learning rule has an

advantage in that the neural network consumes less power

by enabling event-driven operations and on-chip training.

However, it still lacks performance compared to the BP

algorithm [10–13].
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For low power consumption and high speed, hardware-

based spiking neural networks (SNNs) using the conduc-

tance of electronic synaptic devices as synaptic weights

have been actively studied [14–17]. Hardware-based neural

networks can perform massively parallel computations

with low levels of power. When training a hardware-based

neural network using the BP algorithm, two methods are

most commonly used: an off-chip training method that

simply transfers the weight values trained in software using

the BP algorithm to the synaptic devices, and an on-chip

training method that continuously updates the synaptic

weights during the training process [4]. Off-chip training

uses more power because the training process for weight

updating occurs in the software. Furthermore, the perfor-

mance can be degraded due to variations of non-ideal

synaptic devices [5, 18]. On the other hand, on-chip

training is immune to variations of non-ideal synaptic

devices [10, 19–22]. This approach is also advantageous

given its low power consumption and high-speed training

capabilities, as both weighted sum and weight updating

occur in the hardware-based neural network [5, 23, 24].

Recently, several studies have investigated on-chip training

for low power consumption and good performance out-

comes [25–27]. On-chip training in a hardware-based

neural network showed performance fairly similar to that

by the conventional software-based neural network.

Thus, we focused on the on-chip training method using

the BP algorithm in a hardware-based neural network. This

is advantageous given its relatively high performance

compared to the STDP learning rule, low power con-

sumption, high-speed training capabilities, and strong

immunity to variations of non-ideal synaptic devices

compared to the off-chip training method. While several

studies related to on-chip training have been conducted on

various networks, no studies have been reported on an on-

chip reinforcement learning (RL) to the best of our

knowledge. RL achieves human-level performance, which

is difficult to achieve with simple DNNs [28, 29]. In RL

with complex problems, training using deep Q-networks

(DQNs) is preferred, as performance levels when using this

method have already surpassed the human levels in several

fields [28–32].

In this work, we propose an on-chip training method for

RL using vanilla DQNs while minimizing memory usage.

While several training methods applicable to RL have been

reported, vanilla DQNs were used as a simple training

method suitable for implementing hardware-based RL

[31–38]. In addition, nonlinearity characteristics and vari-

ations of non-ideal synaptic devices are considered. Two

types of variation of non-ideal synaptic devices were

considered: the pulse-to-pulse variation and the device-to-

device variation. The entire training process is divided into

four phases: two forward phases, one backward phase, and

one update phase. Moreover, for simple problems, the

network can be trained without using replay memory,

thereby significantly reducing the memory dependency.

We use the previously proposed neuron circuits [39] and

the synaptic devices [40] to evaluate the proposed training

method. The performance of the training method is eval-

uated through two example games: a ‘Fruit Catching’ game

and a ‘Rush Hour’ game.

This paper is organized as follows. Section 2 presents

the characteristics of the synaptic device used in this work

and the proposed training method for hardware-based

DQNs. Section 3 provides the system-level simulation

results of the proposed hardware-based neural network

based on two simple games and a discussion about the

results. Section 4 provides a summary of the overall paper

and the future work.

2 Device characteristics and training
method

2.1 Synaptic device

In a hardware-based neural network, synaptic devices

representing weight values are very important. In this

work, we use the thin-film transistor (TFT)-type flash

memory cells fabricated using a method published in an

earlier report by the authors as synaptic devices [40]. A

schematic 3D view of the proposed synaptic device is

shown in Fig. 1a. TFT-type flash memory cells are fabri-

cated on a six-inch Si wafer with conventional CMOS

process technology. Between the word line (WL) and the

source line (SL), a half-covered n? poly-Si floating gate

(FG) is formed as a charge storage layer. Because the FG

covers only half of the poly-Si channel, the threshold

voltage does not fall below 0 in the full erase state. This

prevents leakage current and reduces the standby power

during the training process. The thicknesses of the poly-Si

active layer, tunneling SiO2 layer, blocking SiO2 are

20 nm, 7 nm, and 15 nm, respectively. The distance

between the source and drain is 0.5 lm, and the width of

the control gate is 2 lm. If the width of the control gate is

scaled to the minimum feature size (F), one synaptic device

can be scaled down to 8 F2. Figure 1b shows the measured

long-term potentiation (LTP) and long-term depression

(LTD) characteristics of the proposed synaptic device as a

parameter of the number of the pulses applied to the WL

and SL. Fifty repeated erase pulses (VWL = - 3 V, VSL-

= 5 V) and 300 repeated program pulses (VWL = 0 V,

VSL = - 4.8 V) are applied in this measurement.

The behavioral model of the nonlinear synaptic device is

generally expressed using the following equations [10]:
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G nþ 1ð Þ ¼ G nð Þ þ ap exp �bp
G nð Þ � Gmin

Gmax � Gmin

� �
ð1Þ

G nþ 1ð Þ ¼ G nð Þ � ad exp �bd
Gmax � G nð Þ
Gmax � Gmin

� �
: ð2Þ

Equations (1) and (2) represent the LTP and LTD

behaviors of synaptic devices, respectively. G(n) denotes

the conductance of the synaptic device when potentiation

or depression pulses are applied n times, and Gmax and

Gmin are the maximum and minimum conductance values,

respectively. ap and bp represent the fitting parameters of

the potentiation characteristics. Similarly, ad and bd rep-

resent the fitting parameters of the depression characteris-

tics. The nonlinearity of the synaptic device is determined

by bp and bd in these equations. The LTP and LTD

characteristics of the proposed TFT-type synaptic device

are fitted with bp equal to 2.5 and bd equal to 5. In addition,
the synaptic device consumes energy of *100 fJ/spike on

average (approximately a 10 nA current at a pulse with a

1 V amplitude and a 10 ls width).

2.2 Training method

Before introducing the training method, we describe the

behavior of the integrate-and-fire (I&F) neuron model used

in the neural network. The spikes from presynaptic neurons

are integrated into the membrane capacitor of the postsy-

naptic I&F neurons. When the membrane potential exceeds

the threshold voltage, postsynaptic spikes are generated

from the I&F neuron and are transmitted to the next layer.

The behavior of the I&F neurons in the SNNs can

approximate the rectified linear unit (ReLU) activation

function of conventional DNNs, as the number of the

postsynaptic spikes is proportional to the membrane

potential of the I&F neuron. Here, the membrane potentials

are initialized to zero, and the lower limit is set to zero.

Details of the behavior of the membrane potential (Vl
j )

of the j-th I&F neuron in the l layer are expressed as shown

below.

Vl
j tð Þ ¼ Vl

j t � 1ð Þ þ
XNl�1

i

Sl�1
i tð Þ
Cmem

wl�1
ij ð3Þ

if Vl
j tð Þ[Vth :

Vl
j tð Þ ¼ Vl

j tð Þ � Vth

Slj tð Þ ¼ 1

(
ð4Þ

else : Slj tð Þ ¼ 0 ð5Þ

Here, Slj tð Þ represents the spikes generated in the j-th

neuron in the l layer at time t in the form of a voltage pulse.

wl�1
ij indicates the synaptic weight between the i-th neuron

in the l-1 layer and the j-th neuron in the l layer. Cmem and

Nl-1 correspondingly represent the membrane capacitance

of the I&F neuron and the total number of neurons in the l-

1 layer. Equation (4) represents the behavior of the j-th

neuron in the l layer when the membrane potential exceeds

the threshold voltage (Vth). At this time, the membrane

potential drops by Vth and the neuron generates a postsy-

naptic spike (Slj tð Þ).
By accumulating the teaching signal (Zk(t)) and the

output spike, we can obtain the error value (dLk ) in the

output layer (l = L), as follows,

dLk ¼
XT
t

Zk tð Þ � SLk tð Þ
� �

; ð6Þ

where T is the total number of time steps taken to train one

set of input pixels. In this paper, images were used as input
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(b)

Fig. 1 a 3D view of TFT-type flash memory cells used as synaptic

devices. b Measured LTP/LTD characteristics of the proposed

synaptic device
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data, and the input pixels are presented as binary data with

a value of 0 or 1. The total number of times a neuron fires

in each layer during the training process (
PT

t S
l
j tð Þ) is

limited to a maximum of T times. The teaching signal

supervises the training direction and is obtained through

methods described in Sect. 2.3.

The error values in the previous layers

(l 2 1; 2; . . .; L� 1f g) are obtained through the backward

weighted sum, as follows,

dlj ¼
PNlþ1

k

dlþ1
k wl

jk; if
PT
t
Slj � 1

0; otherwise

:

8<
: ð7Þ

When the j-th neuron in the l layer fires more than once

during time T (
PT

t S
l
j � 1), the error value is obtained

through the backward weighted sum. On the other hand,

the error value is 0 when the j-th neuron in the l layer does

not fire during time T (
PT

t S
l
j ¼ 0). This reflects the

derivative value of the ReLU activation function.

The synaptic weights are updated as follows using the

error value obtained in Eq. (7),

Dwl
jk ¼ gdlþ1

k sign
XT
t

Slj tð Þ
 !

; ð8Þ

where g denotes the ratio used when converting the mag-

nitude of the error value to the pulse width. The conversion

ratio g has a meaning similar to that of learning rate in

software-based networks. In addition, the weight update

value (Dwl
jk) becomes 0 when the number of presynaptic

spikes generated during time T (
PT

t S
l
j tð Þ) is 0. Then, the

synaptic weight between the j-th neuron in the l layer and

the k-th neuron in the l ? 1 layer is updated using the

following equation:

wl
jk ¼ wl

jk þ Dwl
jk: ð9Þ

The derivative value of the activation function is not

employed in the overall training process, as the derivative

value of the ReLU function is 1 or 0. When
PT

t S
l
j tð Þ is 0,

dlj becomes 0 in Eq. (7) and Dwl�1
ij becomes 0 in Eq. (8),

outcomes identical to reflecting the derivative value 0 of

the ReLU function. When
PT

t S
l
j tð Þ exceeds 1, dlj is

obtained as the derivative value 1 of the ReLU function is

reflected and Dwl�1
ij is obtained through Eq. (8).

In a hardware-based neural network, the weight value

between the i-th presynaptic neuron and the j-th postsy-

naptic neuron is represented by the difference in the con-

ductance of two synaptic devices, as follows,

wij ¼ Gþ
ij � G�

ij ; ð10Þ

where Gþ
ij and G�

ij represent the positive and negative

weight values, respectively. Two synaptic devices are

required for each weight value to express a negative

synaptic weight because the conductance of a synaptic

device only has a positive value. The update and reset

methods of G? and G- follow the method proposed by Lim

[41]. G? is increased when weight potentiation is required,

and G- is increased when weight depression is necessary.

If G? reaches Gmax and weight potentiation is necessary,

G- is initialized and then increased to a conductance level

one step lower than the previous value. When both G? and

G- reach Gmax, they are initialized to Gmin.

2.3 Hardware-based deep Q-network

Figure 2 represents the overall training process of the

hardware-based DQN. It consists of three elements: the

environment in which the game progresses, the DQN

where training takes place and the appropriate action is

selected, and replay memory for an experience replay.

First, the current state (s) of the environment is applied

to the input of the DQN and stored in the replay memory

(� of Fig. 2). In the network, forward propagation occurs

and the first fired output neuron is selected as an action

(a) according to the learning rule. This action is applied to

the environment and stored in the replay memory (` of

Fig. 2). Next, the reward (r) and the next state (s0) that

appear when the given action is performed are stored in the

replay memory (´ of Fig. 2). Through this process, one set

of (s, a, r, s0) data is stored in the replay memory. Finally,

using the data stored in the replay memory, the DQN is

trained using the method described in the previous

Sect. 2.2 (ˆ of Fig. 2).

In this hardware-based network, the entire training

process is divided into four phases. Each phase is split into

five time steps (T = 5) with a total length of 150 ls. Only
one spike can be generated during each time step, and the

input pixel is presented as binary data with a value of 0 or

1. When the input data from a pixel is 0, no input spike is

generated, and if it is 1, input spikes are generated at every

time step. Figure 3a shows a schematic illustration of a

fully connected network with one hidden layer as an

example. The case of the second phase where the total

number of the time step per phase is 5 and the input data

from a pixel is 1 (equivalent to 5 pulses with a 3 V

amplitude) is shown in Fig. 3b as an example. Figure 3c

presents the pulse scheme for weight updating during the

fourth phase.

The first phase is the forward phase that receives state s0

as an input and obtains the maximum value of the output

value (Q). This output value Q represents the long-term

expected return of executing action a0 from given state s0.
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With a higher the Q-value, better long-term results in state

s0 can be obtained when the corresponding action a0 is

performed. In order to obtain the maximum result, the

agent selects an action that will lead to the highest Q-value

in each state. When the weighted sum from the presynaptic

neurons is stored in the forward direction membrane

capacitor of the postsynaptic neuron and the membrane

potential exceeds the threshold voltage, a postsynaptic

spike is generated through the I&F neuron circuit. When

the first spike is generated in the k-th output neuron, the

membrane potentials of the other output neurons are set to

0. The generated spikes of the k-th output neuron then

charge the connected capacitor. The amount of charge

stored in the capacitor connected to the k-th output neuron

represents the maximum Q-value, which is used as a

teaching signal in the next phase.

The second phase is also the forward phase that receives

state s as an input and obtains the error value for back-

propagation. A process identical to that during the first

phase occurs, except that the input data are different. In the

neurons of all layers except for the last layer

(l 2 1; 2; . . .; L� 1f g), whether or not each neuron fired

during time T (sign
PT

t S
l
j tð Þ

� �
) is stored as a single bit. In

other words, neurons that fired more than once during time

T are stored with a value of 1, and neurons that did not fire

during time T are stored as a value of 0. In this phase, a

teaching signal is generated through a pulse-width modu-

lation (PWM) circuit and the error value is obtained from

the difference between the output spike and the teaching

signal. The teaching signal Zj is obtained as shown below

using the maximum Q-value obtained in the first phase and

the reward r obtained when action a is taken in state s.

Zj ¼ r þ cmax
a0

Q s0; a0ð Þ; ð11Þ

where c represents a discount factor that decreases the

value of future rewards over time. c is between 0 and 1, and
usually has a value of 0.9. This equation is well known as

the Bellman equation. The teaching signal is applied only

to the m-th output neuron and only the m-th error value is

calculated. This m-th output neuron is a neuron corre-

sponding to action a taken when changing from state s to

state s0. The error values of other output neurons are set to

0.

The third phase is the backward phase, which propagates

the error values obtained in the second phase. In this phase,

the weighted sum of the error values obtained in the next

layer is stored in the backward direction membrane

capacitor. The hidden layer has two membrane capacitors:

the forward direction membrane capacitor to store the

weighted sum and the backward direction membrane

capacitor to store the weighted sum of the error values

obtained in the next layer.

The fourth phase is the update phase, which updates the

synaptic weights using the error values obtained in the third

phase. When the error values are positive or negative, error

spikes with corresponding values of 5.0 V or -1.8 V are

generated. The pulse width of the error spike is propor-

tional to the magnitude of the error value using the PWM

circuit. These error spikes are applied to the source of the

synaptic devices twice during this phase, as shown in

Fig. 3c. The second error spike is applied after 10 ls.

When a single bit value per neuron (sign
PT

t S
l
j tð Þ

� �
)

stored in the second phase is 1, two 10 ls width spikes

having magnitudes of 3 V and -3 V are applied to the gate

of the synaptic device in turn. If the error spike is positive,

an erase pulse is applied to the synaptic device by over-

lapping the error spike applied to the source line and the

negative part of the spike applied to the gate of the synaptic

device, which potentiated the synaptic weight, as shown in

Fig. 2 Overall training process

of the hardware-based DQN

consists of three elements and

four training steps
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Fig. 3c. In the opposite case, when the error spike is neg-

ative, a program pulse is applied to the synaptic device by

overlapping the error spike applied to the source line and

the positive part of the spike applied to the gate of the

synaptic device, which depressed the synaptic weight.

However, when a single bit value is 0, no spike is applied

to the gate of the synaptic device, and a weight update does

not occur.

3 Results and discussion

Two system-level simulations are conducted using Python,

a programming language, along with the PyTorch library to

evaluate the proposed training method and hardware-based

network architecture during the Fruit Catching game and

the Rush Hour game. The parameters used in this simula-

tion are shown in Table 1. The synaptic weights for all the

simulations are initialized using the initialization method

proposed by He [42].

3.1 Fruit catching game

Figure 4 shows an example of how the Fruit Catching

game proceeds. In a 10 9 10 grid world, the fruit is 1 9 1

in size and the basket is 1 9 3 in size. When a new game

starts (tgame ¼ 1), a fruit is created at a random position

among ten columns in the first row, and as each time step

passes, the fruit falls one row. For each time step, the

basket can take three actions at the bottom row: stop or

moving to the left or right by one column. The bottom of

Fig. 4 presents an example of output spikes generated in

the output neurons when tgame ¼ 1. In this case, because the

firing rate of the output neuron representing the moving left

action is the highest, the agent takes an action that moves

the basket to the left. When the fruit reaches the ninth row

(tgame ¼ 9), as shown in the rightmost part of Fig. 4, if the

basket exists under the fruit, the agent receives a reward of

1. On the other hand, if the basket does not exist under the

fruit, the agent receives a reward of -1. In all other situ-

ations, the reward received by the agent is 0. One episode

ends with this process, and the new game begins again.

Figures 5a and b represent the catching rate of the

proposed hardware-based neural network with different

epsilon values (e) and discount factors (c). Figure 5a is an

ideal case with an epsilon value of 1 and a discount factor

of 0.9, and Fig. 5b is a simplified case with an epsilon

value of 0 and a discount factor of 1.0. The catching rate

was obtained through 1000 test games. The network size

used in the simulation is 100-100-100-3. Replay memory

with a size of 500 is used in this work, and the network is

trained using 50 randomly selected datasets for each action.

Here, for example, replay memory with a size of 1 has the

number of bits required to store one (s, a, r, s0) dataset. As

(a)

(b)

(c)

Fig. 3 a Schematic illustration of a fully connected network with 1

hidden layer. b Pulses generated at each layer during the second phase

of the training process when T = 5. c Proposed pulse scheme for

weight update during the fourth phase of the training process

Table 1 Model parameters

Parameter Value Parameter Value Parameter Value

Gmax 30 (nS) Vth 0.2 (V) g 10 (ls/V)

Gmin 5 (nS) Cmem 45 (fF)
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training progresses, errors decrease and the catching rate

increase, as shown in both Figs. 5a and b. The insets in

Figs. 5a and b show the catching rates for the last 200

episodes. Figure 5c shows the average value of the catch-

ing rate during the last 200 episodes for the ideal case

(e ¼ 1; c ¼ 0:9) and the simplified case (e ¼ 0; c ¼ 1:0).

As the networks with ideal cases and simplified cases are

well trained without a significant difference, it is clear that

the network is trained well even if exploration is not

employed and the discount factor is set to 1 in the Fruit

Catching game, which is a relatively simple game.

The catching rate of the network as a parameter of the

nonlinearity factor (b) is also investigated, as indicated in

Fig. 6a. Training was conducted under conditions identical

to those in Fig. 5b, with the result showing the average

catching rate for the last 200 episodes. As the nonlinearity

factor increases, the catching rate decreases slightly (about

5% when b = 5).

Figure 6b shows the average catching rate for the last

200 episodes versus the variation of the synaptic weights.

The pulse-to-pulse variation and the device-to-device

variation are considered. The pulse-to-pulse variation is

modeled as follows:

DGreal ¼ DGexpected � N 1; r2
� �

: ð12Þ

The device-to-device variation is modeled as follows:

Greal ¼ Gexpected � N 1; r2
� �

: ð13Þ

The x-axis in Fig. 6b represents the standard deviation

(r). For the two variation cases, the catching rate scarcely

drops and remains nearly constant even if r increases to

0.5, as the on-chip training scheme is employed.

3.2 Rush hour game

The second example used to verify the proposed training

method is a simple Rush Hour game. In a 6 9 6 position,

several cars of length 2 or 3 are placed horizontally or

vertically. Only one car can be moved by one position in

one move. The goal of the game is to move the target car

(red car) to the exit with the fewest number of moves. If the

road between the target car and the exit is not blocked, the

agent receives a reward of 1 and one episode ends. In all

other situations, the reward received by the agent is 0.

Figure 7a and d show two examples of the Rush Hour

game. Figure 7a is an example of a relatively easy game,

where average adults will only require less than a few

minutes to solve the problem. On the other hand, Fig. 7d is

a relatively complicated example, and it is difficult to know

which car to move first. The neural network used in the

simulation has 288 input neurons and 16 output neurons

with no hidden layers. Here, 288 (6 9 6 9 8) input neu-

rons are used because each car can have 36 (6 9 6) posi-

tions, and 16 (8 9 2) output neurons are used because each

car can move in two directions, i.e., up/left or down/right.

Figure 7b and e represent the number of moves required

to move the target car to the exit. Both Figs. 7b and e are

ideal cases with an epsilon value of 1 and a discount factor

of 0.9. As above, replay memory with a size of 500 is used,

and the network is trained using 50 randomly selected

datasets for each action. As training progresses, the number

of moves required to move the target car to the exit

decreases to the optimal value (9 in Fig. 7b and 14 in

Fig. 7e). Figure 7c and f are simplified cases in which the

agent only takes random actions in the first episode (e ¼ 1,

exploration only). In subsequent episodes, the agent does

not take random actions and only exploitation occurs

Reward = 1

Reward = −1

Left

Stop

Right

Highest -value

Lowest -value

Fig. 4 The process of one

episode of the Fruit Catching

game. Examples of the output

spikes when tgame ¼ 1 are

shown below
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(e ¼ 0, exploitation only). In the simplified cases, the

number of moves required to move the target car to the exit

converges to the optimal value, as in the ideal cases. This

means that training can be conducted well in a simpler

manner in that exploration is conducted only in the first

episode. The subsequent simulations for training are per-

formed with this simplified method.

In addition to the two examples discussed above, 18

random examples were trained under identical conditions.

When the optimal number of moves is reached for each

example, it is considered that the training is done well.

Otherwise, it is considered that the network needs more

training. Figure 8 presents how many of the 20 examples

reached the optimal number of moves. The inset in Fig. 8

shows the accuracy of the last 50 episodes. As training

progresses, the accuracy converges to 100%. This indicates

that the network can be trained well for various game

examples.

3.3 Network without replay memory

Thus far, we have trained the network using replay memory

with a size of 500 in all simulations. However, for a rela-

tively simple problem such as a Fruit Catching game, by

not using the replay memory, various advantages, such as

(a)

(b)

(c)

Fig. 5 a The catching rate of the proposed hardware-based network

with e ¼ 1; c ¼ 0:9, b e ¼ 0; c ¼ 1:0. c The average catching rate

during the last 200 episodes for the ideal case and the simplified case

(a)

(b)

Fig. 6 a The average catching rate of the network as a function of the

nonlinearity factor (b). b The average catching rate of the network as

a function of the standard deviation (r) of the device variations
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better power consumption, occupied area, and fast learning

speed outcomes, can be obtained. Figure 9 shows the

overall process of training when the replay memory is not

used. Only one set of s; a; r; s0ð Þ data is stored for each

moment and is used for network training. As shown in ´ of

Fig. 2, the network with replay memory receives s0 and
stores it in the replay memory first, after which the network

is trained (ˆ of Fig. 2). However, in the network without

replay memory, s0 is not stored and is immediately applied

to the input of the DQN (´ of Fig. 9), which becomes the

first phase of the four-phase training process. Therefore, in

ˆ of Fig. 9, it is sufficient to proceed with training from the

second phase, which increases the overall training speed.

Figure 10a presents the catching rate of the network

without the replay memory. The size of the network used in

the simulation and all other parameters are identical to

those in Fig. 5b, except that the replay memory is not used

and the network is trained with only one dataset for each

action. Therefore, more episodes are needed for training

compared to the network with replay memory. However,

because the memory access required for training is sig-

nificantly reduced for each episode, the total time required

for training is decreased. The catching rate was obtained

through 1000 test games. The inset in Fig. 10a shows the

catching rate for the last 200 episodes. Figure 10b shows

the average value of the catching rate during the last 200

(a) (b) (c)

(d) (e) (f)

Fig. 7 a Relatively easy example of the Rush Hour game. b The

number of moves required to move the target car a to the exit as a

function of the episodes when e ¼ 1; c ¼ 0:9, c only exploration

occurs in the first episode. d Relatively complicated example of the

Rush Hour game. e The number of moves required to move the target

car d to the exit as a function of the episodes when e ¼ 1; c ¼ 0:9,
f only exploration occurs in the first episode

Fig. 8 Ratio of reaching optimal move among the 20 random example

games as a function of the episodes
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episodes for the network with and without the replay

memory. For a simple problem, the network can be trained

well regardless of whether or not the replay memory is

used.

4 Conclusion

In this paper, we proposed a training method for on-chip

trainable hardware-based DQNs. The entire training pro-

cess is divided into four phases: two forward phases, one

backward phase, and one update phase. In each forward

phase, two values are stored in each case: the value for the

target spike (maxa0 Q s0; a0ð Þ) and the generation of the spike
(sign

PT
t S

l
j tð Þ

� �
) for weight update. In the backward phase

and update phase, a training method approximating the

conventional backpropagation algorithm is used. To

implement on-chip training, only a single bit of memory

per neuron is used, and the dependency of memory is low.

The performance of the proposed training method is

evaluated through two example games: a Fruit Catching

game and a Rush Hour game. Evaluation results show that

the network is trained well without significant performance

differences relative to the outcomes from a software-based

training method in both cases. In particular, for one of the

simple games here, specifically the Fruit Catching game,

high performance in the form of a catching rate of

approximately 98% was achieved despite the fact that the

replay memory was not used. This means that the network

can be suitably trained while significantly reducing the use

of memory, thus reducing the power consumption and area

occupation that comes with memory usage. In addition,

further performance improvements can be achieved

through optimization of the parameters used in the simu-

lation. Dealing with large input image data is a challenging

future study. It might require a large amount of replay

memory and additional convolutional neural networks

(CNNs). This issue will be addressed more thoroughly in

future work.

In this work, TFT-type flash memory cells are used as

synaptic devices. Because the FG covers only half of the

channel, the threshold voltage does not fall below 0 in the

full erase state, and the standby power consumption is

reduced by preventing leakage current. In addition, the

bidirectional conductance update characteristic makes this

Fig. 9 Overall training process

of hardware-based DQN

without replay memory

consisting of two elements and

four training steps

(a)

(b)

Fig. 10 a The catching rate of the proposed hardware-based network

without replay memory (e ¼ 0; c ¼ 1:0). b The average catching rate

during the last 200 episodes for the network with and without replay

memory
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device suitable for use as a synaptic device in which con-

ductance updates frequently occur.

The effects of non-ideal properties of the synaptic

devices are also investigated. Nonlinear characteristics and

two variations of the synaptic devices are considered. The

performance of the proposed training method is evaluated

while increasing b, a factor indicating the nonlinearity of

the synaptic device, to 5. There is a slight decrease in the

performance as b is increased, but overall the outcome

indicates good performance nonetheless. In addition,

because the on-chip training scheme is employed, the

proposed system shows strong immunity to device

variations.
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