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Abstract
This paper presents a novel method for designing an adaptive control system using radial basis function neural network.

The method is capable of dealing with nonlinear stochastic systems in strict-feedback form with any unknown dynam-

ics. The proposed neural network allows the method not only to approximate any unknown dynamic of stochastic nonlinear

systems, but also to compensate actuator nonlinearity. By employing dynamic surface control method, a common problem

that intrinsically exists in the back-stepping design, called ‘‘explosion of complexity’’, is resolved. The proposed method is

applied to the control systems comprising various types of the actuator nonlinearities such as Prandtl–Ishlinskii (PI)

hysteresis, and dead-zone nonlinearity. The performance of the proposed method is compared to two different baseline

methods: a direct form of backstepping method, and an adaptation of the proposed method, named APIC-DSC, in which the

neural network is not contributed in compensating the actuator nonlinearity. It is observed that the proposed method

improves the failure-free tracking performance in terms of the Integrated Mean Square Error (IMSE) by 25%/11% as

compared to the backstepping/APIC-DSC method. This depression in IMSE is further improved by 76%/38% and 32%/

49%, when it comes with the actuator nonlinearity of PI hysteresis and dead-zone, respectively. The proposed method also

demands shorter adaptation period compared with the baseline methods.

Keywords Actuator nonlinearity � Dead-zone � Adaptive neural network dynamic surface control (ANNDSC) �
Nonlinear stochastic systems � Prandtl–Ishlinskii hysteresis model � Strict-feedback systems

1 Introduction

Fault tolerant control systems with actuator failure com-

pensation have received many interests from the

researchers of industrial control field over decades [1–7].

Serious studies in computer science have been dedicated to

address important theoretical and practical questions,

raised in adaptive nonlinear control systems, where

dynamic surface control (DSC) method served as a novel

useful tool for designing adaptive control systems,

especially for nonlinear strict-feedback [8], [9], and frac-

tional-order [10] systems.

An important research question, which was not addres-

sed in those studies [11–21], is effect of stochastic

behaviors and Prandtl–Ishlinskii (PI) hysteresis on the

system performance. PI or backlash-like hysteresis and

dead-zone phenomena are considered as the two important

general nonlinearities, seen in the literature. However, a

general adaptive control method with the capability of

incorporating both stochastic and nonlinear behaviors of

the control system, including the joint Prandtl–Ishlinskii

hysteresis and dead-zone phenomena, cannot be seen in

those studies in an objective way. One of the problems in

developing such a generalized method corresponds to sta-

bility of the methods at the presence of an unknown

nonlinearity.

Dynamic surface method has been employed by several

neural network-based methods for nonlinear control sys-

tems [9, 12, 21–24]. However, this is not true for stochastic
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nonlinear systems, when general nonlinearities such as PI

hysteresis and dead zone appear in the actuators. To the

best of our knowledge, the presented methods are mainly

based on the backstepping method, which makes this

method an appropriate baseline study [25]. To a lesser

extent, a nonlinear stochastic system was studied, under the

condition of actuator dead-zone, which considers either the

time-delay [17, 18], or pure-feedback control design

method [20]. It is important to note that in most of practical

cases, the control systems, i.e., autonomous vehicle sys-

tems, nonlinear stochastic conditions are involved [26, 27].

In addition to these conditions, nonlinear behaviors such as

dead-zone and hysteresis are typically seen in the actuators

[11–19, 21]. Ignoring such the conditions can lead to

serious flaws like internal instability and physical damages.

However, recently adaptive dynamic surface control for

uncertain nonstrict-feedback systems is investigated in

[28, 29].

In this paper, neural network in conjunction with

dynamic surface control design is employed to introduce a

novel method of adaptive control design for nonlinear

stochastic systems with a general class of different actuator

nonlinearities, including PI hysteresis and dead-zone.

These nonlinearities might be a result of actuator aging, a

faulty condition of the actuator, or its intrinsical charac-

teristic. The unknown dynamics of the system are inno-

vatively approximated using a Radial Basis Function

(RBF) neural network, where the universal approximation

capability of the method makes it possible to approximate a

wide range of nonlinear Lipschitz functions. Furthermore,

the minimal-learning-parameters algorithm is elaboratively

employed to reduce the number of adaptive parameters in

an online updating way, which effectively reduces the

calculational complexities. In order to show effectiveness

of the RBF in both the parameter approximation, and in the

nonlinearity compensation of the actuators, a sophistication

of the method is also proposed as a baseline method for

comparison. In this baseline, compensation of the actuator

nonlinearity is performed using an adaptive eliminating

term.

The stability analysis of the proposed method along with

the baseline are theoretically proved and confirmed by

simulation. Performance of the direct method of back-

stepping is also investigated as another baseline for com-

parison. It is shown that the proposed controller guarantees

the boundedness of all the closed-loop signals, where the

tracking error remains in an arbitrary small vicinity of the

origin, in terms of the mean quartic value. It is shown that

the proposed method exhibits superior performance both in

the failure-free condition and in different cases of the

actuator nonlinearity, compared to the baselines.

The presented method offers extensive applications in a

broad range of the engineering and industrial fields such as

flight control [30], autonomous vehicle control systems

[31, 32], turbo-machine design [33–35], piezo-actuators

[36] and micro-electro-mechanical-systems (MEMSs) [37],

and also in various military applications [38].

The main contributions of the paper are: (1) presenting a

novel neural network-based method for designing adaptive

controller for nonlinear stochastic system with broad range

of the actuator nonlinearity, (2) presenting a sophistication

of the method as a baseline for the study, in which non-

linearity of the actuator is directly compensated without

using the neural network, (3) analytically proving stability

of the mentioned methods in failure free condition and also

at the presence of the actuator nonlinearities, i.e., PI hys-

teresis, and dead-zone, (4) exploring performance of the

direct backstepping method, detailed in [12], for a broad

range of the actuator nonlinearity, as the second baseline

study, (5) comparing the proposed method along with the

two baselines using different cases of actuator nonlineari-

ties, and studying privileges and limitations of each of the

methods.

The paper is organized as follows. Section 1, presents a

literature review on the previously published studies. In

Section 3, preliminaries and problem statements are

described. In Section 4, the methods along with the theo-

rems are presented, which contains the main contributions

of the paper. Simulation examples are presented in Sec-

tion 5. In Section 6 and 7, discussion and conclusion of the

paper are presented, respectively. In addition to the main

sections of the paper, there are also five appendices, in

which details of the theorem proofs are included

accordingly.

2 Related studies

Actuator failure can occur in many practical systems,

named plants, that may lead to the plant instability and

even sometime catastrophic events [1-7, 27, 39–44].

Systematic design methods for different nonlinear control

systems have been studied in the form of the strict-feed-

back, pure feedback, and block-strict-feedback [45], where

various direct methods have been investigated for the

purpose of actuator failure compensation [39–44]. Back-

stepping design method was proposed as a systematic

adaptive controller design, which is still considered as one

of the mostly used methods for nonlinear systems. Back-

stepping-based methods for compensation of the actuator

failures such as sliding-mode control [42], and adaptive

failure compensation [5, 39, 41, 43, 44, 46–49] have been

proposed for several practical and theoretical systems.

Among these methods, the problem of accommodating

infinite number of actuator failures/faults in control sys-

tems has been investigated in [5]. Backstepping method

9260 Neural Computing and Applications (2021) 33:9259–9287

123



was theoretically studied to be employed for adaptive

control design for the parameter-strict-feedback systems

[43], and its capabilities in compensating actuator nonlin-

earities for a flight control system were investigated [11].

Radial Bases Function (RBF) neural network has been

integrated with backstepping method to overcome the

problem of uncertain nonlinear systems in pure-feedback

form with PI hysteresis [21]. Backstepping controller

design method using adaptive neural networks was pro-

posed in conjunction with variable separation and minimal-

learning-parameters algorithm technique for stochastic

nonlinear single–input–single–output systems in the form

of nonstrict-feedback with unknown backlash-like hys-

teresis [21], strict-feedback [20], and pure-feedback [50],

[51].

Although the backstepping design technique has many

useful benefits for the designers, it suffers from an inherent

problem, called ‘explosion of complexity’, that occurs with

increasing system order, due to the continuously differen-

tiation of virtual control signal and system states. Dynamic

Surface Control (DSC) method was introduced as another

alternative method, which resolves explosion of complex-

ity [8–10, 23, 32, 36–38, 52, 53]. It avoids continuous

differentiation of virtual control inputs leading to ‘explo-

sion of terms’. DSC has been privileged over backstepping

in several studies [9]. Integration of adaptive neural net-

work and DSC was studied in nonlinear strict-feedback

systems [12], and also in time-delayed nonlinear systems

[15], under failure-free condition of the actuators, as well

as a certain form of the PI hysteresis [16]. The effect of

actuator dead-zone in nonlinear systems was separately

studied for adaptive DSC method [23].

Application of dynamic surface method has been studied

in several applied researches, such as controlling pneu-

matic servo system [32], trajectory tracking control of

underactuated surface vehicles [36], suppressing chatter in

a micro-milling machine with piezo-actuators [37], con-

trolling micro-electro mechanical gyroscope systems [38],

controlling process of continuous heavy cargo airdrop of

nonlinear transport aircraft [52], controlling of spacecraft

terminal safe approach with actuator saturation [53], and

precise position tracking problem of permanent magnet

synchronous motors [54].

In many practical systems their parameters, and

dynamics, as well as the corresponding disturbances are

unknown, but can likely show stochastic and mostly non-

linear characteristics. Details of a complete course of

stochastic systems and stochastic differential equation are

found in [17], [18].

Adaptive neural networks were employed in conjunction

with the dynamic surface technique for nonlinear stochastic

systems with either time-delays or dead-zone in the actu-

ators [15]. A certain class of nonlinear systems, but not

stochastic, with unknown Prandtl–Ishlinskii hysteresis was

studied by X. Zhang et al. and the performance of the

design method was investigated [22]. In this study, an

adaptive neural DSC controller was constructed to elimi-

nate the effect of unknown actuator hysteresis. The adap-

tive neural network was utilized in DSC design method to

stabilize nonlinear time-delay systems with unknown dis-

turbances [9]. Adaptive neural network control systems

have been investigated for specific cases of uncertain

nonlinear strict-feedback systems [12], and also a class of

time-delay nonlinear systems with PI hysteresis with

dynamic uncertainties [16–18]. Nevertheless, for nonlinear

stochastic cases, the adaptive neural network dynamic

surface design was studied only under the condition of time

delayed and actuator dead-zone [25].

3 Preliminaries and problem statement

A stochastic nonlinear system with strict-feedback can be

defined by its state variable x ¼ x1; x2; . . .; xn½ �T 2 Rn:

dx1 ¼ g1x2 þ f 1ð Þdt þ w1dw

..

.

dxi ¼ gixiþ1 þ f ið Þdt þ widw bm � gi � bM

..

.
1� i� n

dxn ¼ gnuþ f nð Þdt þ wndw;
y ¼ x1;

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where w is an r-dimensional variable introduced as stan-

dard Brownian motion defined on a complete probability

space,1 and fi �ð Þ; gi �ð Þ : Ri � Rþ ! R, wT
i : Ri � Rþ ! Ri�r

are unknown smooth functions in xi 2 Ri with zero initial

conditions [25]. It should be noted that u in Eq. (1) is the

control input that is by itself the output of an actuator,

which can be subjected to different nonlinearities such as

Prandtl–Ishlinskii (PI) hysteresis, or dead-zone.

Prandtl–Ishlinskii (PI) hysteresis is a nonlinearity

defined as follows:

u tð Þ ¼ p0v tð Þ �
ZR

0

p rð ÞFr v½ � tð Þdr ð2Þ

where uðtÞ is the output of the actuator, vðtÞ is the input

signal to the actuator, pðrÞ is the density function, p0 ¼
R R

0
pðrÞdr is a constant which depends on the density

function pðrÞ, and Fr v½ � tð Þ is a function, describing the

nonlinearity behavior, and named the ‘‘play operator’’ [13].

It should be noted that Eq. (2) decomposes the hysteretic

1 The comprehensive details of Brownian motions and complete

probability space can be found in [54].
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action into two terms, describing the linear reversible part

and the nonlinear hysteretic behavior, at its first and the

second terms, respectively. This decomposition is crucial

since it facilitates utilization of the currently available

control techniques for the controller design [15]. An

actuator with PI hysteresis is a component with memory,

and therefore its value depends on its previous outputs in

time. Consequently, for an input v tð Þ 2 Cm 0; tE½ �, where

Cm 0; tE½ � is the space of piecewise monotone continuous

functions, and the play operator is defined by:

Fr v; u�1½ � 0ð Þ ¼ fr v 0ð Þ; u�1ð Þ
Fr v; u�1½ � tð Þ ¼ fr v tð Þ;Fr v; u�1½ � tið Þð Þ;
for ti\t� tiþ1 and 0� i�N � 1;

ð3Þ

with

f r v; uð Þ ¼ max v� r;min vþ r; uð Þð Þ ð4Þ

where 0 ¼ t0\t1\. . .\tN ¼ tE is a partition of 0; tE½ � such

that the function v is monotone on each of the sub-interval

ti; tiþ1½ �, and u�1 2 R is the general initial condition [13].

Consider the PI-model expressed by the play operator in

(7), the hysteresis output uðtÞ can be expressed as [14]:

u tð Þ ¼ p0v tð Þ � d v½ � tð Þ ð5Þ

where

d v½ � tð Þ ¼
ZR

0

p rð ÞFr v½ � tð Þdr;with p0 ¼
ZR

0

p rð Þdr ð6Þ

It should be noted that (11) is bounded, and the detailed

description of its boundedness is discussed in [16–20].

Furthermore, in this paper it is assumed that the charac-

teristics of PI hysteresis nonlinearity in the actuator is

unknown and should be estimated by the controller.

Actuator dead-zone is another form of the nonlinearity

model can be described as follows:

u ¼ D vð Þ ¼
gr vð Þ; v� bl
0; bl\v\br
gr vð Þ; v� br

8
<

:
ð7Þ

where u is the output of the dead-zone, v is the input of the

dead-zone, bl\0 and br [ 0 are unknown parameters of

the dead-zone, which should be estimated by the control

system, named as the start and end of the dead-zone,

respectively. The output of the dead-zone is not measur-

able, and therefore the smooth and bounded first derivative

functions glðvÞ and gr vð Þ are employed to express the

output. In order to achieve a pseudolinear relationship

between the input and output of the dead-zone, the fol-

lowing expression is often employed:

u tð Þ ¼ D vð Þ ¼ KTðtÞU tð Þvþ dðvÞ ð8Þ

where detailed description of functions KT tð Þ;UðtÞ, and

dðvÞ can be found in [16]–[19]. However, KT tð ÞUðtÞ is

bounded, d vð Þj j � p�, and p� is an unknown positive con-

stant [19].

One way to approximate the unknown dynamic of the

actuator nonlinearity is the use of a Radial Basis Function

Neural Network (RBF). It provides universal approximat-

ing capability, by which any unknown continuous function

f Zð Þ : Rn ! R can be approximated as follows:

f Zð Þ ¼ W�TfT Zð Þ þ d Zð Þ ð9Þ

where Z 2 XZ 	 Rq is the input vector with q being the

neural networks input dimension,

W ¼ w1;w2; � � � ;wl½ �T 2 Rl, is the weight vector of neural

networks with l[ 1, the neural networks node number, and

f Zð Þ ¼ 11 Zð Þ; 12 Zð Þ; � � � ; 1l Zð Þ½ � is the basis function vector

with 1iðZÞ being chosen as Gaussian function following the

form:

1i Zð Þ ¼ exp � Z � lið ÞT Z � lið Þ
g2
i

 !

; i ¼ 1; � � � ; l ð10Þ

The li ¼ ½li1; � � � ; liq� is the center of the respective

field and li is the width of the Gaussian function [25]. dðZÞ
is the approximation error and satisfies d Zð Þj j � e, e[ 0.

W*T is the ideal constant weight vector [25] and is defined

as:

W�T ¼ argmin
W2Rl

sup
x2Xx

f xð Þ �WTf xð Þ
�
�

�
�

( )

ð11Þ

For simplicity, by using the minimal-learning-parame-

ters algorithm an unknown constant h is introduced as:

h ¼ max
1

bm
kW�T

j k; j ¼ 1; 2; . . .; n

� �

ð12Þ

We consider a stochastic nonlinear system in strict-

feedback form with unknown dynamics where the actuator

is subjected to a nonlinearity. The method proposed by the

following sequels employs a radial basis neural network to

estimate unknown dynamics of the system, and hence to

design the adaptive control method.

4 Methods

4.1 Overview

The proposed control design method is based on using the

dynamic surface as a systematic controller design in con-

junction with an adaptive RBF neural network to serve as a

global approximator meant for unknown dynamics, non-

linearities, and stochastic behaviors of the system. The
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method which we call Adaptive Neural Network Dynamic

Surface Control (ANNDSC) is independently investigated

for nonlinear stochastic strict-feedback systems using three

different actuator characteristics: linear, nonlinear with

dead-zone, and nonlinear with hysteresis characteristics.

The probability boundedness of all the closed-loop signals

will be proven via stability analysis in an analytic way, and

the simulations support the theories for all the three cases

of the actuator nonlinearity.

In order to demonstrate effectiveness of RBFNN in

compensating actuator nonlinearity, a modification of the

ANNDSC method is introduced as a baseline for compar-

ison. This baseline method is named Adaptive PI Com-

pensation using Dynamic Surface Control (APIC-DSC),

where the adaptive term is employed to directly compen-

sate the PI hysteresis nonlinearity. The stability analysis of

the last method is also analytically proven. In order to show

effectiveness of both the ANNDSC and the APIC-DSC,

compared to the existing design method, another baseline is

defined based on the direct implementation of the back-

stepping design method. Technical details of the design

method for this baseline are found in [25]. For further

clarity, and meanwhile maintaining continuity of the sub-

jects, proofs of the presented theorems are included in the

appendices.

4.2 The proposed method ANNDSC

Consider a nonlinear stochastic strict-feedback system

defined by Eq. (1), ANNDSC offers an iterative procedure

with n steps (n is order of the system) for designing the

control system. At each step of the method, the error sur-

face is firstly calculated by subtracting state variables from

the desired output. Then, the calculated error is passed

through a first-order filter, for all the steps, but the last step.

An RBF neural network employs the filtered error to

approximate dynamic of the system. The error surface Sif g,

for step i, 1� i� n, is defined as:

Si ¼ xi � zi; 1� i� n; ð13Þ

where xi and zi are the corresponding state variable and

desired state value, respectively. For i ¼ 1, z1 ¼ yr, where

yr is the reference input, the desired output of the system.

The proposed procedure involves n successive steps of

computation, as depicted in Fig. 1.

A virtual control input xiþ1 is defined at each step:

xiþ1 ¼ �kiSi �
1

2ai
S3
i ĥf

T
i Zið Þfi Zið Þ; 1� i� n; Zi

¼ x
^

i; ĥ
h i

; x
^

i ¼ x1; . . .; xi½ �; ð14Þ

v ¼ xnþ1 ¼ �knSn �
1

2an
S3
nĥf

T
n Znð Þfn Znð Þ; ð15Þ

where the ai, ki are the design parameters, fi Zið Þ are the

radial basis functions of the corresponding neural network,

and bh is an estimation of h. The virtual control input is

passed through a low-pass filter to obtain the desired value

for the next state:

�iþ1 _ziþ1 þ ziþ1 ¼ �
xiþ1

; 1� i� n� 1 ð16Þ

where the �iþ1; 1� i� n� 1 are the design constants.

Finally, the RBF neural network weights are approximated

using the following expression:

_bh ¼
Xn

j¼1

k

2a2
j

S6
j f

T
j Zj

� �
fj Zj

� �
� k0

bh ð17Þ

where k is a design constant, and fjð�Þ, 1� j� n are the

basis functions of the neural network. The RBF neural

network is indeed composed of two layers. The first layer

incorporates l nodes. Each node i (1� i� l) corresponds to

a Gaussian function of center gi, and width li. The three

parameters ðl; gi; liÞ are treated as the design parameters.

The second layer is a linear superposition of the Gaussian

functions, using the learning weight W . Norm of the

learning weights is employed for the approximation.

Theorem 1 Applying the ANNDSC controller design

method, to a nonlinear stochastic strict-feedback system

with a linear actuator and any unknown dynamics, Eq. (1),

guarantees the boundedness in probability of all closed-

loop signals of the system.

Proof 1 The comprehensive proof of this theorem is

explained in Appendix 2.

Theorem 2 Applying the ANNDSC controller design

method, to nonlinear stochastic strict-feedback systems

with any unknown dynamics, Eq. (1), which is subjected to

a hysteresis nonlinearity in its actuator, guarantees that all

the closed-loop signals of the system remain bounded in

probability.

Proof 2 The comprehensive proof of this theorem is

explained in Appendix 4.

Theorem 3 Applying the ANNDSC controller design

method, to a nonlinear stochastic system in strict-feedback

form with any unknown dynamics, Eq. (1), subjected to

actuator dead-zone nonlinearity, guarantees the bounded-

ness in probability of all closed-loop signals of the system.

Proof 3 The comprehensive proof of this theorem is

explained in Appendix 5.

Neural Computing and Applications (2021) 33:9259–9287 9263

123



Experimentation of ANNDSC is herein described

through a practical example of a hypersonic aircraft

cruising at a Mach number of 15 and an altitude of 110,000

ft, which is subjected to a nonlinear stochastic condition.

The control system comprises two separate controllers, for

the velocity and the flight path angle [24]. Dynamic of the

Fig. 1 Flowchart of the

proposed method, ANNDSC,

for nonlinear stochastic systems

in the form of strict-feedback
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flight path angle can be expressed by the state equation

system (Eq. 18) using three state variables:

x ¼ x1; x2; x3½ �T ¼ c; h; q½ �T :

dx1 ¼ f 1 x1ð Þ þ g1 x1ð Þx2ð Þdtþ w1dw

dx2 ¼ x3dtþ w2dw

dx3 ¼ f 3 x1; x2; x3ð Þ þ g3 x1; x2ð Þuð Þdtþ w3dw

y ¼ x1

ð18Þ

The three state variables c, h and q are the flight path

angle, the altitude, and the pitch rate, respectively. The

functions f 1 x1ð Þ, f 3 x1; x2; x3ð Þ, g1 x1ð Þ, and g3 x1; x2ð Þ are

the nonlinear functions describing dynamic of the system.

The wi; 1� i� 3 are unknown smooth functions, and l is a

constant number. Details of finding dynamic model of the

system are found in [24]. The system defined in Eq. (18)

demonstrates dynamics of a nonlinear stochastic strict-

feedback plant. The flight path y can be controlled using

the ANNDSC.

4.3 Adaptive PI compensation DSC (APIC-DSC)

In ANNDSC, the proposed neural network provided suf-

ficient tools both for the control design and for compen-

sating the actuator nonlinearity. The proposed baseline of

APIC-DSC is introduced to investigate effect of using

neural network for compensating the actuator nonlinearity,

proposed by ANNDSC. In this baseline study, an adaptive

PI hysteresis compensator is proposed using direct method,

in conjunction with the adaptive RBF neural network to

compensate actuator nonlinearity of kind Prandtl–Ishlinskii

(PI) hysteresis, in contrast with ANNDSC in which the

neural network undertook the compensation task. as

defined in Eqs. (2) to (5). In this situation, for each step i,

i� i� n, the error surface and the virtual control inputs are

defined as in Eq. (13) and Eq. (14). Figure 2 illustrates

flowchart of the method.

The virtual control input is passed through a low-pass

filter to obtain the desired value for the next state:

�iþ1 _ziþ1 þ ziþ1 ¼ �
xiþ1

; 1� i� n� 1 ð19Þ

where �iþ1; 1� i� n� 1 are design parameters. The con-

trol input is:

v ¼ �
xnþ1

¼ �knSn �
1

2a2
n

S3
n
bhfTn Znð Þf Znð Þ þ

ZR

0

bpp0
t; rð Þ Fr v½ � tð Þj jdr

ð20Þ

where the ai, ki are design parameters, fi Zið Þ are the radial

basis functions, bh and bpp0
are the estimations of h and pp0

,

respectively. The bpp0
is approximated using an adaptive

law:

o

ot
bpp0

t; rð Þ ¼
�cpr S3

n

�
�
�
� Fr u½ � tð Þj j þ rbpp0

t; rð Þ
h i

; 0� bpp0
� pmax;

�rbpp0
t; rð Þ; bpp0

[ pmax;

8
<

:

ð21Þ

where ther and pmax are positive design parameters,

pp0
t; rð Þ ¼ pðt; rÞ=p0, and ppmax

:¼ pmax=p0ð Þ. Finally, the

RBF weights are approximated using the following adap-

tive law:

_bh ¼
Xn

j¼1

k

2a2
j

S6
j f

T
j Zj

� �
fj Zj

� �
� k0

bh ð22Þ

where k is a design constant, and fjð�Þ, 1� j� n are the

basis functions of the neural network.

It can be seen from (22) and (21) that both the nonlin-

earities and the system dynamics are approximated using

the adaptive law in Eq. (22) resulted from the neural net-

work weights; however, the density function of the PI

integral is directly approximated using the adaptive law in

Eq. (21).

Theorem 4 Applying the APIC-DSC controller design

method, to a nonlinear stochastic system with any unknown

dynamics, subjected to actuator PI hysteresis nonlinearity

guarantees the boundedness in probability of all closed-

loop signals of the system.

Proof 4 The comprehensive proof of this theorem is

explained in Appendix 6.

5 Simulation results

Performance of the proposed ANNDSC method, along with

the two baseline methods, is evaluated and compared in a

tracking problem using a 3rd-order benchmark system.

Details of the benchmark system are found in [25]. Another

alternative benchmark of 2rd-order system can be found in

[25], but we used the 3rd-order ones with more complex-

ities to explore performance of the methods and hence

provide a better comparison, under a rather complex con-

dition. This benchmark for study considers a stochastic

nonlinear system in strict-feedback form:
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Fig. 2 Flowchart of the baseline

method, named APIC-DSC, for

nonlinear stochastic systems in

strict-feedback form
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dx1 ¼ 0:3 þ x2
1

� �
x2 � 0:8 sin x1ð Þ

� �
dt þ x1 sin x1ð Þdx;

dx2 ¼ 1 þ x2
2

� �
x3 � x2 � 0:5x3

2 � x3
1 �

ffiffiffiffiffi
x1

p� �
dt þ x1 cos x2ð Þdx;

dx3 ¼ 1:5 þ sin x1x2ð Þð Þu� 0:5x3 �
1

3
x2

3 � x2
2x3 �

x1

1 þ x2
1

� �

 !

dt

þ 3x1e
�x2

2dx;

y ¼ x1

yr ¼ sin tð Þ
ð23Þ

The simulation study considers a failure-free condition

together with two other cases of the actuator nonlinearity,

i.e., actuator dead-zone, and the actuator PI hysteresis for

the proposed method, ANNDSC, along with the two

baseline design methods, named APIC-DSC and back-

stepping design, respectively. The ANNDSC-based con-

troller for the failure-free, and the two cases of

nonlinearity, is designed using Eqs. (13)–(17) as follows:

S1 ¼ x1 � yr;

�
x2 ¼ �k1S1 �

1

2a2
1

S3
1
bhfT1 Z1ð Þf1 Z1ð Þ;

�2 _z2 þ z2 ¼ �
x2;

S2 ¼ x2 � z2;

�
x3 ¼ �k2S2 �

1

2a2
2

S3
2
bhfT2 Z2ð Þf2 Z2ð Þ;

�3 _z3 þ z3 ¼ �
x3;

S3 ¼ x3 � z3;

v ¼ �k3S3 �
1

2a2
3

S3
3
bhfT3 Z3ð Þf3 Z3ð Þ;

_bh ¼
P3

k¼1

k

2a6
k

S6
kf

T
k Zkð Þfk Zkð Þ � k0

bh;

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð24Þ

where Z1 ¼ S1; Z2 ¼ ½S1; S2; bh�, Z3 ¼ ½S1; S2; S3; bh�, p rð Þ ¼
e�0:067 r�1ð Þ2

; r 2 0; 10½ �; v tð Þ ¼ 7sin 3tð Þ
1þt ; t 2 ½0; 2p�, and

u�1 ¼ 0 are the input vectors of neural networks. Equa-

tion (24) shows the design steps of a control system of

order 3, which clearly involves three design steps. At each

of the step, firstly the error surface Si is calculated by

subtracting the desired value zi from the actual value of

state xi. Using the error surface, along with the neural

network weights, bh, the virtual control input of the step,

xiþ1, is estimated. The desired value is calculated for each

step by passing the virtual control input signal through a

first-order filter, except for the final step, where the actual

control input is directly generated. Subsequently, the neural

network weights are found using the adaptive law, by

which the unknown dynamics and nonlinearities of the

system will be approximated.

The design parameter set for the simulation is

½k0; k1; k2; k3�, [a1; a2; a3�, �2 ¼ 0:006; and �3 ¼ 0:008,

which are obtained empirically considering the transient

performance, the limitations on control effort growth, the

closed-loop internal stability of the system, and

improvement in the tracking error. The simulation runs

under the initial condition of

x1 0ð Þ; x2 0ð Þ; x3ð0Þ½ �T ¼ 0; 0:6; 0:4½ �T , bhð0Þ ¼ 0:1. The three

RBF neural networks WT
1 f1ðZ1Þ, WT

2 f2ðZ2Þ, and WT
3 f3ðZ3Þ

are chosen to contain eleven nodes with the centers spaced

evenly within the intervals ½�5; 5�,
�5; 5½ � � �5; 5½ � � ½�5; 5�, and

�5; 5½ � � �5; 5½ � � �5; 5½ � � ½�5; 5�, respectively.

The APIC-DSC baseline controller for the system in

Eq. (23) is designed using Eqs. (13), (14), (19)–(22). This

controller is completely similar to Eq. (24), unless the

controller input signal:

v ¼ �k3S3 �
1

2a2
3

S3
3
bhfT3 Z3ð Þf3 Z3ð Þ

þ
ZR

0

bpp0
t; rð Þ Fr v½ � tð Þj jdr;

o

ot
bpp0

t; rð Þ ¼ �cprS
3
nFr u½ � tð Þ � cprrbpp0

t; rð Þ; bpp0
[ pmax

�cprrbpp0
t; rð Þ; bpp0

\pmax

�

;

ð25Þ

where ½k0; k1; k2; k3�, [a1; a2; a3� are design parameters,

obtained empirically likewise the ANNDSC case.

pmax ¼ 0:2;R ¼ 2; cpr ¼ 1; r ¼ 2, and other parameters are

similar to the previous simulation step. The backstepping

case is entirely implemented as detailed in [25].

Simulation results of these three cases are depicted in

Figs. 3, 4, 5, 6 and 7. The system output is depicted against

the reference sinusoidal input, for all the three methods,

under the three actuator conditions.

Minimal deflection from the desired form of sinusoidal

wave is seen for all the methods and conditions. In order to

quantitate the deflection from the desired output, the Inte-

grated Mean Square Error of the actual outputs is calcu-

lated with respect to the inputs. Figure 4 demonstrates the

IMSE for the all methods and conditions.

Outperformance of ANNDSC is seen for all the case

with the minimal IMSE. In the tracking problem, lower

IMSE is regarded as an indication of the better perfor-

mance. For the failure free cases, the relative depression in

IMSE of the proposed method is observed to be 25% and

11% as compared to the backstepping and APIC-DSC,

respectively. Nevertheless, effectiveness of the method is

further highlighted when there is a nonlinearity condition

in the actuator. For the PI hysteresis, the proposed method

improves the tracking performance by 76% and 38% as

reflected by the relative IMSE for the backstepping and

APIC-DSC method, respectively. For the dead-zone non-

linearity, this relative outperformance is, however, 32%

and 49%, showing a good improvement in the tracking

performance. For the dead-zone condition, the APIC-DSC
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Fig. 3 Output of the three control systems and the reference input, for three different characteristics of the actuators
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offers the worst IMSE, implying that improvement in the

PI hysteresis is served at the expense of impairing the

performance for other condition, when direct method is

employed. It is also seen that all the methods offer their

optimal performance at the absence of the actuator

nonlinearity.

In order to investigate internal stability of the control

methods, closed-loop signals and states of the three control

systems are plotted with different actuator nonlinearities.

Figure 5 shows the closed-loop states.

The close-loop signals of the APIC-DSC are consider-

ably higher than the ANNDSC and the backstepping,

showing further tendency to internal instability in practical

situations, even though the values are bounded. This is

confirmed by the control input signal, depicted in Fig. 6.

The ANNDSC method exhibits smaller control effort,

compared to the two baselines. The control input signal of

ANNDSC shows smoother and low oscillatory waveform,

which provides a more reliable functionality in practice.

The risk of the internal stability is by far highest for the

APIC-DSC, even though the outputs are not far different

for all the methods. It is important to note that high

amplitude of the control input signal can practically put the

system into the risk of actuator saturation. These conditions

sometimes make finding a control strategy impractical,

despite showing acceptable tracking.

Figure 7 demonstrates adaptive law of the three

methods.

As seen in Fig. 7, the adaptive law, bh, damps quicker for

the ANNDSC and APIC-DSC, revealing faster conver-

gence for the neural network-based methods compared to

the backstepping one. Figures 8 and 9 show the system

outputs and the control inputs, for a case of the joint dead-

zone and PI hysteresis nonlinearities, occurring at two

different time instances.

All the three methods show good performance in

tracking the output. However, the APIC-DSC dramatically

increases the control inputs on the occurrence of the dead-

zone. This makes the APIC-DSC an inappropriate candi-

date for the practical situations, where such the large value

of the control input put the system into the risk of

saturation.

6 Discussion

The paper suggested an adaptive control design method for

nonlinear stochastic systems with a general class of the

actuator nonlinearity. In contrast to the existing techniques

relying on the backstepping design method [11]–[21], the

proposed method employed dynamic surface control

design, along with neural networks through an algorithm of

minimal learning parameters, to avoid the ‘‘explosion of

complexity’’ and decline the computational efforts. This

favorable feature which cannot be seen in the backstep-

ping-based methods will become especially important for

the systems with increased order. Such the implementation

improves agility of the design method to be suitable for an

online application. The paper proved boundedness of all

the closed-loop signals and convergence of all the error

signals to a small vicinity of the origin at the presence of

two different nonlinearities, commonly seen at the actua-

tors, dead-zone and hysteresis, in both analytic and simu-

lation manners.

Although certain nonlinearities have been investigated

in recent studies [25], the joint dead-zone and hysteresis

were not included in the studies. In many practical

Fig. 4 Integrated Mean Square

Error (IMSE) of a tracking

problem for the proposed

method (ANNDSC), the

baseline methods 1 (APIC-

DSC), and the baseline method

2 (backstepping), under

different conditions of failure-

free, actuator dead-zone and

Prandtl–Ishlinskii (PI)

hysteresis
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Fig. 5 Comparison of the

closed-loop states of the

proposed control system

(ANNDSC) along with the

baseline methods APIC-DSC

and backstepping in the tracking

problem. The three actuator

nonlinearities are separately

illustrated for the third order

system with the three state

variables
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Fig. 5 continued
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Fig. 5 continued
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Fig. 6 Control input of the three systems in the tracking problem, described in the sequel
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Fig. 7 Adaptive law of the three methods for the tracking problem
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applications, actuators can accidentally encounter with any

of the dead-zone and hysteresis, due to the aging. It is

sometimes critically important to consider such the con-

ditions in the design method.

We introduced a baseline method for nonlinear

stochastic system, named APIC-DSC, sophisticated for

compensating the actuator hysteresis. In this baseline

method, adaptive neural network is not invoked for the

compensation. It is analytically proved that the closed-loop

signals remain bounded in probability. This method

although shows acceptable performance for the failure-free

and also for the hysteresis conditions, but dramatically

increases the control input at the presence of the dead-zone.

Considering Figs. 5 and 9, the control effort of the

ANNDSC is much less than the two other baseline meth-

ods. It is possible to improve the tracking at the cost of

increasing the control effort. It might, however, lead to

actuator saturation or internal instability of the system. It

was observed that the control effort is by far lower for

ANNDSC than the two baseline methods.

In this study, the proposed method was empirically

optimized by jointly considering the tracking performance

and the control effort. Among the design parameters, the

set of k0; k1; k2; k3½ � and a1; a2; a3½ � have more effect on the

transient and the steady state characteristics of the system

where the k3; and a3 directly affect the control input of the

system. However, the proposed method can be well-inte-

grated with the genetic algorithm for finding an optimal set

of the design parameters. This is also true for other meta-

heuristic methods, or natural-based algorithms, such as ant

colony algorithm. For our baseline study of backstepping

method, we used the same set of the design parameters

described in [25] as an initial set, and followed similar

Fig. 8 Output of the three

control systems and the

reference input, for the joint

dead-zone and hysteresis

nonlinearity, occurring at the

seconds 1 and 4

Fig. 9 Control input of the three

systems in the tracking problem,

for the joint dead-zone and

hysteresis nonlinearity,

occurring at the seconds 1 and 4
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empirical procedure for improving the performance, as was

done for ANNDSC and APIC-DSC.

Selecting an appropriate sampling rate plays an impor-

tant role in efficient performance of any control system. A

low sampling rate can lead to system instability, while on

the other hand, an excessive sampling rate increases

redundant complexities. A recent study proposed an

interesting systematic method, named FIRCEP, that can be

easily employed for finding an optimal sampling rate [55].

We used MATLAB R2017b for the simulations and

analysis. Nowadays, there are various platforms, commer-

cially available for efficient implementation in the practical

situations and real plants, such as PLC systems with strong

computational power. It is obvious that such the imple-

mentations demand a level of the practical considerations.

7 Conclusion

This paper proposed a novel adaptive design method for

nonlinear stochastic control systems using neural network.

The proposed method was investigated under joint condi-

tions of the actuator nonlinearities, defined as the dead-

zone and the Prandtl–Ishlinskii hysteresis. Stability analy-

sis was analytically studied and confirmed by the simula-

tion results in a tracking problem. Performance of the

proposed method was compared to a baseline of widely

used method, the backstepping method. It is observed that

using the proposed neural network in conjunction with the

dynamic surface method, considerably enhances perfor-

mance of the control design method, and meanwhile

decreases the computational complexities as well as the

control effort.

Appendix 1

Consider the following stochastic system:

dx ¼ f x; tð Þdt þ h x; tð Þdw ð26Þ

where x ¼ x1; x2; . . .; xn½ �T 2 Rn, w is an r-dimensional

standard Brownian motion defined on the complete prob-

ability space (X, F, P), and X is a sample space, F is a r-

field, Ftf gt� 0 is a filtration, P is a probability measure,

andf : Rn � Rþ ! Rn, h : Rn � Rþ ! Rn�r are locally

Lipschitz functions inx 2 Rn,

withf 0; tð Þ ¼ 0, h 0; tð Þ ¼ 0; 8t� 0.

Definition 1 Wang et al. [25] For any given V x; tð Þ 2
C2;1 Rn � Rþ;Rþð Þ; associated with the stochastic differential

Eq. (26), we define the differential operator L as follows:

LV ¼ oV

ot
þ oV

ox
f þ 1

2
Tr hT

o2V

ox2
h

� �

ð27Þ

Remark 1 The term 1
2
Tr hT o2V

ox2 h
n o

is called Itô correction term, in

which the term o2V
ox2 introduces a high level of complexity to the

controller design procedure in comparison with the deterministic case

[25].

Lemma 1 Wang et al. [25] Consider the stochastic system (Eq. 26)

and assume that f ðx; tÞ, and hðx; tÞ are C1 in their arguments and

f ð0; tÞ, and hð0; tÞ are bounded uniformly in t. If there exist functions

V x; tð Þ 2 C2;1ðRn � Rþ;RþÞ, l1 
ð Þ;l2 
ð Þ 2 K1, constants

a0 [ 0; b0 � 0, such that.

l1 xj jð Þ�V x; tð Þ� l2 xj jð Þ; LV � a0V x; tð Þ þ b0 ð28Þ

then the solution process of Eq. (26) is bounded in probability.

Lemma 2 Young’s Inequality:

xy� ap

p
xj jp þ 1

qaq
yj jq; p� 1ð Þ q� 1ð Þ ¼ 1; a[ 0 ð29Þ

where the constants p; q; anda are chosen properly

depending on the circumstances [25].

Lemma 3 Wang et al. [25] For any continuous function f xð Þ : Rn !
R with f 0ð Þ ¼ 0; x ¼ x1; x2; . . .; xn½ �T , there exist positive smooth

functions hj xj
� �

: R ! Rþ; j ¼ 1; 2; . . .; n, such that.

f xð Þj j �
Xn

j¼1

xj
�
�
�
�hj xj
� �

ð30Þ

Appendix 2

A consistent technique is used to arrive at the conclusions

in Eq. (45), Eq. (62), and Eq. (46), which is described in the

following sequel. The aim is to approve the following

equation:

giS
3
i hi Zið Þ� bm

2a2
i

S6
i hf

T
i Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 3

4
g

4
3

i S
4
i

þ 1

4
e4
i ; 1� i� n ð31Þ

Using the expanded expression of hi Zið Þ in Eq. (63), for

the giS
3
i hi Zið Þ term in Eq. (63), 1� i� n it can be written

as:
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giS
3
i hi Zið Þ ¼ giS

3
i W�T

i fi Zið Þ þ di Zið Þ
� �

¼ giS
3
i W

�T
i

W�
i

W�
i

� 	

fi Zið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

firstterm

þ giS
3
i di Zið Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
secondterm

ð32Þ

For the first term in Eq. (32) using the Young’s

inequality (4) with the corresponding parameters

x ¼ Si
W�

i
T

kW�
i k
kW�

i kfi Zið Þ; y ¼ gi, p ¼ q ¼ 2, a ¼ ai, and for

second term in Eq. (32) with the corresponding parameters

x ¼ S3
i gi; y ¼ diðZiÞ, p ¼ 4=3, q ¼ 1, a ¼ 1, di Zið Þj j � ei,

respectively, it yields:

giS
3
i hi Zið Þ� S6

i

2a2
i

W�T
i W�

i

W�2
i|fflfflfflffl{zfflfflfflffl}

¼1

W�2
i fTi Zið Þfi Zið Þ

þ 1

2
a2
i g2

i|{z}
� b2

M

þ 3

4
g

4
3

i S
4
i þ

1

4
e4
i � S6

i

bm
2a2

i

W�2
i

bm|{z}
� h

fTi Zið Þfi Zið Þ

þ 1

2
a2
i b

2
M þ 3

4
g

4
3

i S
4
i þ

1

4
e4
i ;

ð33Þ

where ai [ 0 and ei [ 0. Equation (33) in its simplified

form can be written as follows:

giS
3
i hi Zið Þ� bm

2a2
i

S6
i hf

T
i Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 3

4
g

4
3

i S
4
i

þ 1

4
e4
i ; 1� i� n ð34Þ

By this expression, Eq. (31) is proved.

Appendix 3

Proof of the theorem 1 (Stability analysis)

The proposed controller design method is based on a multi-

step recursive design algorithm. In this method, the adap-

tive neural network approach is implemented using the

dynamic surface control in conjunction with minimal-

learning-parameters algorithm in a recursive manner. At

the end of each design step, the resulting data are sent to

the next design step. The number of design steps is n,

which is equal to the number of the system order. At the

end of 1� i� n� 1 steps, a virtual control signal and a

first-order filter are generated, which are sent to the next

step. Consequently, in the final step, n, the actual control

signal is generated, which is sent out from the controller to

the actuator.

Step 1

Define the first error surface as:

S1 ¼ x1 � yr ð35Þ
dS1 ¼ dx1 � _yrdt ¼ g1x2 þ f 1 � _yrð Þdt þ w1dw ð36Þ

By using a stochastic Lyapunov function, it is obtained:

V1 ¼ 1

4
S4

1 þ
1

2k
bm �

h
2; �
h
¼ h� bh ð37Þ

where k is a design constant. Using the Itô’s formula, we

have2:

LV1 ¼ S3
1 g1x2 þ f 1 � _yrð Þ þ 3

2
S2

1w
T
1w1 � k�1bm �

h

_bh ð38Þ

3

2
S2

1w
T
1w1 �

3

2
S4

1u
2
11 ð39Þ

Replacing Eq. (39) in Eq. (38) yields:

LV1 � S3
1 g1x2 þ f 1 � _yrð Þ þ 3

2
S4

1u
2
11

� k�1bm �
h

_bh � S3
1 g1x2 þ f 1 � _yr þ

3

2
S1u

2
11

� 	

þ 3

4
g

4
3

1S
4
1

� 3

4
g

4
3

1S
4
1 � k�1bm �

h

_bh ;

ð40Þ

define:

�
f 1

,f 1 � _yr þ
3

2
S1u

2
11 þ

3

4
g

4
3

1S1 ð41Þ

By adding and subtracting 3
4
g

4
3

1S1 term to the right-hand

side of Eq. (40), and substituting the result in Eq. (41), we

have:

LV1 � S3
1 g1x2 þ f 1

� �
� 3

4
g

4
3

1S
4
1

� k�1bm~h
_̂h� g1S

3
1 x2 þ g�1

1 f 1|fflffl{zfflffl}
unknownterm

0

B
@

1

C
A� 3

4
g

4
3

1S
4
1

� k�1bm~h
_̂h ð42Þ

Now we approximate the unknown term, g�1
1 f 1, using a

RBFNN [25]. Defining:

hi Zið Þ ¼ g�1
i

�
f i
¼ W�T

i fi Zið Þ þ di Zið Þ; diðZiÞj j � ei ð43Þ

where the Zi ¼ xi; ĥ
h i

; x ¼ x1; � � � ; xi½ �, 1� i� n. Putting

h1 Z1ð Þ in the unknown term of Eq. (42) yields:

LV1 � g1S
3
1x2 þ g1S

3
1h1 Z1ð Þ � 3

4
g

4
3

1S
4
1 � k�1bm �

h

_bh ð44Þ

Using Eq. (31), the term S3
1g1h1 Z1ð Þ can be rewritten as:

2 Using (5), since w1 0ð Þ ¼ 0; thus there is a function u11 
ð Þ such that

w1 S1ð Þ ¼ S1u11 S1ð Þ
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S3
1g1h1 Z1ð Þ� bm

2a2
1

S6
1hf

T
1 Z1ð Þf1 Z1ð Þ þ 1

2
a2

1b
2
M þ 3

4
g

4
3

1S
4
1

þ 1

4
e4

1

ð45Þ

and Eq. (44) becomes:

LV1 � g1S
3
1x2 þ

bm
2a2

1

S6
1hf

T
1 Z1ð Þf1 Z1ð Þ þ 1

2
a2

1b
2
M þ 1

4
e4

1

� k�1bm �
h

_bh � g1S
3
1x2 þ

bm
2a2

1

S6
1hf

T
1 Z1ð Þf1 Z1ð Þ þ 1

2
a2

1b
2
M

þ 1

4
e4

1 � k�1bm �
h

_bh

ð46Þ

By choosing �
x2 as the virtual controller as follows:

�
x2

¼ �k1S1 �
1

2a2
1

S3
1
bhfT1 Z1ð Þf1ðZ1Þ ð47Þ

and by integrating it with the x2 term of Eq. (46) and simple

mathematical manipulation, we have:

LV1 � � k1g1S
4
1 þ g1S

3
1 x2 � �

x2

� 	

þ bm
k

�
h

k

2a2
1

S6
1f

T
1 Z1ð Þf1 Z1ð Þ � _bh

� 	

þ 1

2
a2

1b
2
M þ 1

4
e4

1

ð48Þ

Introducing a new state variable z2, and let �
x2 pass

through a first-order filter with a time constant �2 to obtain

z2 as:

�2 _z2 þ z2 ¼ �
x2

ð49Þ

define the second error surface as follows:

S2,x2 � z2 ð50Þ

define the first filter error as follows:

y2,z2 � �
x2

¼ ��2 _z2 ð51Þ

Combining Eq. (51) and Eq. (50) and substituting the x2

term in Eq. (47) by the resulting, along with mathematical

simplification yields:

LV1 � � k1g1S
4
1 þ g1S

3
1 S2 þ y2ð Þ

þ bm
k

�
h

k
2a2

1

S6
1f

T
1 Z1ð Þf1 Z1ð Þ � _bh

� 	

þ 1

2
a2

1b
2
M þ 1

4
e4

1

ð52Þ

Here the Young’s inequality is employed with the

parameters p ¼ 4
3
; q ¼ 1; a ¼ 1, and applying to the term

g1S
3
1 S2 þ y2ð Þ in Eq. (52), we obtain:

g1S
3
1 S2 þ y2ð Þ� 3

2
g1S

4
1 þ

1

4
g1S

4
2 þ

1

4
g1y

4
2 ð53Þ

Now combining Eq. (53) and Eq. (52) and using the

expression bm � gi � bM; 1� i� n in (6), yields:

Defining �
LV 1

as in the following yields Eq. (55):

LV1 � � c1S
4
1 þ

bm
k

~h
k

2a2
1

S6
1f

T
1 Z1ð Þf1 Z1ð Þ � _̂h

� 	

þ 1

4
bMy

4
2 þ

1

2
a2

1b
2
M þ 1

4
e4

1

LV1 � LV1 þ
1

4
g1S

4
2

ð55Þ

Step 2 i, ð2� i� nÞ

In order to maintain a systematic analysis and design

procedure, and also for the brevity of the paper, a new state

variable is defined as xðnþ1Þ,u. Now the design procedure

is pursued as previous design steps. The derivative of the

second error surface in Eq. (50), or equivalently of its

generalization, the ith error surface in Eq. (65), is obtained

as:

dSi ¼ gix iþ1ð Þ þ f i þ
1

�i
zi � �

xi

� 	� 	

dt þ widw; 2� i� n

ð56Þ

Defining a stochastic Lyapanov function as:

LV1 � � k1 �
3

2

� 	

bm
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

c1

S4
1 þ

bm
k

~h
k

2a2
1

S6
1f

T
1 Z1ð Þf1 Z1ð Þ � _̂h

� 	

þ 1

4
g1S

4
2 þ

1

4
bMy

4
2 þ

1

2
a2

1b
2
M þ 1

4
e4

1

� �c1S
4
1 þ

bm
k

~h
k

2a2
1

S6
1f

T
1 Z1ð Þf1 Z1ð Þ � _̂h

� 	

þ 1

4
bMy

4
2 þ

1

2
a2

1b
2
M þ 1

4
e4

1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LV1

þ1=4g1S
4
2; ci ¼ ðki � 3=2Þbm; 1� i� n;

ð54Þ
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Vi ¼ V ði�1Þ þ
1

4
S4
i þ

1

4
y4
i ð57Þ

And applying the Ito’s lemma to Eq. (57) results in:

LVi ¼ LV i�1ð Þ þ
1

4
g i�1ð ÞS

4
i

þ S3
i gix iþ1ð Þ þ fi þ

1

2i
zi � xið Þ

� 	

þ 3

2
S2
i w

T
i wi

|fflfflfflfflffl{zfflfflfflfflffl}
�

þy3
i � yi

2i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �

ð58Þ

where Bi 
ð Þ, and Tr GT
i 
ð ÞGi 
ð Þ

� �
are continuous and

smooth functions, which have maximums of Mi, and Ni

respectively. By applying the same method in Eq. (39) to

the ‘*’ term of Eq. (58), and using Young’s inequality with

the parameters of i ¼ 2 as X ¼ r2; r2 � 0, Y ¼ S2
2S

2
1u

2
21

r2
;

ðp; q; aÞ ¼ ð2; 2;
ffiffiffi
2

p
Þ, similar generalization3 is driven for

2� i� n:

LVi � �
LV i�1ð Þ

þ S3
i gix iþ1ð Þ þ f i þ

1

�i
zi � �

xi

� 	� 	

þ 1

4
g i�1ð ÞS

4
i þ

3

2
iS4

i u
2
ii þ

3

4
r2
i þ

3

4
r�2
i i2S4

i

Xi�1

j¼1

S2
j u

2
ij

 !2

þ y3
i � yi

�i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �

ð59Þ

An unknown function �
f i

is defined as follows [25]:

�
f i
¼ f i þ

1

�i
zi � �

xi

� 	

þ 1

4
g i�1ð ÞSi þ

3

2
iSiu

2
ii

þ 3

4
r�2
i i2Si

Xi�1

j¼1

S2
j u

2
ij

 !2

þ 3

4
g

4
3

i Si ð60Þ

and substituting in Eq. (59) yields [12]:

LVi �LV i�1ð Þ þ S3
i gix iþ1ð Þ þ f i
� �

� 3

4
g

4
3

i S
4
i þ

3

4
r2
i þ y3

i � yi
2i

þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �
�LV i�1ð Þ þ giS

3
i x iþ1ð Þ þ g�1

i f i|ffl{zffl}
unknownterm

0

B
@

1

C
A

� 3

4
g

4
3

i S
4
i þ

3

4
r2
i þ y3

i � yi
2i

þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �

ð61Þ

Similar to the previous design step, the specified un-

known term is approximated using an RBFNN (Eq. 43),

and relying on Eq. (31) we have:

giS
3
i hi Zið Þ� bm

2a2
i

S6
i hf

T
i Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 3

4
g

4
3

i S
4
i þ

1

4
e4
i

LVi �LV i�1ð Þ þ giS
3
i x iþ1ð Þ þ

bm
2a2

i

S6
i hf

T
i Zið Þfi Zið Þ

þ 1

2
a2
i b

2
M þ 1

4
e4
i þ

3

4
r2
i þ y3

i � yi
r i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �

ð62Þ

Simple mathematical manipulation based on using �
x iþ1ð Þ

as the control input, u, yields:

�
x iþ1ð Þ

¼ �kiSi �
1

2a2
i

S3
i
bhfTi Zið Þfi Zið Þ; 2� i� n� 1

LVi � �
LV i�1ð Þ

þ giS
3
i x iþ1ð Þ � �

x iþ1ð Þ

� 	

� kigiS
4
i

þ bm
2a2

i

S6
i
�
h
fTi Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 1

4
e4
i þ

3

4
r2
i

þ y3
i � yi

�i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �
; 2� i� n� 1 ð63Þ

Now, the control input �
x iþ1ð Þ is low-pass-filtered by a

first-order filter _zðiþ1Þ:

�ðiþ1Þ _zðiþ1Þ þ ziþ1 ¼ �
xðiþ1Þ

; 2� i� n� 1 ð64Þ

The error surface defined by S, along with the filter error

y, is found at each step as follows:

S iþ1ð Þ,x iþ1ð Þ � z iþ1ð Þ; 2� i� n� 1

y iþ1ð Þ,z iþ1ð Þ � x iþ1ð Þ ¼ � 2 iþ1ð Þ _z iþ1ð Þ; 2� i� n� 1

ð65Þ

The derivative of Lyapunov function is consequently

obtained as follows

LVi � LV i�1ð Þ þ giS
3
i S iþ1ð Þ þ y iþ1ð Þ þ x iþ1ð Þ � x iþ1ð Þ
� �

� kigiS
4
i

þ bm
2a2

i

S6
i
~hfTi Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 1

4
e4
i þ

3

4
r2
i

þ y3
i � yi

2i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �
� LV i�1ð Þ

þ giS
3
i S iþ1ð Þ þ y iþ1ð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

�kigiS
4
i

þ bm
2a2

i

S6
i
~hfTi Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 1

4
e4
i

þ 3

4
r2
i þ y3

i � yi
r i
þ Bi

� 	

þ 3

2
yiTr GT

i Gi

� �
; 2� i� n� 1

ð66Þ

Considering the term ‘*’ can be written as:

3 A generalization of the technique employed in Eq. (B.5) will result

in:

3

2
S2
i w

T
i wi �

3

2
iS4

i u
2
ii þ

3

4
r2
i þ

3

4
r�2
i i2S4

i

Xi�1

j¼1

S2
j u

2
ij

 !2

Neural Computing and Applications (2021) 33:9259–9287 9279

123



giS
3
i S iþ1ð Þ þ y iþ1ð Þ

 �
� 3

2
giS

4
i þ

1

4
giS

4
iþ1ð Þ

þ 1

4
giy

4
iþ1ð Þ; 2� i� n� 1 ð67Þ

and using Eq. (54) fori ¼ 2, and also taking Eq. (1) into

account in which bm � gi � bM; 1� i� n, the derivative of

the Lyapunov function becomes:

LVi � �
Xi�1ð Þ

j¼1

cjS
4
j þ

bm
k

~h
Xi�1ð Þ

j¼1

k

2a2
j

S6
j f

T
j Zj
� �

fj Zj
� � _̂h

 ! 

þ 1

2

Xi�1ð Þ

j¼1

a2
j b

2
M þ 1

4

Xi�1ð Þ

j¼1

e4
j

þ
Xi�1ð Þ

j¼2

bM
4

þ 3

4
njMj

� �4
3þ 3

4
#jNj

� �2� 1

r j

 !

y4
j

þ
Xi�1ð Þ

j¼2

1

4n4
j

þ 3

4#2
j

 !!

� ki �
3

2
bm

|fflfflfflfflffl{zfflfflfflfflffl}
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0

B
B
@

1

C
C
AS4

i þ
1

4
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4
iþ1ð Þ

þ 1

4
bMy

4
iþ1ð Þ þ
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2a2

i

S6
i
~hfTi Zið Þfi Zið Þ þ 1

2
a2
i b

2
M þ 1

4
e4
i

þ 3

4
r2
i �

y4
i

r i
þ y3

i Bi þ
3

2
yiTr GT

i Gi

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

ð68Þ

where ci ¼ ki � 3
2

� �
bm. Applying the Young’s inequality

with the parameter set of (p; q; aÞ ¼ ð4=3; 4; niMiÞ and

(p; q; aÞ ¼ ð2; 2; #iNiÞ to the first and the second term of ‘*’

in Eq. (68), respectively, results in:

y3
i Bi � y3

i Mi �
3

4
niMið Þ

4
3y4

i þ
1

4 niMið Þ4
M4

i

3

2
y2
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� �
� 3
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y2
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3
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#iNið Þ2y4
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3
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i
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� �
� 3

4
niMið Þ

4
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4
#iNið Þ2þ 1

4n4
i

þ 3

4#2
i

ð69Þ

where ni and #i are constants. Therefore, Eq. (68) becomes:

LVi � �
Xi
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cjS
4
j þ
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~h
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j¼1

k
2a2

j

S6
j f

T
j Zj
� �

fj Zj
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2
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2
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4
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j¼1
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4

þ 3

4
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� �4
3þ 3

4
#jNj

� �2� 1
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y4
j

þ
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1
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þ 3

4#2
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þ 3

4

Xi

j¼2
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j

!

þ 1

4
bMy

4
iþ1ð Þ

þ 1

4
bMS

4
iþ1ð Þ; 3� i� n� 1

ð70Þ

The above inequality is simplified by defining �
LVi

as

follows:

LVi � LVi þ
1

4
giS

4
iþ1ð Þ; 3� i� n� 1 ð71Þ

�
LVi

¼ �
Xi

j¼1

cjS
4
j þ
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�
h
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k
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 !
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2
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4
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j

þ
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j¼2

bM
4

þ 3

4
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3 þ 3

4
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1

4n4
j

þ 3

4#2
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4

Xi

j¼2

r2
j þ

1

4
bMy

4
iþ1ð Þ

Then, the Itô’s formula for the stochastic Lyapunov

function of the nth step is derived as follows:

LVn � �
Xn

j¼1

cjS
4
j þ

bm
k

~h
Xn

j¼1

k
2a2

j

S6
j f

T
j Zj
� �

fj Zj
� �

� _̂h

 !

þ 1

2
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j¼1

a2
j b

2
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4
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j¼1

e4
j þ
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j¼2
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4

þ 3

4
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� �4
3þ 3

4
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� �2� 1

2j
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y4
j

þ
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j¼2

1

4n4
j

þ 3

4#2
j

 !

þ 3

4

Xn

j¼2

r2
j :

ð72Þ

The above equation is simplified by using the following

expressions:

LVn � �
Xn

j¼1

cjS
4
j �

Xn

j¼2

djy
4
j þ

k0bm
k

~hĥ|{z}
�

þb0; ð73Þ
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Xn
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k

2a2
j

S6
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T
j VZj
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bh

1

2
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2
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4
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1
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j

 !

þ 3

4

Xn

j¼2

r2
j

¼ b0 [ 0

1

�j
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4
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4
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� �4
3 � 3

4
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� 	
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The term ‘*’ can be modified using the Young’s

inequality as follows:

�
h
bh ¼ �

h
h� �

h

� 	

¼ ��
h

2 þ �
h
h ð74Þ

�
h
bh ¼ ��

h
2 þ �

h
h���

h
2 þ

�
h

2

2
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2

 !

� �
�
h

2

2
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2

Hence, Eq. (72) becomes:
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LVn � �
Xn

j¼1

cjS
4
j �

Xn

j¼2

djy
4
j þ

k0bm
k

�
~h2

2
þ h2

2

 !

þ b0 �

�
Xn

j¼1

cjS
4
j �

Xn

j¼2

djy
4
j �

k0bm
2k

~h2 þ k0bm
2k

h2 þ b0

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
b1

ð75Þ

LVn � �
Xn

j¼1

cjS
4
j �

Xn

j¼2

djy
4
j �

k0bm
2k

~h2 þ b1 � � a1V þ b1;

a1 ¼ min 4cj; 4dj; k0; j ¼ 1; 2; . . .; n
� �

; b1 ¼ b0 þ
k0bm
2k

h2

where a1 ¼ min 4cj; 4dj; k0; j ¼ 1; 2; . . .; n
� �

; and

b1 ¼ b0 þ k0bm
2k h2. Consequently, the nth stochastic Lya-

punov function is:

LVn � � a1V þ b1 ð76Þ

According to Lemma 1 of Appendix 1 using the control

signal, u, all the closed-loop signals of the entire system

remain bounded in probability, and the output signal,

y ¼ x1, tracks the reference input of the system.

Appendix 4

Proof of theorem 2 (effect of hysteresis
in actuators):

Assuming the system, described in (1), is subjected to an

actuator hysteresis defined by a Prandtl–Ishlinskii (PI)

model. The play operator of the model is defined by

Eqs. (2)–(6). The control system and the input to the model

are defined by Eq. (12) and Eq. (5), respectively. If the

analysis and design procedure is pursued as in Section B,

all the steps would be similar to Eqs. (35)– (67). The

derivative of the error surface is found relying on Eq. (56)

using the last term of Eq. (35):

dSn ¼ gnp0v tð Þ � gnd v½ � tð Þ þ f n þ
1

�n
zn � �

xn

� 	� 	

dt

þ wndw

ð77Þ

In order to investigate stability of the system, a

stochastic Lyapunov function is chosen as:

Vn ¼ Vn�1 þ
1

4
S4
n þ

1

4
y4
n ð78Þ

where yiþ1; 2� i� n� 1 is the error of the i th filters,

which are defined by Eq. (51) and Eq. (65). Using the Itô’s

formula along with Eq. (36) in Eq. (37) yields:

LVn ¼ LV n�1ð Þ

þ S3
n gnp0v tð Þ � gnd v½ � tð Þ þ f n þ
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T
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þ 3

2
ynTr GT

nGn

� �

ð79Þ

where Bi 
ð Þ and Tr GT
i 
ð ÞGi 
ð Þ

� �
are continuous and

smooth functions, showing maximums of Mi, and Ni

respectively. By following similar design procedure as

described in the previous sequel by derivations Eq. (58)–

Eq. (68), it can be easily found that the above inequality

becomes:
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1

�n
zn � �

xn

� 	� 	

þ 3

2
nS4

nu
2
nn þ

3

4
r2
n þ y3

n � yn
�n

þ Bn

� 	

þ 3

4
r�2
n n2S4

n

Xn�1

j¼1

S2
j u

2
ij

 !2

þ 3

2
ynTr GT

nGn

� �
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By defining �
f n

as follows:

�
f n

¼ f n þ
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�n
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Eq. (80) becomes:

LVn �LV n�1ð Þ þ S3
n gnp0|ffl{zffl}

gn

v tð Þ þ f n

0

B
@

1

C
A� 3

4
gn

4
3Sn

þ 3

4
r2
n þ y3

n � yn
2n

þ Bn

� 	

þ 3

2
ynTr GT

nGn

� �
�LV n�1ð Þ

þ gnS
3
n v tð Þ þ gn

�1f n|fflfflffl{zfflfflffl}
unknownterm

0

@

1

A� 3

4
gn

4
3Sn þ

3

4
r2
n

þ y3
n � yn

2n
þ Bn

� 	

þ 3

2
ynTr GT

nGn

� �

ð82Þ

where �
gn

¼ gnp0. The unknown term in Eq. (107) is

approximated using an RBFNN as follows:

hn Znð Þ ¼ �
gn

�1�
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The derivative of the Lyapunov function leads to:

Neural Computing and Applications (2021) 33:9259–9287 9281

123



LVn � �
LV n�1ð Þ

þ �
gn

S3
n v tð Þ þ hn Znð Þð Þ � 3

4
�
gn

4
3Sn þ

3

4
r2
n

þ y3
n � yn

�n
þ Bn

� 	

þ 3

2
ynTr GT

nGn

� �
� �

LV n�1ð Þ

þ bmS
3
nvðtÞ

þ �
gn

S3
nhn Znð Þ � 3

4
�
gn

4
3Sn þ

3

4
r2
n þ y3

n � yn
�n

þ Bn

� 	

þ 3

2
ynTr GT

nGn

� �

ð84Þ

Expanding the term �
gn
S3
nhn Znð Þ in Eq. (84) using the

derivation Eq. (34) and replacing in Eq. (3) yields:
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By choosing v tð Þ ¼ �knSn � 1
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using Eq. (70), the above derivation becomes:
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where ci ¼ ki � 3
2

� �
bm, ki are design parameters, ni and #i

are constants. Furthermore, due to the boundedness of (6),

Eq. (50) is also bounded, relying on the affecting term of

(6) in Eq. (50). As shown before, Eq. (50) is similar to

Eq. (69) for i ¼ n. Hence, from this step onwards, the

stability analysis is similar to Eq. (70)–Eq. (76) and gives

the same results. Consequently, according to Lemma 1 of

Appendix 1 using the virtual control input signals (14), the

designed control input signal, vðtÞ, the ðn� 1Þ low-pass

filters (16), and the adaptive law of RBFNN weights (17),

bh tð Þ, all of the closed-loop signals remain bounded in sense

of the probability, and therefore the output of the system

y ¼ x1 tracks the reference input signal, yr, with an arbi-

trarily small error. Thus, the proposed controller design

method guarantees the closed-loop stability of the entire

system at the presence on unknown actuator hysteresis, and

the system dynamics.

Appendix 5

Proof of theorem 3 (effect of dead-zone
in actuator)

Assume that the system (1) is subjected to an actuator

dead-zone as defined by Eqs. (7), (8). Similar to the

designing steps described in (19–61), rewriting Eq. (55)
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Choosing a stochastic Lyapunov function as:
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Relying on the following considerations:
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defining the auxiliary function �
f n

and performing simple

mathematical manipulations yield:
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where �
gn

¼ gnK
T tð ÞU tð Þ, �

LV n�1ð Þ
is defined in Eq. (55).

Similar approximation is applied to the unknown term in

Eq. (92) as in Eq. (61), using an RBFNN, which leads to:
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Using the same technique employed in Eq. (62) for the

above equation yields:
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Choosing vðtÞ as follows:

vðtÞ ¼ �knSn �
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Replacing Eq. (71) along with simple mathematical

manipulations gives:
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Using Eq. (68) for the ‘*’ term in Eq. (96), and replacing

in the above derivation yield:
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Now choosing the following expression results:
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As it is shown, in comparison with Eq. (73), b0 is the

only changed term and from this step onwards this proof is

similar to Eq. (74)–Eq. (76) proving the system stability.

Based on Lemma 1 of Appendix 1 using the virtual control

input signals (19), the designed control input signal, vðtÞ,
the ðn� 1Þ low-pass filters (21), and the adaptive law of

RBFNN weights (22), bh tð Þ, all of the closed-loop signals

remain bounded in sense of the probability, and the output
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of the system y ¼ x1 tracks the reference input signal of the

system, yr, with an arbitrarily small error. Thus, the pro-

posed controller design method guarantees the closed-loop

stability of the entire system in the presence of unknown

dead-zone in actuator, and system dynamics.

Appendix 6

Proof of theorem 5 (direct ANNDSC
compensation of Prandtl–Ishlinskii
hysteresis in strict-feedback nonlinear
stochastic systems)

A direct adaptive neural network controller is designed

specifically for nonlinear stochastic systems in strict-feed-

back form (6) subjected to an unknown Prandtl–Ishlinskii

(PI) hysteresis as defined in Eqs. (2) to (6). Rewriting

Eq. (56) for nth design step and simple mathematical

manipulations yields:
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Eq. (50) based on Ito formula results:

LVn � LV n�1ð Þ þ
1

4
g n�1ð ÞS

4
n

þ S3
n gnp0v tð Þ þ fn þ

1

2n
zn � xnð Þ

� 	

þ 3

2
S2
nw

T
nwn

|fflfflfflfflffl{zfflfflfflfflffl}
�

þy3
n � yn

2n
þ Bn

� 	

þ 3

2
ynTr GT

nGn

� �
� gnp0 S3

n

�
�
�
� r
R

0

pp0
t; rð Þ Fr v½ � tð Þj jdr

þ bM
cpr

r
R

0

~pp0
t; rð Þ o

ot
p̂ t; rð Þdr

ð100Þ

Using Eq. (58) for the term ‘*’ in Eq. (94), we have:
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Combining the above derivations with the auxiliary
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where �
gn

¼ gnp0. As in Eq. (61), the unknown term in

Eq. (96) is approximated using Eq. (53). A simple substi-

tution in Eq. (96) gives:
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Applying the same technique used in Eq. (62) to the ‘*’

term in Eq. (104) leads to:
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Integrating the above equations using Eq. (71) gives:
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where r is a positive design parameter. As it is shown,

Eq. (65) is an adaptive way to directly estimate the density

function of PI hysteresis. Using this technique makes the

expression in Eq. (107) almost identical to the expression

in Eq. (67). Hence, the remaining steps of the stability

analysis procedure are similar to the similar expressions of

Eq. (67) and result in the same ultimately uniformly

boundedness in probability. It is therefore concluded that,

according to Lemma 1 of Appendix 1 and using the virtual

control input signals (19), the designed control input signal,

vðtÞ, in Eq. (106), the ðn� 1Þ first-order filters (21), the

Neural Computing and Applications (2021) 33:9259–9287 9285

123



adaptive law of RBFNN weights (22), bh tð Þ, and the

adaptive law of density function Eq. (107) all of the closed-

loop signals remain bounded in sense of the probability,

and the output of the system y ¼ x1 tracks the reference

input signal of the system, yr, with an arbitrarily small

error. Thus, the proposed controller design method guar-

antees the closed-loop stability of the entire system in the

presence on unknown actuator hysteresis and the system

dynamics. It should be noted that the key point in this

design method is the direct estimation of the PI integral via

estimating of its density function and involving the asso-

ciated term in the control input signal Eq. (107).
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Mr. Mohammad Mahdi Aghajary has received research grants from

National Iranian Gas Company (NIGC).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Boskovic JD, Jackson JA, Mehra RK, Nguyen NT (2009) Mul-

tiple-model adaptive fault-tolerant control of a planetary lander.

J Guid Control Dyn 32(6):1812–1826

2. Zhang X, Parisini T, Polycarpou MM (2004) Adaptive fault-tol-

erant control of nonlinear uncertain systems: an information-

based diagnostic approach. IEEE Trans Autom Control

49(8):1259–1274

3. Blanke M, Kinnaert M, Lunze J, Staroswiecki M, Schröder J
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