
ORIGINAL ARTICLE

Optimization of decoupling point position using metaheuristic
evolutionary algorithms for smart mass customization manufacturing

C. D. James1 • Sandeep Mondal2

Received: 25 April 2020 / Accepted: 22 December 2020 / Published online: 6 January 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
In this paper, we present two metaheuristic evolutionary algorithms-based approaches to position the customer order

decoupling point (CODP) in smart mass customization (SMC). SMC tries to autonomously mass customize and produce

products per customer needs in Industry 4.0. SMC shown here is from the perspective of arriving at a CODP during

manufacturing process flow designs meant for fast moving and complex product variants. Learning generally needs several

repetitive cycles to break the complexity barrier. We make use of fruit fly and particle swarm optimization (PSO)

evolutionary algorithms with the help of MATLAB programming to constantly search better fitting consecutive process

modules in manufacturing chain. CODP is optimized by increasing modularity and reducing complexity through evolu-

tionary concept. Learning-based PSO iterations are performed. The methods shown here are recommended for process flow

design in a learning-oriented supply chain organization which can involve in-house and outsourced manufacturing steps.

Finally, a complexity reduction model is presented which can aid in deploying this concept in design of supply chain and

manufacturing flows.

Keywords Customer order decoupling point (CODP) � Smart mass customization (SMC) � Evolutionary algorithm (EA) �
Optimization � Process flow design � Learning

1 Introduction

Today’s fast-moving world needs manufacturing and sup-

ply chains to be smart with capabilities for quick learning

and reconfiguration of process flows. Slow in-house evo-

lution of technical knowhow could mean lost opportunities

in a rapidly changing market. Rapid improvements in

customer order decoupling point (CODP) positioning

would mean quicker standardization and maturity of

designed process flows. CODP is the point in the manu-

facturing process flow which differentiates the standardized

production flow from the customized production flows.

This would constantly simplify the process for fulfillment

of customer needs in a much faster and effective manner

without compromising the customization requirements.

This paper proposes smart deployment of best fit oppor-

tunities in manufacturing process flow design by selecting

solutions from a wider set of choices (both external and

internal). Best fit opportunities mean easier access to create

new custom products without having to start from the

concept stage, by exploiting existing modular sub-assem-

blies which are readily available. And is particularly suited

for designing process flow for complex and custom prod-

ucts in smart manufacturing. We also demonstrate some

learning models and complexity reduction methods in the

end of the paper to facilitate this.

Smart manufacturing or Industry 4.0 is an emerging

trend making use of Internet of Things (IoT), cloud-based

systems, big data analytics, artificial intelligence-based

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s00521-020-05657-1.

& Sandeep Mondal

sandeepmondal@iitism.ac.in

C. D. James

JamesDevassia.Cherupillet@infineon.com

1 Cypress Semiconductor Technology India Pvt Ltd. (An

Infineon Technologies Company), 7th Floor, 65/2, Bagmane

Tech Park, Block C, Bagmane Laurel, C V Raman Nagar,

Bengaluru, Karnataka 560093, India

2 Department of Management Studies, Indian Institute of

Technology (ISM), Dhanbad, Indian School of Mines P.O-

ISM, Dhanbad, Jharkhand 826001, India

123

Neural Computing and Applications (2021) 33:11125–11155
https://doi.org/10.1007/s00521-020-05657-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1286-5821
https://doi.org/10.1007/s00521-020-05657-1
https://doi.org/10.1007/s00521-020-05657-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05657-1&domain=pdf
https://doi.org/10.1007/s00521-020-05657-1

analytics, machine learning, additive manufacturing and

digitalization [1–3]. Hajrizi [4] proposed the usage of

modeling, simulation and optimization in Industry 4.0 for

multi-objective problem solving and capacity building.

Zhang et al. [5] highlighted SMC as a futuristic baseline for

successful deployment of smart manufacturing.

Lehmhus et al. [6] discussed about increasing smartness

in manufacturing by making use of the cloud-based design

and sensor integrated intelligence, with IoT and additive

manufacturing. Suginouchi et al. [7] illustrated a co-cre-

ative manufacturing system for SMC using smart factory

operation method. They proposed an Industrial Internet

Consortium for autonomous negotiation mechanism.

Smart mass customization (SMC) is defined as autono-

mous mass customization and manufacture of products per

customer needs in Industry 4.0. Positioning of CODP is

important in SMC because it enables the manufacturing

system to autonomously design and control manufacturing

process flow. Our paper mentions the optimization of

CODP position and process flow design through evolu-

tionary algorithms (EA) by smartly joining the best fit steps

from in-house and/or external sources, using modularity

concept. This is aimed at breaking the complexity barrier in

a faster and efficient manner. We explain the EA problem

and its solution embedded in a smart manufacturing envi-

ronment by providing a framework.

In few next paragraphs, we summarize various defini-

tions of customer order decoupling point (CODP), fol-

lowed by the same for EAs, provided by earlier

researchers. Daaboul and Da Cunha [8] defined customer

order decoupling point (CODP) as a step in product man-

ufacturing flow which differentiates basic and additional

steps that derive new variants in mass customization (MC).

They also mention it as the point which splits the overall

production line into the build to stock left side portion and

the build to order right side portion.

Fogliatto et al. [9] explained CODP as a point which

helps manufacturability in MC through postponement of

customization. They mentioned it as a point in the

upstream of the value chain which gets controlled through

modularity, while the downstream being the portion that is

customer input based. This helps in efficient order fulfil-

ment by increasing predictability in the supply chain while

retaining some control on the customer-driven or custom

needs.

Genetic algorithms (GA) are evolution-based EA tech-

niques which perform empirical search optimization as

defined by McCall [10]. McCall [10] mentioned that GA

are easy to implement in a variety of techniques due to

their modular nature. This property of the GA is exploited

in our paper to optimize the CODP position by reducing

complexity while increasing modularity of the manufac-

turing process flow. CODP position is determined in the

manufacturing process flow through optimization which is

achieved with the iterations in the population involved and

the fitness function which is made use of. However, we

make use of metaheuristic EA techniques, namely fruit fly

(FF) and particle swarm optimization (PSO) algorithms, to

reduce the time lag of process design by selection of closest

solution during the process development. It is different

from conventional cross-over chromosomal evolution used

in GA method and uses a direct best fit search instead. The

EA algorithms used here target and select entities in the

supply chain to evolve the best feasible manufacturing

process flow. Moving CODP towards right on a process

line improves process standardization and execution in the

left side of the line. Moving CODP towards the left helps

supports flexibility. Hence modularity-based opportunities

are deployed to mature the processes and improve stan-

dardization while leaving some optimum space based on

the flexibility required to break the complexity barrier.

The modular steps in manufacturing process flow could

be internal or external. When the internal manufacturing

processes are mature, the process may be designed exclu-

sively with in-house processing steps. However, when a

firm that leads in a certain manufacturing domain is weaker

in certain additional processes required to fulfil newer and

complex customer needs, external supplier(s) could be

involved. This is a general phenomenon observed during

technology advancements and at the arrival of next level of

superior product variants. Outsourcing may be allowed

intentionally too at times, to reduce the management

overhead or cost, even while internal processes exist.

Supplier selection is the process of matching a supplier

based on performance attributes such as cost, quality,

delivery, response, and other services [11].

The next section includes a detailed literature review on

CODP and tries to connect EA and SMC. This is followed

by problem description and methodology section where we

explain the problem statement, modeling assumptions and

MATLAB coding for FF- and PSO-based CODP opti-

mization. In the Results and discussion section, we explain

the results of optimization achieved through FF and PSO

algorithms performed through separate treatments. We

studied some learning models and tried to connect the

impact of the same to the optimization. We then explain a

few conceptual models for modularity search and com-

plexity reduction, which are smart enabled. The models are

based on IoT and cloud-based systems for helping in

combining internal and external steps for creation of

manufacturing process flows. Lastly, we provide conclu-

sion and directions for future research.

11126 Neural Computing and Applications (2021) 33:11125–11155

123

2 Literature review

In this section, we summarize the previous research com-

bining CODP, Smart Industry 4.0 and EA-based opti-

mization, respectively. We try to connect these three

concepts to benefit manufacturing process flow design for

SMC. We follow a chronological order while explaining

the past research for each of the three areas starting with

CODP, followed by EA, and finally Smart manufacturing

related to this paper.

Active research on push pull production systems began

in the 1980s; however, the term CODP was first seen in the

research published by Giesberts and Van der Tang [12].

They provided a formal definition on CODP and explained

it as the position between the forecast-driven and customer

order-driven portion of manufacturing process chain.

Rudberg and Wikner [13] dealt deeper into CODP research

by exploring various combinations of engineering and

production strategies to provide typologies of CODP for

different mass customization (MC) environments. Ethiraj

and Levinthal [14] introduced modularity concepts for

innovation in managing complex systems, through simu-

lation. Wikner and Rudberg [15] explained engineering and

production perspective of CODP in a two-dimensional

approach.

Wikner and Wong [16] explored different entities in

postponement strategy that map with cases encountered in

real-world manufacturing problems. Xu [17] analyzed

positioning of CODP from the perspectives of market,

product, and production. Hua et al. [18] proposed a

MATLAB-based CODP positioning method with the lead

time constraint and capacity constraint, with cost mini-

mization objective. Luo et al. [19] showed optimal CODP

positioning by considering product functionality, lead time

and cost through information entropy and ideal point

determination.

Liu et al. [20] discussed about positioning of CODP in

leagile supply chain using polychromatic set theory. Ge

et al. [21] explained CODP positioning in optimizing the

overall cost of supply chain. Ge et al. [21] created separate

MATLAB-based models to minimize cost in supply chain

while optimizing the CODP using case and simulation data,

with constrained lead time, value, productivity and

logistics.

Brun and Zorzini [22] evaluated customization strate-

gies through modularity by analyzing complexity of pro-

cess and product. They coined a term called information

decoupling point. Daaboul et al. [23] suggested value

network modeling for positioning CODP-based on its

overall generated value on a given MC manufacturing

system. Olhager [24] explained CODP’s role in supply

chain management for upstream and downstream portions

to suit supply chain requirements. DaCunha et al. [25]

provided methodology for matching modules developed by

suppliers using evaluation criteria to select appropriate fit

into the product design cycle. McIntosh et al. [26] proposed

that late customization and product differentiation are

advantageous in achieving MC with emphasized individ-

uality. They studied the applicability and standardization of

this concept from food industry perspective.

Buffington [27] introduced a concept of generative mass

customization in mass markets which supports the MC

paradigm because of many options available in the creative

choice space. Qin [28] proposed for moving some portions

of customization from in-house assembly line to distribu-

tion center managed by third party. Xu and Liang [29]

analyzed positioning of CODP from the perspectives of

market, product, resource and production using extension

superiority evaluation.

Bask et al. [30] provided an outline for modularity and

customization by varying modularity for customer service

functions. Elmaraghy et al. [31] expressed complexity of

MC in terms of the product and manufacturing process

needs and recommended for flexibility through innovative

collaboration. Jeong [32] built a model to find optimum

position for CODP while minimizing cost of deviating

from inventory and throughput targets. Buffington [27]

explained generative customization by combination of

basic designs provided by suppliers which can be combined

into customized product through the modularity concept.

Lin et al. [33] discussed about hybrid push–pull pro-

duction system in MC using planning model of the push–

pull production with a single-CODP mass customization

system and extended it to model is extended to the multi-

CODP mass customization production system. Medini

et al. [34] explained CODP positioning for different cus-

tomization levels by explaining key enablers to sustain

production depending on planned objectives. Kim and Kim

[35] explained positioning of CODP in a semiconductor

supply chain under demand and lead time uncertainty.

Mehrsai et al. [36] explained the use of modularity in

structure, cloud computing, and make-to-upgrade cus-

tomization concept to integrate supply sources. Agrawal

et al. [37] proposed a hybrid model to make use of mod-

ularity that helps in mass customization while also reduc-

ing the negative effects of lost sales due to stoppage of

using custom designs.

Sjøbakk et al. [38] explained different production situ-

ations for CODP in decision making for automation robot

purchase. Daaboul and Da Cunha [8] proposed to split

product attributes into standardized and customizable por-

tions. They studied product differentiation, value and

CODP.

Wikner [39] explained decoupling zone to improve

continuity in changing decoupling points triggered due to

Neural Computing and Applications (2021) 33:11125–11155 11127

123

mixed ingredients and assorted property requirements of

end products. Wikner [40] explained eight supply chain

strategies in which CODP was explained as a postpone-

ment strategy in conjunction with customization and out-

sourcing but didn’t explain any implementation mechanism

for the same.

Ngniatedema et al. [41] explained a delayed product

differentiation model for raw material supply is matched

with uncertain demand where supplier lead time is a con-

straint. Ridwan et al. [42] explained a CODP positioning-

based simulation for performance improvement in mass

customization for make to order furniture making com-

pany. Keddis et al. [43] explained that decoupling can be

done on the different types of workflows.

Shahin et al. [44] explained a data envelopment analy-

sis-based method to find CODP position for a lean cum

agile supply chain. They mentioned that decoupling point

position and lean-to agile distance can determine the

selection between lean versus agile strategy. Yao and Xu

[45] studied making of dynamic decisions for mass cus-

tomization and performed sensitivity analysis with CODP

as one of the important factors.

Cannas et al. [46] explored decoupling configurations

for speculative machine manufacturing in engineer to order

environment using four categories, namely special, custom,

standard-custom and modular.

Tookanlou and Wong [47] explained vertical product

differentiation enabled customization with lead time versus

customization as conflicting objectives.

Figure 1 illustrates the evolution of CODP over the

years through past 4 decades from its inception to the

current state of mass customization. There is no present

research about adding smartness into CODP, though we are

into the era of Industry 4.0. We intend to fill that gap

through this research paper.

We propose to exploit CODP at the horizontal as well as

vertical product differentiation levels to enable growth of

firms which are agile in nature by using the EA technique

with leverage of internal as well as external expertise (in-

house cum outsource supported manufacturing chain) using

smart manufacturing, in process flow design as explained

above. CODP studies using smart driven and EA-driven

approaches are limited as shown below with very few

papers that were found.

Zheng et al. [48] proposed a fruit fly algorithm-based

optimization for semiconductor final test scheduling. They

identified a few parameters and tested them using Taguchi-

based design of experiments. Zheng and Wang [49] studied

a two-stage adaptive fruit fly optimization algorithm for

unrelated parallel machine scheduling problem with addi-

tional resource constraints. They made use of the initial

results as an initial swarm center for subsequent evolution

and made use of ANOVA for validation. Yusof and Deris

[50] created machine constraint-based GAs for machine

requirement of semiconductor assembly industry while

minimizing cost and risk. Pan [51] provided several sim-

plified models of fruit fly optimization problem which are

easy to adopt into individual research areas. Ma and Zhang

[52] provided genetic algorithm (GA)-based solution for

computer aided process planning (CAPP).

Saldivar et al. [53] used clustering in genetic algorithm

by identifying patterns in various areas of the supply chain

to make smart customization affordable for industry 4.0.

Suginouchi et al. [7] mentioned CPLEX simulation-based

method for solving scheduling issues using combinatorial

Fig. 1 Evolution of CODP research into Smart Mass Customization

11128 Neural Computing and Applications (2021) 33:11125–11155

123

auction concept, for smart factories which are linked

through the industrial internet consortia.

Zhang et al. [5] proposed big data-driven smart cus-

tomization model which collects data from various sources

to take decision on product customization. Zhang et al. [54]

showed a cloud-based manufacturing paradigm with

ubiquitous robots for product customization through 3D

printing but is not about process step selection though it is a

related topic.

Wan et al. [55] demonstrated a cognitive learning-driven

model through IoT and big data which helps to design

industrial equipment intelligently. This model was pro-

posed to aid designers in decision making and analyzing

processes while performing equipment designs.

Table 1 chronologically summarizes the converging

literature which tries to link the CODP, EA and Industry

4.0 for smart mass customization. CODP and EA started

off as separate research areas at separate points in time but

eventually get connected in the current decade through

Industry 4.0, which is a relatively newer research area.

3 Problem description and methodology

For developing and manufacturing new products, Industry

4.0 requires autonomous manufacturing process flow

design. Planning this process flow design is essential for

smart mass customization with true fulfillment of customer

needs autonomously. Industry 4.0 should be agile enough

to identify and create new opportunities. There is a con-

stant evolution of new opportunities as processes and

products mature. MC generally is defined to have limited

boundary of options but as part of smart mass customiza-

tion, the independent achievements in diverse areas can be

brought together by making use of modularity, to expand

the scope and develop new applications. Brun and Zorzini

[22] mentioned about modularity which can be helped to

interface independent systems.

As part of this constant evolution, yesterday’s advance

features (which were reserved to only custom or elite

variants) are part of today’s standard features in any

product. Example is infotainment which was once part of

the full end versions of cars but nowadays is getting into

low end versions too. Similarly, today’s advancements will

become part of standard equipment in future, while future

technology adds new advancements into elite or custom

products of tomorrow. This leads to CODP’s evolution and

its shift from left side (upstream side) to rightwards (to

downstream side). With new features gradually becoming

part of standard equipment, the CODP or point of differ-

entiation shifts rightwards as the earlier product differen-

tiating (or product customization) steps now become part

of the standard process flow and shift to the left side of the

CODP.

Hence it is important to correctly position the CODP in

autonomous smart mass customization. This will help in

better material planning, layout modification and cost

control. There are numerous methods used to determine

and optimize CODP as explained in our literature review.

We have made use of two types of genetic algorithms,

namely fruit fly optimization and particle swarm opti-

mization. The primary reseason for selecting these methods

is their direct applicability in solution search across a large

solution space with flexibility to choose from available

modular options that can help the best fit approach. This

helps in lowering time to market and easier customization

that opens up diverse opportunities for mass customization

smartly. We made use of the FF method for easier expla-

nation of the concept and then made use of the same in

PSO method which can help in more complex problem

solving. These methods are selected preferably over other

methods due to their higher efficiency, better granularity of

search and relative simplicity.

In this section, we begin with defining of the problem

which describes the background of problem creation and

shows different problem designs. We select a specific

problem type from it which is explained in the problem

statement. Further, we explain and demonstrate the FF and

PSO methods including detailed assumptions, explanations

and simulated values to solve it. MATLAB Online R2020b

was used to run the codes on a computer system with Intel�

CoreTM i5-6300 U CPU having dual-core processor with

clock speed of 2.4 GHz and 16 GB of RAM. We describe

the solution with the deployed MATLAB codes and results.

We first explain the FF algorithm-based optimization to

locate CODP position, followed by the same using PSO

algorithm and then compare the results.

3.1 Defining the problem

Product lines with common process flow may have one

CODP but diversified businesses with multiple vertical and

horizontal product differentiations may require maintaining

multiple CODPs. The latter is shown in Fig. 2. In this

paper, we consider the simplistic portion of the same which

is unidimensional and single product line based. This is

highlighted with the dotted portion in Fig. 2. Process flow

design for this portion in SMC would need sourcing of best

fit modules that can be assembled together for getting final

product. For this product line, one or more major specifi-

cations of the module can be decided in terms of size,

geometry, material, color, reliability, fit, functionality, etc.,

that can be used as matching criteria in real-world for doing

the search of the best fit. We make use of two algorithms

here to solve the problem, namely FF and PSO. The reason

Neural Computing and Applications (2021) 33:11125–11155 11129

123

Table 1 Chronology of converging literature

Research

area

Year Authors Focus area

Industry

4.0

2016 Hajrizi Digitalization, big data, complex models, simulation, online control, multicriteria optimization,

knowledge and capacity

2016 Lehmhus Cloud-based design and sensor integrated intelligence, with IoT and additive manufacturing

2017 Suginouchi, Kokuryo

and Kaihara

Co-creative manufacturing system, SMC, smart factory linking, industrial internet consortium,

autonomous negotiation, CPLEX simulation, scheduling, combinatorial auction concept

2018 Mittal et al. IoT, cloud, AI, big data, ML, digitization, AM, analytics

2019 Frank, Dalenogare and

Ayala

Smart manufacturing, smart products, smart supply chain and smart working, IoT, cloud

services, big data, analytics, digitalization

2019 Alcácer and Machado IoT, cloud services, big data, analytics, digitalization

2019a Zhang et al. Cloud-based manufacturing, ubiquitous robots, 3D printing

2019b Zhang et al. Smart mass customization (SMC), big data

CODP 1992 Giesberts and Van der

Tang

Position between the forecast-driven and customer order-driven portion of manufacturing

process chain

2004 Rudberg and Wikner Combinations of engineering and production strategies, typologies of CODP for different mass

customization (MC) environments

2004 Ethiraj and Levinthal Modularity concepts for innovation in managing complex systems, simulation

2005 Wikner and Rudberg Engineering and production perspectives of CODP, two-dimensional approach

2007 Wikner and Wong Mapped entities of postponement strategy to real-world manufacturing problems

2007 Xu Positioning of CODP from the perspectives of market, product, and production

2007 Hua, Li and Lun MATLAB-based CODP positioning with lead time constraint, capacity constraint and cost

minimization objective

2008 Luo, Han and Zhou Optimal CODP positioning by considering product functionality, lead time and cost through

information entropy and ideal point

2009 Wang, Chang and Wang Matching suppliers based on performance attributes like cost, quality, delivery, response, and

other services

2009 Liu et al. Positioning of CODP in leagile supply chain using polychromatic set theory

2009 Ge et al. CODP positioning to optimizing the overall cost of supply chain using MATLAB simulation,

constraint in lead time, value, productivity and logistics

2009 Brun and Zorzini Evaluation of customization strategies through modularity by analyzing complexity of process

and product. Coined a term called information decoupling point

2010 Daaboul, Laroche and

Bernard

Value network modeling for positioning CODP-based on its overall generated value on a given

MC manufacturing system

2010 Olhager CODP role in supply chain management for upstream and downstream portions to suit supply

chain requirements

2010 DaCunha, Agard and

Kusiak

Matching modules developed by suppliers using evaluation criteria to select appropriate fit into

the product design cycle

2010 McIntosh et al. Late customization, product differentiation, individuality

2011 Buffington Generative mass customization in mass markets, basic designs from suppliers combined into

customized product through the modularity concept

2011 Qin Moving some portions of customization from in-house assembly line to distribution center

managed by third party

2011 Bask et al. Outlined modularity and customization by varying modularity for customer service functions.

2011 Xu and Liang Positioning of CODP from the perspectives of market, product, resource and production using

extension superiority evaluation

2011 Jeong Model to find optimum position for CODP while minimizing cost of deviating from inventory

and throughput targets

2012 Fogliatto, Da Silveira

and Borenstein

Postponement of customization, Modularity in upstream, Customer input in downstream

2012 Lin, Shi, and Wang Hybrid push-pull production system for single-CODP mass customization system and multi-

CODP mass customization production system

2012 Medini, Da Cunha and

Bernard

CODP positioning for different customization levels by with key enablers to sustain production

for planned objectives

11130 Neural Computing and Applications (2021) 33:11125–11155

123

for choosing FF and PSO here is their relatively simpler

possibilities in application into generic problem solving

with fast computing and near optimal results that can be

generated on commonly available computing platform as

explained above. FF technique is used to address simpler

modularity search problems, while the PSO technique is

used for addressing slightly more complex applications

which involve multiple search criteria for matching mod-

ularity needs. Although we begin with unidimensional

portion in a two-dimensional search space for FF algo-

rithm, in the later stage (in Sect. 4) we use PSO algorithm

in a ten-dimensional search space with the aim to target

multiple characteristics and to standardize or unify multiple

CODPs to a possible extent. The models developed and

shown here are generic and for demonstration purposes.

These can be deployed suitably in the real-world scenarios

based on actual product and process flow design needs.

Table 1 (continued)

Research

area

Year Authors Focus area

2012 Kim and Kim Positioning of CODP in a semiconductor supply chain under demand and lead time uncertainty

2013 Mehrsai, Karimi and

Thoben

Modularity in structure, cloud computing, and make-to-upgrade customization concept to

integrate supply sources

2013 Agrawal et al. Hybrid model to make use of modularity in mass customization with reducing effects of lost

sales

2014 Daaboul and Da Cunha Product manufacturing flow, differentiate basic and additional steps to derive new MC variants

2014 Sjøbakk, Thomassen and

Alfnes

CODP decision making for automation robot purchase

2014 Daaboul and Da Cunha Split product attributes into standardized and customizable portions, product differentiation,

value and CODP

2014a Wikner Decoupling zone to improve continuity in changing decoupling points for mixed ingredients and

assorted requirements

2014b Wikner Eight supply chain strategies with CODP postponement in conjunction with customization and

outsourcing

2014 Ngniatedema, Fono,

Mbondo

Delayed product differentiation model, uncertain demand, constraint supplier lead time

2015 Ridwan, Purnomo and

Sufa

CODP positioning simulation for performance improvement in mass customization in make to

order production

2015 Keddis et al. Decoupling with different types of workflows

2016 Shahin et al. Data envelopment analysis to find CODP position in lean cum agile supply chain

2018 Yao and Xu Dynamic decisions for mass customization and performed sensitivity analysis with CODP factor

2019 Cannas et al. Decoupling configurations for speculative machine manufacturing in engineer to order

environment

2019 Tookanlou and Wong Vertical product differentiation enabled customization with lead time versus customization as

conflicting objectives

EA 2005 McCall Evolution-based empirical search optimization techniques

2009 Yusof and Deris Machine constraint-based GAs for machine requirement of semiconductor assembly industry

while minimizing cost and risk

2012 Ma and Zhang Genetic algorithm (GA)-based solution for computer aided process planning (CAPP)

2014 Zheng, Wang and Wang Fruit fly algorithm-based optimization for semiconductor final test scheduling, Taguchi-based

design of experiments

2014 Pan Simplified models of adoptable fruit fly optimization problem

2016 Zheng and Wang Two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling

problem with resource constraints, ANOVA

2016 Saldivar et al. Clustering in GA, Identifications of patterns in areas of the supply chain, affordable Smart

Customization for industry 4.0

Neural Computing and Applications (2021) 33:11125–11155 11131

123

3.2 Problem statement

The problem statement is to locate the most suitable (best

fit) CODP position in the unidimensional manufacturing

process flow design. The objective is to optimize the results

with highest possible standardization in processes without

compromising the customization capability of the manu-

facturing chain. Higher standardization is meant to reduce

complexity and improve efficiency of manufacturing chain.

This is suggested to be achieved without reducing the

options for fulfillment of customer choices.

The objective is to break the complexity barrier in

manufacturing by an increase in modularity.

Complexity reduction can help in simplified process

flow, which in turn improves machine efficiency [56].

James and Mondal [56] ranked complexity as the 2nd

highest influencing parameter that reduces machine effi-

ciency in mass customization.

The modularity is maximized here by fruit fly’s smell-

based search algorithm. Higher smell concentration due to

existence of food drives the foraging behavior of droso-

phila (fruit fly), per Pan [51]. In this paper, smell concen-

tration is assumed analogous to availability of next

modular manufacturing step which could be in-house or

externally sourced while designing a manufacturing pro-

cess chain. The CODP position is determined with the best

fit point which balances between the modularity and cus-

tomization. This concept is applicable to the overall supply

chain design too in addition to manufacturing process flow

design.

3.3 Fruit fly model assumptions

We assumed manufacturing process chain with an

upstream (left-hand side) versus downstream (right-hand

side) with CODP position (represented by CODP(i)), which

needs to be located somewhere in between. This position of

CODP is intended to be optimized by maximizing modu-

larity and minimizing complexity, while retaining the

customization capability.

A longer upstream section compared to downstream

section would mean most of the chain has a common

process flow. This requires greater modularity and high

standardization. It would mean high manufacturing effi-

ciency as majority of the processes would be generic.

However, this would be with a lesser scope of customiza-

tion in the downstream as most of the product’s processing

is completed in the generic upstream section itself. Con-

ventional mass customization (MC) is characterized by a

bounded space (limited space) and is analogous to this

scenario.

In the opposite scenario, a shorter upstream portion

would limit the standardization, while the longer down-

stream would have more options and space for cus-

tomization. In other words, more options of flexibility

would exist within the manufacturing chain. But it may

come with a higher risk of investment and need for added

custom sub-processes. This can make it less efficient from

manufacturing perspective as compared to the scenario

explained in the previous paragraph. This issue can be

helped by SMC because outsourcing or finding alternate

options internally through smart enabled planning can

mitigate such risks.

Fig. 2 Multiple CODPs due to

vertical and horizontal variant

portfolios

11132 Neural Computing and Applications (2021) 33:11125–11155

123

The modularity parameter ‘Modularity(i)’ considered

here is analogous to smell parameter which influences fruit

fly’s foraging behavior. Like the fruit fly’s movement

towards source of greater smell, the algorithm searches

better source of finding a best fit module for next manu-

facturing step in the chain. The goal here is to lessen the

effort in designing and executing the manufacturing pro-

cess steps by smart enabled algorithm through IoT. Wire-

less fidelity (WIFI) and IoT enabled inputs to the Internet

can help in selecting the best fit modular steps until the

optimum CODP position is achieved. In-house sources

(internal) or well-established vendors (external) could be

chosen as the best fit selection depending on the manu-

facturing step.

The distance parameter ‘D(i)’ represents the distance

from initialized arbitrary position to the next step which is

slightly better in terms of modularity. The iteration is

repeated until the best fit modular step is located (internally

or externally). We however, in this paper, don’t identify

internal or external in the coding. We recommend using it

Fig. 3 Fruit fly algorithm-based modularity maximization

Neural Computing and Applications (2021) 33:11125–11155 11133

123

in application so that the optimization achieved is at a

global optimum. It could be a modular production part

which is directly outsourced from a supplier, or sourced

internally through internal search within the organization’s

own factory(s). Separate qualification processes may be

needed for matching the specifications (like materials,

dimensions, properties, etc.) to select such product part or

process modules in the real-world. We shall explain the

same in later sections. Smell concentration increases with

inversely with distance traveled nearer to the food source.

Similarly, in this algorithm, modularity increases with

closeness to the new modular part or process that is

sourced.

Distance ¼ p
X ið Þ2þY ið Þ2

� �
ð1Þ

Extended downstream means more new processes on top of

existing standard processes so that more customization

features could be added. Higher customization can lead to

high complexity. We manage it with the complexity

parameter. Complexity parameter termed simply as ‘com-

plexity’ here is initially set at an absolute value or number.

In our simulation, we assumed complexity = 5. The

assigned number for complexity is based on the difficulty

level which is driven by higher number of customized

product features or the technological barrier which

increases the effort of manufacturing execution.

CODP is initialized at inverse of initial distance

parameter-based position.

CODP ið Þ ¼ 1=D ið Þ ð2Þ

With each increment of the distance flown by the fruit fly

principle, the CODP shifts to the right side of the process

chain. The CODP keeps shifting till the manufacturing

process and CODP position are optimized. The loop in the

MATLAB program helps in finding optima within the local

population. Local population size is defined as ‘Numpop’

was set as 15. The maximum iterations allowed is repre-

sented with ‘Itmax’, which were set as 1000. At 100, the

final optimum wasn’t achieved, hence we set it at 1000.

The ‘Itmax’ allows the algorithm to search in other popu-

lations also, to arrive at global optimum.

Fitness function which is used here is,

Modularity ið Þ ¼ complexity� CODP ið Þ ð3Þ

Table 2 Parameters for FF runs

EA category Problem type Parameters used Iterations Search space Figures Matlab code

Fruit fly

optimization

Modularity maximization Complexity = nd

Distance

\ 10,000 Two

dimensions

3 Appendix 1

CODP optimization and

modularity maximization

Complexity = 5 \ 1000 Two

dimensions

23 Appendix 2

CODP optimization Complexity = 1

Complexity = 10

\ 1000 Appendix 2 refer note and put

complexity = 1, 10

*nd not defined

Fig. 4 Modularity maximization

Fig. 5 Fruit fly coordinates

11134 Neural Computing and Applications (2021) 33:11125–11155

123

The assumption used is the complexity reduces and mod-

ularity achieves maximum possible value. This happens

while CODP shifts rightwards on the process chain,

depending on the modular processes sourced. Increase in

modularity causes the CODP to shift towards right to

improve standardization.

The model and parameter assumptions for different

scenarios of FF runs performed are summarized in Table 2.

The flowcharts and descriptions of the same are explained

in next section.

Fig. 6 Fruit fly algorithm-based CODP optimization

Neural Computing and Applications (2021) 33:11125–11155 11135

123

3.4 Fruit fly program code and experimental run

In this section, we show the flowcharts used for modularity

maximization and CODP optimization based on fruit fly

algorithm. The problem definition, parameters and model

assumptions have been explained in above section. The

MATLAB codes for this were prepared by modifying the

framework from Pan [51] and are shown in Appendices 1

and 2 in Supplementary Information for modularity maxi-

mization and CODP optimization, respectively. Initially,

we performed modularity maximization as explained in

Fig. 3. There was no reference complexity value set here,

and the evolution of modularity is based on number of

iterations followed. Figures 4 and 5 illustrate the results of

the same.

Appendix 2 in Supplementary Information shows the

program code for CODP optimization. The MATLAB code

shown in Appendix 2 in Supplementary Information is for

Fig. 7 Modularity maximization for treatment 1

Fig. 8 CODP optimum for treatment 1

Fig. 9 Fruit fly route for treatment 1

Fig. 10 CODP optimum for treatment 3

Fig. 11 Fruit fly route for treatment 3

11136 Neural Computing and Applications (2021) 33:11125–11155

123

treatment 1 which was done for complexity equal to 5.

Graphs were generated based on the same. Figure 6 shows

the flowchart of this algorithm.

Figures 7, 8 and 9 show results for treatment 1 as shown

below. The approximate optimum is achieved between

800th and 900th iteration but value improved further, as we

ran the code for 1000 iterations.

Since complexity set at 5, modularity tries to reach 5

also towards end of process maturity which means CODP

shifted towards right-hand side and left-hand side distance

(upstream distance) is maximized, while right-hand side

distance (downstream distance) is minimum. This denotes

high standardization and efficient customization, as the

process matures towards end of the optimization cycle. In

the real manufacturing world, once the complexity barrier

is broken, the processes mature overtime. This helps for

targeting next level of complexity and to produce the next

generation of products by production companies. This

Fig. 12 PSO algorithm with modularity maximization

Neural Computing and Applications (2021) 33:11125–11155 11137

123

leads to evolution of better featured products over a given

span of time.

We performed treatment 2 with this algorithm by

assuming complexity equal to 1. The results of that looked

almost the same (similar to Figs. 8, 9). Next, we performed

treatment 3 with this algorithm by assuming complexity

equal to 10. The results looked similar like treatments 1

and 2. Here complexity is 10, so modularity tries to catch

up with it based on smell concentration which is closeness

to CODP or similarity or fitness. In the end, it maximized

the modularity to a value closer to 10 (= 9.999) while

optimizing CODP to 0.001. This is shown in Figs. 10 and

11.

Table 3 Parameters for PSO runs

EA category Problem type Parameters used Iterations Search space Figures Matlab code

Particle swarm

optimization

Modularity maximization Complexity = nd

wdamp = 0.98;

a = 0.1; b = 0.2

40 Ten

dimensions

12 Appendix 3

Complexity = nd

wdamp = 0.97;

a = 0.2; b = 0.5

40

CODP optimization and modularity

maximization

Complexity = 100,000

wdamp = 0.98;

a = 0.3; b = 0.6;

\ 70 Ten

dimensions

15 Appendix 4

CODP and modularity optimum with learning

function log(x2)
Complexity = 100,000

wdamp = 0.98;

a = 0.6; b = 0.8;

\ 100 Ten

dimensions

19, 23 Appendices

5, 6

CODP and modularity optimum with learning

function = 1þ log 2 xð Þð Þ
Complexity = 100,000

wdamp = 0.98;

a = 0.6; b = 0.8;

\ 100 Ten

dimensions

19, 23 Appendices

5, 6

CODP and modularity optimum with Wright’s

learning function = 10,000 ? log2(x)
Complexity = 100,000

wdamp = 0.98;

a = 0.6; b = 0.8

100 Ten

dimensions

23 Appendix 7

CODP and modularity optimum with Wright’s

learning function = 2900þ 50 � log2 xð Þ
Complexity = 100,000

wdamp = 0.98;

a = 0.4; b = 0.6

\ 50 Ten

dimensions

23 Appendix 8

*nd not defined

Fig. 13 Modularity optimum for PSO model—treatment 1 Fig. 14 Modularity optimum for PSO model—treatment 2

11138 Neural Computing and Applications (2021) 33:11125–11155

123

3.5 PSO model assumptions

Particle swarm optimization-based EA run is explained in

this section with the objective to optimize CODP by

maximizing modularity. This is done with the assumption

that higher modularity can break complexity barrier of

manufacturing for evolving SMC systems. We initially

present treatments 1 and 2 just to maximize modularity

without optimization of CODP, to focus on modularity.

Later, in treatment 3 we illustrate and explain CODP

optimization through a modified MATLAB code. In

treatments 1 and 2, the modularity isn’t limited with any

upper complexity bound unlike the FF model. The benefit

of this model is that modularity keeps evolving with higher

Fig. 15 PSO algorithm with modularity maximization and CODP positioning

Neural Computing and Applications (2021) 33:11125–11155 11139

123

values of maximized modularity, to evolve into higher

levels of evolution. This is explained later with its real-

world applications. FF algorithm was used by us to explain

the complexity simplified in one dimension, but in PSO the

coding has been performed for multi-dimensional match of

product and process modules. In treatment 3, we placed an

upper bound for complexity and optimized CODP while

maximizing modularity. In this code, we find that higher

levels and values of complexity can be simulated to opti-

mize the CODP which could be closer to real-world

manufacturing problems like semiconductor and

automobiles.

In the PSO model, we define a ten-dimensional search

space. This space is created to represent the set of all

solutions offered globally which includes internal and

outsourcing process options, while designing the manu-

facturing chain. This search space created for each

dimension can be used to represent various parameters like

fit in various axes, functions, features, sizes, aesthetics,

material compositions, etc., while selecting a module that

fits into a final product.

The modularity function operates here with a modularity

value by summing the different attributes in each dimen-

sion. Coding was done by us for the PSO algorithm with

reference from Heris [57]. The particle is initialized with

empty position, zero velocity, empty modularity, a personal

best, and a social best. Particle’s position is filled by using

uniform random function. The velocity vector and the

comparative drive to reach best modular position between

oneself and the swarm members help the PSO algorithm to

achieve the optimum position which represents the global

best modularity.

A damping factor ‘wdamp’ of 0.98 is used by us. An

inertia coefficient ‘w’ = 1 is used. Self-acceleration coef-

ficient ‘a’ is set at 0.1. Global acceleration coefficient ‘b’ is

set at 0.2. We set 25 iterations in internal program loop

(swarm size represented by the variable ‘sizePop’ here) and

45 overall iterations (represented the variable by ‘Itmax’

here). Well within 40 overall iterations, the PSO program

maximized the modularity function. The code used is

mentioned below.

Various scenarios of PSO runs are explained in the next

section. The model and parameter assumptions used for

performing those runs are summarized in Table 3.

3.6 PSO algorithm code and experimental run

For PSO, we make use of a different set of assumptions and

treatments compared to FF run, Code used for treatment 1,

2 and 3 here are explained below. It is to be noted that the

treatments 1, 2 and 3 mentioned for PSO runs here are

entirely different and not to be confused with the experi-

ments in FF runs.

A function tab is used to define modularity function

called modularity(x), which is a summation function of all

attributes pertaining to modularity, which needs to be

searched against the multidimensional search space.

Modularity function is defined here using z = modular-

ity(x), where z = sum(x) and is saved as a function in

MATLAB. Main code is written in the second tab as shown

below. The attributes of the modules in the search space are

arranged in a 1 9 10 matrix with values ranging from 1 to

10 represented by ‘VaMin’ and ‘VaMax,’ respectively. The

remaining assumptions and variables are already explained

in the previous section.

Figure 12 shows the algorithm for modularity maxi-

mization. Appendix 3 in Supplementary Information shows

the MATLAB code for this.

In this run, the modularity got maximized at a score of

197.74. The graph which shows maximization of best

Fig. 16 Modularity optimum for PSO model—treatment 3

Fig. 17 CODP optimum for PSO model—treatment 3

11140 Neural Computing and Applications (2021) 33:11125–11155

123

modularity variable is plotted against the iterations in

Fig. 13.

Within about 100 iterations (Itmax value = 100), the

optimum solution was arrived for the modularity function.

The values achieved for the modularity value differed in

different treatments and runs. Hence, a sensitivity analysis

was performed to check the influence of parameters on the

results of the maximized (best modularity) parameter. So,

further treatments were performed with varied values of the

‘a’ and ‘b’ values. An observation made was that the social

(global) acceleration coefficient has higher influence in

magnifying the modularity maxima than self-acceleration

coefficient. It was found that upper bound of the result can

be limited mainly based on the VaMin to VaMax range

selected, acceleration coefficient values selected and with

the self-acceleration coefficient to a certain extent.

As explained in the previous paragraph, with changes in

parameter inputs, we were able to maximize value of

modularity function. Figure 14 shows modularity function

maximized at close near to value between 900 and 1000.

Figure 16 shows the modularity maximized at near to a

value of 10,000 in next paragraphs.

In treatment 3, we slightly modified the code and added an

upper bound for complexity to optimize the CODP. We find

that this model is applicable for highly complex products and

processes because this model has the flexibility to accom-

modate multidimensional attributes in the module search for

SMC. Complexity value used here is 100,000.

Table 4 Summary of run time and results for FF runs

EA category Problem type Figure numbers Average

run time

Output Results Matlab code

Fruit fly

optimization

Modularity

maximization

3, 4, 5 539.86 s Max modularity = 445 Modularity maximized

unconstrained,

increases depending

on number of

iterations

Appendix 1

CODP

optimization

and

Modularity

maximization

6, 7, 8, 9 5.598 s CODP = 0.01@complexity

of 5

Modularity nears

complexity, CODP

optimized with

reference to the set

complexity value

Appendix 2

CODP

optimization

10, 11 0.177 s CODP = 0.001@complexity

of 1,

CODP = 0.01@complexity

of 10

CODP optimized with

reference to the set

complexity value

Appendix 2 refer

note and put

complexity = 1,

10

Fig. 18 Evolution of CODP by

vertical and horizontal

integration

Neural Computing and Applications (2021) 33:11125–11155 11141

123

The modified main code (second tab) for CODP opti-

mization (treatment 3) is shown below. The first tab is the

same as used in treatments 1 and 2.

Figure 15 shows the algorithm for modularity maxi-

mization cum CODP optimization. Appendix 4 in Sup-

plementary Information shows the MATLAB code for this.

The results are plotted in Figs. 16 and 17.

4 Results and discussion

As explained in Sect. 3, we successfully modeled the

problem. We then coded the two EA methods using

MATLAB to simulate and generate results.

4.1 Results of FF optimization run

The FF algorithm was focused on fruit fly foraging

behavior to maximize modularity by flying longer dis-

tances to source the best suited module for a manufacturing

chain design. The module was assumed to be a process or a

part of the MC product. Figure 4 shows the results of

modularity maximization for the coordinates achieved by

the FF run shown in Fig. 5. In this run, we did 10,000

iterations for higher modularity achievement and the run

time was 539.86 s with maximum modularity of 445.

Reduced iteration of 1000 produced smaller modularity

value of 43.82 in run time of 5.19 s.

The complexity value was set to aid as a reference for

the modularity improvements to be made (refer to Fig. 7

for modularity maximization) with each iteration, to arrive

at the CODP. The result of CODP optimization through

modularity maximization is plotted in Fig. 8 and the fruit

fly route plotted in Fig. 9. We did sensitivity analysis with

various changes in iterations and complexity values, but the

results were found similar as shown in Figs. 10 and 11. The

modularity gets maximized to a value closer to the com-

plexity value which was assumed at the initialization of the

algorithm. We made use of different values like 5 (treat-

ment 1), 1 (treatment 2) and 10 (treatment 3) to set a ref-

erence value for the product cum process complexity.

These values could be appropriately selected to suit the

real-world requirements. The process for deploying this is

summarized in Sects. 3.3 and 3.4.

In treatment 1, CODP got optimized at a modularity

value of 0.01. This needs to be visualized as a manufac-

turing process flow line with a scale defined based on

complexity. With higher modularity achieved after many

iterations, the CODP shifts towards downstream creating a

standardized and mature process. For all the three treat-

ments, the CODP reaches towards [99% of complexity

value. As the position of the FF gets closer to (700, 700) (as

shown in the X–Y axis plot), with about 800 iterations, the

optima got achieved for all the three treatments.

In Treatment 1, (Complexity = 5), CODPbest was at

Max(Modularity) which equaled 4.990.

Xaxis = 699.4717.

Yaxis = 690.9756.

In Treatment 2, (Complexity = 1), CODPbest was at

Max(Modularity) of 0.9990.

In Treatment 3, (Complexity = 10), CODPbest was at

Max(Modularity) of 9.990.

Table 4 shows the average run times and results for the FF

run scenarios explained above and helps to make their

comparisons. It also shows the respective output values

obtained for experimental runs of the parameter inputs

shown in Table 2.

4.2 Results of PSO optimization run

The same concept was then deployed into PSO-based

optimization first by maximizing modularity in the code for

treatments 1 and 2.

In Treatment 1, we had following parameter values

assumed.

wdamp = 0.98; (dampening factor).

a = 0.1; (self-acceleration coefficient).

b = 0.2; (global acceleration coefficient).

Run results of treatment 1 start from best modular-

ity = 68.7232 in iteration 1 to = 197.7457 in iteration 40.

Modularity was maximized to 197.7457 after 40 itera-

tions (refer to Fig. 13).

In Treatment 2, we had following parameter values

assumed.

wdamp = 0.97; (dampening factor).

a = 0.2; (self-acceleration coefficient).

b = 0.5; (global acceleration coefficient).

Modularity was maximized to 912.0715 after 40 itera-

tions (refer to Fig. 14).

Since we didn’t limit the upper bound of the modularity

in treatments 1 and 2, the modularity value showed evo-

lution into higher values depending on the values of self-

acceleration, the social acceleration coefficient in the

swarm, and the variable sizes used in the search space as

explained earlier. This code can be used where modularity

can be higher, for highly complex products. One of the

practical examples of this application is Moore’s law which

stated that the number of transistors in a chip doubles in a

short period of a few years [58]. This illustrates the evo-

lution of modularity as more complex product require-

ments come up in time. Figures 13 and 14 illustrate the

maximization of modularity. Real-world scenarios exist

11142 Neural Computing and Applications (2021) 33:11125–11155

123

where semiconductor companies eventually integrated

more modules and functions into single chip, thus reducing

the overall components in a mother printer circuit board of

any product. Thus, treatments 1 and 2 attempt to simulate

the real-world scenario, which involves evolution of CODP

through absorbing of vertical and horizontal CODP chains

into a single unified CODP, as shown in Fig. 18. The

different nodes are different CODPs, i.e. CODP2,3,4,5…
which get moved inwards and get consolidated into

CODP1 which is the unified CODP.

Hence, Fig. 18 represents evolution of CODP by verti-

cal and horizontal integration due to process maturity over

a span of time and learning cycles. Schuh et al. [59]

Fig. 19 PSO algorithm with fast learning, modularity maximization and CODP positioning

Neural Computing and Applications (2021) 33:11125–11155 11143

123

explained vertical and horizontal integration in new soft-

ware product development.

In Treatment 3, we had following parameter values

assumed.

Complexity = 100,000.

wdamp = 0.98; (dampening factor).

a = 0.3; (self-acceleration coefficient).

b = 0.6; (global acceleration coefficient).

Modularity was maximized to 18,910.699 and CODP

optimized to 81,089.3 after 70 iterations (refer to Figs. 16,

17, respectively).

In treatment 3, we set an upper bound using complexity

value, controlled values of variables VaMin, VaMax, acceler-

ation coefficients a and b. We optimized CODP after maxi-

mizing modularity and reducing the complexity (like in FF

run), as shown in Fig. 16. Sensitivity analysis showed that the

swarm’s global acceleration coefficient has high influence on

maximizing modularity. In real-world sourcing problems,

higher collaboration and search in a larger space could yield

the best fit results is the interpretation for this phenomenon.

Self-acceleration coefficient and range of VaMin and VaMax

variables selected can also impact significantly in improving

modularity. Hence depending on the required complexity of

product or process design, suitable search spaces and search

criteria can be set to achieve optimized results.

4.3 Incorporation of learning functions
into optimization

In this subsection, we factor a learning lag into the mod-

ularity function during PSO run. This is because any

arbitrary module selection through universal source will

involve learning and qualifications. Complexity of a step

level advancement in technology is high or beyond reach

due to knowledge barrier, time and cost. So, complexity

barrier can also be linked to the cost of learning. However,

since we perform the PSO optimization using quantified

features which are looked up from search matrices of

supplier’s offering, we assume learning as a delay in

picking up and matching some features in achieving

modularity instead of the cost in this iteration.

Learning can act as an important factor in complexity

reduction by lowering the engineering hours needed, to

speed up production. This can reduce the value of

numerator in the complexity expression of Willner et al.

[60], which typically focuses on higher denominator of

pieces produced or demand, for complexity reduction.

However, a lag or delay in learning can slow this process.

We make use of a planned learning function and an actual

learning measurement. The planned learning lag is used as

follows to modify the modularity function. The new

modularity function is defined as

Fig. 20 Modularity maximization (fast learning)

Fig. 21 CODP optimum (fast learning)

Fig. 22 Learning achieved (fast learning)

11144 Neural Computing and Applications (2021) 33:11125–11155

123

z ¼ sum x� log xð Þ^2
� �

ð4Þ

We also add an actual measurement of learning achieved

post-optimization,

Learning ¼ Complexity/ Complexity � BestModularityð Þ
ð5Þ

We name this iteration as treatment 4. We assume a

learning associated delay in achieving modularity, a gap

which means an absolute fit of module isn’t necessarily

possible and syncing up of two different organizations or

types of processes needs a qualification and aligning

fitness.

Following lines are added and the code is modified.

Actuals-based learning is used to modify the inertia

coefficient.

Learning ¼ BestModularity itð Þ= Complexity � BestModularity itð Þð Þ;
ð6Þ

w ¼ w � wdamp � learning; ð7Þ

Figure 19 shows the algorithm for modularity maximiza-

tion with learning lag. The learning function log xð Þ^2 used

here gives fast learning compared to other learning func-

tions which follow in this paper. Appendix 5 in Supple-

mentary Information shows the MATLAB code for this

algorithm.

Results showed that addition of the learning function

doesn’t necessarily slow down the optimization. The higher

value of modularity achieved is dependent on the VaMax

limit and accordingly helps the CODP to shift closer to

upstream of the process flow. Initial learning lag too

doesn’t have any significant effect as eventually the search

evolves and improves modularity.

Table 5 Summary of run time and results for PSO runs

EA category Problem type Figure numbers Average

run time

Output Results Matlab code

Particle

swarm

optimization

Modularity maximization 12, 13 0.413 s Max

modularity = 68.72

Modularity

maximizes

depending on ‘a’

value, ‘b’ value

and variable

sizes defined in

search space

Appendix 3

14 0.395 s Max

modularity = 912.07

CODP optimization and

modularity maximization

15, 16, 17 1.600 s Max

modularity = 18,910.6

CODP = 81,089.3

Modularity nears

complexity,

CODP

optimized with

reference to the

set complexity

value

Appendix 4

CODP and modularity optimum

with learning function log(x2)
19, 20, 21, 22,

23

0.947 s Max

modularity = 37,952.1

CODP = 62,047.1

Actual learning = 0.611

Modularity

maximizes and

CODP

optimizes with

fast learning

Appendices

5, 6

CODP and modularity optimum

with learning

function = 1þ log2 xð Þð Þ

Similar output

as Figs. 19,

20, 21, 22 and

23

0.989 s Max

modularity = 39,266.8

CODP = 60,733.2

Actual learning = 0.646

Modularity

maximizes and

CODP

optimizes with

fast learning

Appendices

5, 6

CODP and modularity optimum

with Wright’s learning

function = 10,000 ? log2(x)

23, 24, 25, 26 1.091 s Max modularity = 0

CODP = 0

Actual learning = 0

Nil optimization

of CODP and

modularity,

Zero learning

Appendix 7

CODP and modularity optimum

with Wright’s learning

function = 2900þ 50 � log2 xð Þ

23, 26, 27, 28 1.735 s Max modularity = 980

CODP = 99,020

Actual learning * 0.1

Optimization of

CODP and

maximization

modularity with

steady learning

progress

Appendix 8

Neural Computing and Applications (2021) 33:11125–11155 11145

123

From iteration 43, Best Modularity = 37,952.1121 and

continues at same optimized value till iteration 100.

Learning (actual learning achieved) = 0.6117.

Sensitivity analysis showed that planned learning

z = sum(x – log(x2)) doesn’t have significant impact on

lowering speed or efficiency of learning. Also, actual

learning varied from 0.056 to 1.0032 didn’t have any sig-

nificant impact. This is because VaMax, a, b, w, wdamp have

higher impact due to the global availability of faster

solutions by the search compared to the slower learning

process.

Lu et al. [61] studied various models for incorporating

learning effect like Anderson and Parker’s model, and Gu

Fig. 23 PSO algorithm with Log Z = p ? q * log Y learning, modularity maximization and CODP positioning

11146 Neural Computing and Applications (2021) 33:11125–11155

123

and Takahashi’s model with respect to buying decisions of

components, learning curves comprehending complexity,

etc. They concluded that Wright’s function (published in

1936) for learning continues to be excellent for forecasting

the processes of future.

The function is

Log Z ¼ pþ q � log Y ð8Þ

We adopted this relationship in our Eq. (8) by adopting

suitable values of p, q and Y. Figure 23 demonstrates the

algorithm which deploys this learning function. Firstly, we

made use of 1þ log 2 xð Þð Þ, then 10,000 ? log 2(x) and

lastly 2900þ 50 � log 2 xð Þ, which are explained with their

MATLAB programs (in Appendices 6, 7 and 8 in Sup-

plementary Information, respectively), and respective

results. These learning functions use logarithmic relation

with base 2. The results of using 1þ log 2 xð Þð Þ as the

Fig. 25 Zero optimization of CODP (zero learning)

Fig. 28 CODP optima with learning lag (medium learning)

Fig. 26 Negligible optimization of modularity (zero learning)Fig. 24 Learning results (zero learning)

Fig. 27 Modularity maximized with learning lag (medium learning)

Neural Computing and Applications (2021) 33:11125–11155 11147

123

learning function were like the results of the fast learning

iteration performed with that using the learning function

log x^2ð Þ.
The learning function 10,000 ? log2(x) simulates the

worst case of learning (zero learning) (refer to Figs. 24,

25). The learning function 2900þ 50 � log 2 xð Þ shows the
catching up type of learning (medium learning) (refer to

Figs. 26, 27, 28) with desirable results. This is applicable

for slower learning projects unlike the previous fast

learning functions log x^2ð Þ and 1þ log 2 xð Þð Þ, which are

explained earlier in Figs. 20, 21 and 22.

Further, we identified that a limit of

Z = 10,000 ? log2(x) gave a high learning lag with no

learning progress. Figures 24, 25 and 26 show that learning

is zero with no increase of modularity in the results, and

zero optimization of CODP.

Finally, we found a variant of Wright’s learning func-

tion for increase delay of optimization after trial and error.

Further to that, the simulation changed from \ 10 itera-

tions, to 30 iterations for achieving CODP optimization.

Table 5 shows the average run times and results for PSO

run scenarios explained above and helps to make their

comparisons. It also shows the respective output values

obtained for experimental runs of the parameter inputs

shown in Table 3.

Yusof and Deris [50] made use of conventional GA

technique for cost and risk minimization for machine

constraint ‘‘environment. According to them, the conven-

tional GA technique depends on mutation which causes

creation of some infeasible chromosomes that makes

computation slow unless we eliminate those. This elimi-

nation reduces the opportunities of solution sets and may

not be applicable for the best fit approach used by us as part

of modularity matching. Borna and Khezri [62] created a

heuristic algorithm by combining crossover operator of GA

into PSO for traveling salesman problem. Sharma and

Singhal [63] tested a hybrid GA-PSO algorithm on five test

functions by feeding the results of the GA algorithm into

PSO algorithm input. They mentioned that this hybrid

method helps to overcome the limitations of both individ-

ual methods for different population sizes. The population

size used by them is 30 which is significantly small com-

pared to the population size used in the algorithms here as

the objective here is to do best fit search from larger

population.

Gen et al. [64] focused on hybrid evolutionary algo-

rithms and multi-objective hybrid genetic algorithms for

solving multi-objective optimization problem in the area of

scheduling. They target a computation time of \ 3 min.

These methods are not studied for their application into

CODP optimization and need to be explored further. As

mentioned, the application of algorithms as explained in

this paper uses complementary objectives of modularity

maximization and CODP optimization and we get output

within a few seconds. Our FF runs had \ 6 s run time,

while PSO runs had\ 2 s run time. The only exception to

this is the case of 10,000 iterations used in FF technique for

maximizing modularity which took 539.86 s but reduced to

5.19 s when iterations were limited to 1000.

Module outsourcing can include outsourcing additive

manufacturing facility or 3D printing also who already

have technology to use the new material in the printing.

The basic concept and results are similar in the FF and

PSO algorithms used here. The FF code is easier to

understand, while the PSO is more adapted to real-world

sourcing problems and production process chain design.

The salient feature of PSO is that we were able to model

multi-dimensional search space and calculate aggregate

modularity score using summation, to make comparison

between required specifications and available modules

searched. The codes shown are flexible to adapt into dif-

ferent real-world situations.

These codes can be incorporated into SMC through qual

module illustrated in Fig. 31 after breaking the complexity

into modular form as shown in Fig. 30. This is explained in

the next section.

5 Models for modularity search
and complexity reduction

A new complex requirement from customer may trigger

several other complexities throughout the supply chain

which can impact the manufacturing machine setups,

staffing, programs, locations and the process flows. In this

section, we explain a few steps for connecting the earlier

Fig. 29 Learning value * 0.1 (medium learning)

11148 Neural Computing and Applications (2021) 33:11125–11155

123

explained EA techniques to the real-world problems

encountered in process design.

5.1 Splitting internal and external complexities

To reduce the time to market and to gain the competitive

advantage of a novel customer need, it is recommended to

divide product or process complexity by splitting into

internal and external complexities. This is represented by

the left side of Fig. 30. The next step to be followed is to

break the internal and/or external complexity clearly into

different independent manufacturable or sourceable mod-

ules. These modules should then be addressed through

internal departments or cross functional teams which can

recommend to outsource some of the low risk but high time

consuming activities. Such outsourcing can be through

qualification of external supply chains by signing suit-

able agreements or licensing to avoid breach of novelty. It

is recommended to outsource the external complexities to

outside organizations from the market, which have exper-

tized in dealing with those. As explained above, the social

or global acceleration coefficient value is high in such

cases and can aid in achieving higher value of modularity

with ease.

If a direct fit isn’t available in the global search space,

then the closest fit source can be identified and qualified for

external or internal complexity reduction. Our paper

mentions the optimization of CODP position and process

flow design using genetic algorithm by smartly joining the

best fit steps from in-house and/or external sources.

Practical examples of sourced modularity are mentioned

here. Versions of ARM� cortex belonging to ARM Hold-

ings (a semiconductor company) are incorporated and

programmed by other semiconductor companies in their

design and manufacturing, for achieving complexity

reduction [65]. ARM licenses its intellectual property

which is utilized by various semiconductor companies like

Toshiba who utilize those design blocks and incorporate

them into their individual custom products. Hino engines of

Toyota group are used by Ashok Leyland Trucks in India

[66]. Fiat engines are fit in most of the Maruti Suzuki diesel

cars and Tata Motors, in India [67]. The examples shown

here are manually done; however, in a smart environment,

the sourcing should be through artificial intelligence (AI)-

based match using EA method. The concept explained in

this paper is usable for production of medical equipment as

well. Quick process flow design for assembling support

equipment to treat COVID-19 can be achievable.

5.2 Usage of smart models

Once the modules are identified, the next step is to source

them or to fabricate them to fulfill the customer need.

Figure 31 illustrates a smart environment to achieve the

same. An IoT-based interface is shown as the input of

customer expectations which can be studied for viability

through interactive and concurrent communication. The

feedback loop and choice navigation help in perfecting the

synchronization between need and feasibility to deliver.

The cloud-based information storage of available modules

through licensing or collaboration can help in further

development through involvement of the design team. It

may be helpful right from the problem statement or deci-

sion of features to be offered while coming up with new

design. Even between different companies or within same

company which have widespread teams of expertise but

have scattered knowhow, this method could help access a

pool of information.

A EA-based qual module is explained here to address

the fitness of the identified modules. Open specifications by

licensing fee, protocols and rules for smart enabled fitness

matching of process modules need to be defined to enable

this. Qual module should be empowered to take decision in

weeding out unfit modules from the real-world supply

External complexities

Internal complexities
SupplierA In-house SupplierB

Fig. 30 Complexity reduction by separating internal and external modules

Neural Computing and Applications (2021) 33:11125–11155 11149

123

chain. Real-world problems have to be mapped and vali-

dated while implementing the EA-based process flow

design in the virtual world. IP protection barrier and pro-

tection of technical knowhow from R&D investments, i.e.

IP, needs to be protected.

Our FF- and PSO-based techniques explained above

could be deployed here to perform the search. Additive

manufacture, outsourcing and final assembly step can help

to complete the manufacturing process.

Figure 32 explains the detailed steps involved in the

IoT-based customer interface module explained in Fig. 31.

The cloud-based date aggregation shown in Fig. 32 can be

fed into the cloud-based modularity information storage

shown in Fig. 31.

IoT based customer
interface

(Reduce complexity of
measuring MC
requirements)

Choice navigation

(Offer feasible
choices)

Interac�ve and
Concurrent

communication

Design Team

(CAD/CAE/DFM/DFMEA)

Qual module

GA methods to
match

specifications

Additive
manufacture/
Outsource/Assemble

Feedback loop

Cloud based
modularity
information storage

Fig. 31 Cloud- and IoT-based smart mass customization

Fig. 32 Stages in the IoT cum Wifi customer interface

11150 Neural Computing and Applications (2021) 33:11125–11155

123

6 Conclusion

In this paper, we studied and proposed the opportunities for

optimization of customer order decoupling point in smart

custom manufacturing. We identified the gap in existing

research and tried to find a direction towards closing the

missing link between the position of CODP and SMC,

through evolutionary algorithms. We tried to achieve this

objective using fruit fly and particle swarm-based evolu-

tionary techniques for modular sourcing of parts and sub

processes, in manufacturing process design. Through

MATLAB coding, we created a solution for reducing

complexity with increasing modularity which evolves into

finding an optimum CODP position. Figure 1 shows evo-

lution of CODP research and the directions it took in the

past four decades starting from its inception to the

emerging era of smart manufacturing. Figures 4, 5, 7, 8, 9,

10 and 11 show the different combinations of influencing

parameters and results of maximizing modularity, while

also optimizing CODP position using FF method. The FF-

based method is a simpler technique for sourcing modules

in one dimensional search space internally and externally.

The CODP optimization is achieved within about 1000

iterations based on the set parameters.

The PSO method is closer to real-world problems with

multi-dimensional, multi-attribute based search. The

results looked identical to FF algorithm; however, the

results got achieved within 40–70 iterations (Figs. 13, 14,

16, 17). The value of modularity can be maximized in PSO

algorithm, by using higher values of self-acceleration

coefficient, social acceleration coefficient, damping factor,

and defined variable ranges (VaMin and VaMax). It was

demonstrated in the sensitivity analysis that the global

(social) acceleration coefficient has a higher impact in

maximizing modularity compared to the other influencing

factors. This simulates the real-world scenario to achieve

increased smartness globally in manufacturing

The managerial interpretation of the achieved results is

as follows. The model shows that maturity of external

environment plays a vital role in sourcing modular portions

of manufacturing process flow in SMC. It shows real-world

scenario of external environment being able to influence

easier decision making in sourcing due to availability of

mature module suppliers in the solution space. The self-

acceleration coefficient has the next level in terms of

impact in maximizing modularity. Self-driven approach is

the basic direction setter which leads to initiation of a smart

module-based customization search but gets accelerated by

availability of better options globally.

In PSO, we explained a MATLAB code which simulates

and unbounded maximization for modularity which is

analogous to Moore’s law and further shows possibilities of

unified CODP for diverse product portfolio, while helping

it to evolve (Fig. 18). We also made use of the upper limit

in modularity maximization and CODP achievement

within it by setting specific complexity value to control the

results (Fig. 17).

We then modified the simulation using learning lag

functions in Sect. 4.3. A method to measure actual learning

was also shown in the same. This section represents

learning and maturity of any given technology overtime.

The learning lag using log(x)^2 did not slow down opti-

mization. It showed fast learning. Figures 20, 21 and 22

show that optimization completes within about 10 itera-

tions. Initial sensitivity analysis of learning showed that

planned learning z = sum(x) – log(x^2) doesn’t have sig-

nificant impact on lowering speed of learning. Also, actual

learning varied from 0.056 to 1.0032 didn’t have any sig-

nificant impact. This is also because VaMax, a, b, w, wdamp

have higher impact due to the global availability of faster

solutions by the search compared to the slower learning

process.

We then explored impact of Wright’s learning function

in the last two simulations which show the sensitivity in

learning when applied to PSO model. Figures 24, 25 and

26 illustrate the case where learning postpones modularity

maximization indefinitely with zero learning and no opti-

mization of CODP. Finally, in Figs. 27, 28 and 29, we

modified the values in Wright function through random

generation of p and q values which provided the optima

though with a learning lag that slowed down optimization.

The benefits of above models can be achieved through

full modularity sourced externally and internally as

explained in Figs. 30, 31 and 32. In Sect. 5, we suggested

few steps to reduce complexity of processes and process

through splitting of internal and external complexities into

modules. We illustrated splitting of the modules into

internal and external sources in Fig. 30, which could be

matched through a qual module in SMC environment using

IoT and cloud-based system, as shown in Fig. 31. In

Fig. 32, we show the customer involvement through WiFi

and IoT which can be fed into the cloud-based modularity

information storage of Fig. 31.

Comparability aspects need to be defined in the qual

module. Comparison needs to be performed to assess

similarity and fitness of available product and process

modules while finding matches in the module search.

Search from internet, collaborative consortia, collaborative

networks or verification with nearby suppliers with

licensing rules can enable the process. Modularity needs to

be achieved through exchange of information about

required and available module specifications in SMC. New

bill of materials can be scrutinized for outsourcing or in-

house breakthroughs using this concept.

Neural Computing and Applications (2021) 33:11125–11155 11151

123

With emerging technology, higher computing capabili-

ties can be achieved which get imbibed into evolving

modules as explained in Moore’s law. This is demonstrated

by the high values of modularity which is shown as

achievable in our optimization results. Few examples are

LED Television manufacturing, where only the labeling

and packing are left in downstream processes as the

upstream processes are mostly matured and modularized.

Semiconductor manufacturing where part of the technol-

ogy or modules may be outsourced and combined with

one’s own product to create faster processing solutions and

new applications. Hence, the CODP shifts from left to right

as the process matures. However, new advancements trig-

ger addition of newer downstream steps in the process flow

to manufacture next generation of products. With this,

CODP moves back towards upstream. To conclude, a

flexible CODP is needed for higher agility and flexibility,

to enable evolution in smart custom manufacturing.

In this and next paragraphs, we discuss limitations and

directions for future research. Our paper provides a

framework for smart built supply chain of the future,

through recommended EA-based methods in manufactur-

ing process chain design. We achieved two objectives with

the FF- and PSO-based methods. Firstly, we provided

modularity maximization. Secondly, we optimized CODP

by minimizing complexity through the maximized modu-

larity. Less complexity doesn’t essentially mean lowered

MC, but lessened complexity may help in improving MC

and increasing customized variants. Smart enabled con-

cepts are illustrated stepwise in Sect. 5 which can help in

practical implementation of the modularity search thereby

to optimize CODP. We tried to explain and connect the gap

between EA and IoT model to connect manufacturer and

supplier for efficient knowledge exchange, but the techni-

cal and licensing modalities need to be addressed.

Shift of CODP towards right with increased standard-

ization can force custom requirements into a generic flow.

Hence, the chances of error (in customization) are high and

will be discovered only during final assembly or after final

assembly causing efficiency to drop. This needs to be

further investigated. The sensitivity of learning functions

studied and illustrated from Figs. 20, 21, 22, 24, 25, 26, 27,

28 and 29 needs to be to be related to real-world situations

to get good results in practice. Other learning functions and

scenarios using Nesterov’s accelerated gradient needs to be

studied. We recommend extending the EA techniques from

MATLAB to Python language for open sourcing to facil-

itate machine learning to Automate and expand into cre-

ating a real global SMC environment. This is because as

explained earlier, global acceleration coefficient can help

drive SMC faster.

Inventory implications of this result needs to be studied

in future research. A poorly selected modularity may leave

CODP at the leftmost point of the supply chain causing

huge variety of incoming inventory at raw material and wip

stage. It’s because there can be highest level of uncertainty

and lack of standardization due to the lack of knowledge

and poor clarity on fitness to use of the raw material and

wip inventory. On the contrary, if higher standardization is

not accepted in terms of customization options by the

consumer, it could lead to high unsold finished goods

inventory. MC involves limited solution space (by defini-

tion); hence, in a universal search space, the manufacturing

flow line can have CODP move towards an optimum

downstream position to achieve ideal goal. This could lead

production machines till downstream steps to get more

standardized. At the same time, efficient SMC would mean

efficient processes which could convert one product or base

part to other. The inventory-based supply should be more

on certain variant which has stable demand with options of

customizing it to the variants. So, inventory risk on variants

should ideally get reduced. This needs to be coded as a

SMC objective into this problem. Thus, an efficient MC

would mean a robust product towards right of CODP which

could then be customized to final step by just a single

process change. The methodology needs to be further

expanded for autonomous decision making while identi-

fying and selecting suitable modules as proposed by Ma

et al. [68]. This can support further evolution into Industry

5.0 applications.

Our investigation is based on absolute values of com-

plexity and modularity. In real-world situations, it may be a

challenging task to quantify these parameters into absolute

numbers. There is some interesting prior research available

on degree of customization. The methods shown in our

paper need to be linked to the same, in future studies. We

assume in our fitness function that complexity reduces with

increase in modularity. Thus, we subtract absolute value of

searched and selected modularity from complexity value to

shift the CODP to its optimum position. The fitness func-

tion can be suitably modified based on empirical research

for future studies. Also, the shift of CODP needs to be

researched from the perspective of horizontal and vertical

integration during merger and acquisitions.

Code availability MATLAB codes are provided in appendices in

Supplementary Information.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of

interest.

11152 Neural Computing and Applications (2021) 33:11125–11155

123

References

1. Alcácer V, Machado VC (2019) Scanning the Industry 4.0: a

literature review on technologies for manufacturing systems. Eng

Sci Technol Int J 22(3):899–919. https://doi.org/10.1016/j.jestch.

2019.01.006

2. Frank AG, Dalenogare LS, Ayala NF (2019) Industry 4.0 tech-

nologies: implementation patterns in manufacturing companies.

Int J Prod Econ 210:15–26. https://doi.org/10.1016/j.ijpe.2019.

01.004

3. Mittal S, Khan MA, Romero D, Wuesta T (2018) A critical

review of smart manufacturing and Industry 4.0 maturity models:

implications for small and medium-sized enterprises (SMEs).

J Manuf Syst 49:194–214. https://doi.org/10.1016/j.jmsy.2018.

10.005

4. Hajrizi E (2016) Smart solution for smart factory. IFAC-Papers

OnLine 49(29):001–005. https://doi.org/10.1016/j.ifacol.2016.11.

052

5. Zhang C, Chen D, Tao F, Liu A (2019) Data driven smart cus-

tomization. Proc CIRP 81:564–569. https://doi.org/10.1016/j.pro

cir.2019.03.156

6. Lehmhus D, Kopp CA, Petzoldt F, Godlinski D, Haberkorn A,

Zöllmer V, Busse M (2016) Customized Smartness: a survey on

links between additive manufacturing and sensor integration.

Proc Technol 26:284–301. https://doi.org/10.1016/j.protcy.2016.

08.038

7. Suginouchi S, Kokuryo D, Kaihara T (2017) Value co-creative

manufacturing system for mass customization: concept of smart

factory and operation method using autonomous negotiation

mechanism. Proc CIRP 63:727–732. https://doi.org/10.1016/j.

procir.2017.03.313

8. Daaboul J, Da Cunha CM (2014) Differentiation and customer

decoupling points: key value enablers for mass customization. In:

Grabot B et al (eds) APMS 2014, Part III, IFIP AICT 440. IFIP

international federation for information processing, pp 43–50,

Springer. https://doi.org/10.1007/978-3-662-44733-8_6

9. Fogliatto FS, DaSilveira GJC, Borenstein D (2012) The mass

customization decade: an updated review of the literature. Int J

Prod Econ 138:14–25. https://doi.org/10.1016/j.ijpe.2012.03.002

10. McCall J (2005) Genetic algorithms for modelling and opti-

mization. J Comput Appl Math 184(1):205–222. https://doi.org/

10.1016/j.cam.2004.07.034

11. Wang SY, Chang SL, Wang RC (2009) Assessment of supplier

performance based on product-development strategy by applying

multi-granularity linguistic term sets. Omega 37:215–226. https://

doi.org/10.1016/j.omega.2006.10.003

12. Giesberts PMJ, Van Den Tang L (1992) Dynamics of the cus-

tomer order decoupling point: impact on information systems for

production control. Prod Plan Control 3(3):300–313. https://doi.

org/10.1080/09537289208919402

13. Rudberg M, Wikner J (2004) Mass customization in terms of the

customer order decoupling point. Prod Plan Control

15(4):445–458. https://doi.org/10.1080/0953728042000238764

14. Ethiraj SK, Levinthal D (2004) Modularity and innovation in

complex systems. Manag Sci 50(2):159–173. https://doi.org/10.

1287/mnsc.1030.0145

15. Wikner J, Rudberg M (2005) Integrating production and engi-

neering perspectives on the customer order decoupling point. Int J

Oper Prod Manag 25(7):623–641. https://doi.org/10.1108/

01443570510605072

16. Wikner J, Wong H (2007) Postponement based on the positioning

of the differentiation and decoupling points. In: Olhager J,

Persson F (eds) IFIP International federation for information

processing 246, Advances in production management systems.

Springer, Boston, pp 143–150. https://doi.org/10.1007/978-0-

387-74157-4_17

17. Xu XG (2007) Position of customer order decoupling point in

mass customization. In: Proceedings of the sixth international

conference on machine learning and cybernetics, Hong Kong,

IEEE. https://doi.org/10.1109/ICMLC.2007.4370159

18. Hua JJ, Li Q, Lun GQ (2007) Study on CODP position of process

industry implemented mass customization. Syst Eng Theory Pract

27(12):151–157. https://doi.org/10.1016/S1874-8651(08)60079-4

19. Luo JQ, Han YQ, Zhou X (2008) Positioning of CODP based on

entropy technology and ideal point principle. In: 4th international

conference on wireless communications, networking and mobile

computing, Dalian, IEEE. https://doi.org/10.1109/WiCom.2008.

1482

20. Liu D, Wang W, Fu W, Liu D (2009) CODP position of leagile

supply chain based on polychromatic sets theory. Proc IEEE Int

Conf Autom Logist. https://doi.org/10.1109/ICAL.2009.5262884

21. Ge J, Wei F, Huang Y, Gao G (2009) Research on customer order

decoupling point positioning model for supply chain cost opti-

mization. In: Proceedings of the IEEE international conference on

automation and Logistics, Shenyang, IEEE. https://doi.org/

10.1109/ICAL.2009.5262581

22. Brun A, Zorzini M (2009) Evaluation of product customization

strategies through modularization and postponement. Int J Prod

Econ 120:205–220. https://doi.org/10.1016/j.ijpe.2008.07.020

23. Daaboul J, Laroche F, Bernard A (2010) Determining the CODP

position by value network modeling and simulation. In: Interna-

tional technology management conference (ICE), IEEE, Lugano.

https://doi.org/10.1109/ICE.2010.7476995

24. Olhager J (2010) The role customer order decoupling point in

production and supply chain management. Comput Ind

61:863–868. https://doi.org/10.1016/j.compind.2010.07.011

25. Da Cunha C, Agard B, Kusiak A (2010) Selection of modules for

mass customization. Int J Prod Res 48(5):1439–1454. https://doi.

org/10.1080/00207540802473989

26. McIntosh RI, Matthews J, Mullineux G, Medland AJ (2010) Late

customisation: issues of mass customisation in the food industry.

Int J Prod Res 48(6):1557–1574. https://doi.org/10.1080/

00207540802577938

27. Buffington J (2011) Comparison of mass customization and

generative customization in mass markets. Ind Manag Data Syst

111(1):41–62. https://doi.org/10.1108/02635571111099721

28. Qin Y (2011) On delaying CODP to distribution center in mass

customization. In: Shen G, Huang X (eds) Communications in

computer and information science 152. Advanced research on

computer science and information engineering, international

conference. CSIE, Springer, Heidelberg, pp 271–276. https://doi.

org/10.1007/978-3-642-21402-8_44

29. Xu X, Liang Z (2011) CODP Positioning based on extension

superiority evaluation model. In: International conference on

electronic and mechanical engineering and information technol-

ogy, Harbin. IEEE. https://doi.org/10.1109/EMEIT.2011.

6023940

30. Bask A, Lipponen M, Rajahonka M, Tinnila M (2011) Frame-

work for modularity and customization: service perspective.

J Bus Ind Market 26(5):306–319. https://doi.org/10.1108/

08858621111144370

31. ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L (2012)

Complexity in engineering, design and manufacturing. CIRP Ann

Manuf Technol 61:793–814. https://doi.org/10.1016/j.cirp.2012.

05.001

32. Jeong IJ (2011) A dynamic model for the optimization of

decoupling point and production planning in a supply chain. Int J

Prod Econ 131:561–567. https://doi.org/10.1016/j.ijpe.2011.02.

001

Neural Computing and Applications (2021) 33:11125–11155 11153

123

https://doi.org/10.1016/j.jestch.2019.01.006
https://doi.org/10.1016/j.jestch.2019.01.006
https://doi.org/10.1016/j.ijpe.2019.01.004
https://doi.org/10.1016/j.ijpe.2019.01.004
https://doi.org/10.1016/j.jmsy.2018.10.005
https://doi.org/10.1016/j.jmsy.2018.10.005
https://doi.org/10.1016/j.ifacol.2016.11.052
https://doi.org/10.1016/j.ifacol.2016.11.052
https://doi.org/10.1016/j.procir.2019.03.156
https://doi.org/10.1016/j.procir.2019.03.156
https://doi.org/10.1016/j.protcy.2016.08.038
https://doi.org/10.1016/j.protcy.2016.08.038
https://doi.org/10.1016/j.procir.2017.03.313
https://doi.org/10.1016/j.procir.2017.03.313
https://doi.org/10.1007/978-3-662-44733-8_6
https://doi.org/10.1016/j.ijpe.2012.03.002
https://doi.org/10.1016/j.cam.2004.07.034
https://doi.org/10.1016/j.cam.2004.07.034
https://doi.org/10.1016/j.omega.2006.10.003
https://doi.org/10.1016/j.omega.2006.10.003
https://doi.org/10.1080/09537289208919402
https://doi.org/10.1080/09537289208919402
https://doi.org/10.1080/0953728042000238764
https://doi.org/10.1287/mnsc.1030.0145
https://doi.org/10.1287/mnsc.1030.0145
https://doi.org/10.1108/01443570510605072
https://doi.org/10.1108/01443570510605072
https://doi.org/10.1007/978-0-387-74157-4_17
https://doi.org/10.1007/978-0-387-74157-4_17
https://doi.org/10.1109/ICMLC.2007.4370159
https://doi.org/10.1016/S1874-8651(08)60079-4
https://doi.org/10.1109/WiCom.2008.1482
https://doi.org/10.1109/WiCom.2008.1482
https://doi.org/10.1109/ICAL.2009.5262884
https://doi.org/10.1016/j.ijpe.2008.07.020
https://doi.org/10.1109/ICE.2010.7476995
https://doi.org/10.1016/j.compind.2010.07.011
https://doi.org/10.1080/00207540802473989
https://doi.org/10.1080/00207540802473989
https://doi.org/10.1080/00207540802577938
https://doi.org/10.1080/00207540802577938
https://doi.org/10.1108/02635571111099721
https://doi.org/10.1007/978-3-642-21402-8_44
https://doi.org/10.1007/978-3-642-21402-8_44
https://doi.org/10.1109/EMEIT.2011.6023940
https://doi.org/10.1109/EMEIT.2011.6023940
https://doi.org/10.1108/08858621111144370
https://doi.org/10.1108/08858621111144370
https://doi.org/10.1016/j.cirp.2012.05.001
https://doi.org/10.1016/j.cirp.2012.05.001
https://doi.org/10.1016/j.ijpe.2011.02.001
https://doi.org/10.1016/j.ijpe.2011.02.001

33. Lin J, Shi X, Wang Y (2012) Research on the hybrid push/pull

production system for mass customization production. In: Shaw

MJ, Zhang D, Yue WT (eds) E-life: web-enabled convergence of

commerce, work, and social life. Springer, pp 413–420. https://

doi.org/10.1007/978-3-642-29873-8_38

34. Medini K, Da Cunha C, Bernard A (2012) Sustainable mass

customized enterprise: key concepts, enablers and assessment

techniques. IFAC Proc 45(6):522–527. https://doi.org/10.3182/

20120523-3-RO-2023.00242

35. Kim JI, Kim SH (2012) Positioning a decoupling point in a

semiconductor supply chain under demand and lead time uncer-

tainty. Int J Adv Logist 1(2):31–45. https://doi.org/10.1080/

2287108X.2012.11006075

36. Mehrsai A, Karimi HR, Thoben KD (2013) Integration of supply

networks for customization with modularity in cloud and make-

to-upgrade strategy. Syst Sci Control Eng An Open Access J

1(1):28–42. https://doi.org/10.1080/21642583.2013.817959

37. Agrawal T, Sao A, Fernandes KJ, Tiwari MK, Kim DY (2013) A

hybrid model of component sharing and platform modularity for

optimal product family design. Int J Prod Res 51(2):614–625.

https://doi.org/10.1080/00207543.2012.663106

38. Sjøbakk B, Thomassen MK, Alfnes E (2014) Implications of

automation in engineer-to-order production: a case study. Adv

Manuf 2:141–149. https://doi.org/10.1007/s40436-014-0071-4

39. Wikner J (2014) On decoupling points and decoupling zones.

Prod Manuf Res An Open Access J 2(1):167–215. https://doi.org/

10.1080/21693277.2014.898219

40. Wikner J (2014b) Supply chain management strategies in terms

of decoupling points and decoupling zones. In: Grabot B et al

(eds) APMS, Springer, Berlin, pp 371–378. https://doi.org/10.

1007/978-3-662-44739-0_45

41. Ngniatedema T, Fono LA, Mbondo GD (2014) A delayed product

customization cost model with supplier delivery performance.

Eur J Oper Res 243(1):109–119. https://doi.org/10.1016/j.ejor.

2014.11.017

42. Ridwan M, Purnomo A, Sufa MF (2015) Simulation-based per-

formance improvement towards mass customization in make to

order repetitive company. Proc Manuf 2:408–412. https://doi.org/

10.1016/j.promfg.2015.07.072

43. Keddis N, Kainz G, Zoitl A, Knoll A (2015) Modeling production

workflows in a mass customization era. In: IEEE international

conference on industrial technology (ICIT), Seville, IEEE.

https://doi.org/10.1109/ICIT.2015.7125374

44. Shahin A, Gunasekaran A, Khalili A, Shirouyehzad H (2016) A

new approach for estimating leagile decoupling point using data

envelopment analysis. Assemb Autom 36(3):233–245. https://doi.

org/10.1108/AA-07-2015-063

45. Yao Y, Xu Y (2018) Dynamic decision making in mass cus-

tomization. Comput Ind Eng 120:129–137. https://doi.org/10.

1016/j.cie.2018.04.025

46. Cannas VG, Gosling J, Pero M, Rossi T (2019) Engineering and

production decoupling configurations: an empirical study in the

machinery industry. Int J Prod Econ 216:173–189. https://doi.org/

10.1016/j.ijpe.2019.04.025

47. Tookanlou PB, Wong H (2019) Determining the optimal cus-

tomization levels, lead times, and inventory positioning in ver-

tical product differentiation. Int J Prod Econ. https://doi.org/10.

1016/j.ijpe.2019.08.014

48. Zheng XL, Wang L, Wang SY (2014) A novel fruit fly opti-

mization algorithm for semiconductor final testing scheduling

problem. Knowl-Based Syst 57:95–103. https://doi.org/10.1016/j.

knosys.2013.12.011

49. Zheng XL, Wang L (2016) A two-stage adaptive fruit fly opti-

mization algorithm for unrelated parallel machine scheduling

problem with additional resource constraints. Expert Syst Appl

65:28–39. https://doi.org/10.1016/j.eswa.2016.08.039

50. Yusof UK, Deris S (2009) Constraint-based genetic algorithms

for machine requirement of semiconductor assembly industry: a

proposed framework. In: Third Asia international conference on

modelling and simulation. IEEE. https://doi.org/10.1109/ams.

2009.119

51. Pan WT (2014) A new evolutionary computation: fruit fly opti-

mization algorithm, 2nd edn. The MathWorks Textbook, Taiwan

52. Ma G, Zhang F (2012) Genetic algorithms for manufacturing

process planning. In: Variants of evolutionary algorithms for real-

world applications. Springer, Heidelberg, pp 205–244. https://doi.

org/10.1007/978-3-642-23424-8_7

53. Saldivar AAF, Goh C, Li Y, Chen Y, Yu H (2016) Identifying

smart design attributes for Industry 4.0 customization using a

clustering genetic algorithm. In: Proceedings of the 22nd inter-

national conference on automation and computing, University of

Essex, Colchester city, UK, IEEE. https://doi.org/10.1109/ICo

nAC.2016.7604954

54. Zhang Z, Wang X, Zhu X, Cao Q, Tao F (2019) Cloud manu-

facturing paradigm with ubiquitous robotic system for product

customization. Robot CIM Int Manuf 60:12–22. https://doi.org/

10.1016/j.rcim.2019.05.015

55. Wan J, Li J, Hua Q, Celesti A, Wang Z (2020) Intelligent

equipment design assisted by Cognitive Internet of Things and

industrial big data. Neural Comput Appl 32:4463–4472. https://

doi.org/10.1007/s00521-018-3725-5

56. James CD, Mondal S (2019) A review of machine efficiency in

mass customization. Benchmark Int J 26(2):638–691. https://doi.

org/10.1108/BIJ-05-2018-0120

57. Heris SMK (2016). Particle swarm optimization in MATLAB—

Yarpiz Video Tutorial—Part 2/3, [Yarpiz]. https://www.youtube.

com/watch?v=xPkRL_Gt6PI. Accessed 15 October 2019

58. Schaller RR (1997) Moore’s law: past, present and future. IEEE

Spectr 34(6):52–59. https://doi.org/10.1109/6.591665

59. Schuh G, Dölle C, Kantelberg J, Menges A (2018) Identification

of agile mechanisms of action as basis for agile product devel-

opment. Proc CIRP 70:19–24. https://doi.org/10.1016/j.procir.

2018.02.007

60. Willner O, Powell D, Gerschberger M, Schönsleben P (2016)

Exploring the archetypes of engineer-to-order: an empirical

analysis. Int J Oper Prod Manag 36(3):242–264. https://doi.org/

10.1108/IJOPM-07-2014-0339

61. Lu RF, Petersen TD, Storch RL (2009) Asynchronous stochastic

learning curve effects in engineering-to-order customisation

processes. Int J Prod Res 47(5):1309–1329. https://doi.org/10.

1080/00207540701484921

62. Borna K, Khezri R (2015) A combination of genetic algorithm

and particle swarm optimization method for solving traveling

salesman problem. Cogent Math 2(1):1–13. https://doi.org/10.

1080/23311835.2015.1048581

63. Sharma J, Singhal RS (2015) Comparative research on genetic

algorithm, particle swarm optimization and hybrid GA-PSO. In:

2nd international conference on computing for sustainable global

development, New Delhi. IEEE, pp 110–114. https://ieeexplore.

ieee.org/document/7100231

64. Gen M, Zhang W, Lin L, Yun YS (2017) Recent advances in

hybrid evolutionary algorithms for multiobjective manufacturing

scheduling. Comput Ind Eng 112:616–633. https://doi.org/10.

1016/j.cie.2016.12.045

65. Medical and Design Outsourcing (2015) https://www.medicalde

signandoutsourcing.com/toshiba-expands-line-up-of-arm-cortex-

m-based-microcontrollers/. Accessed 27 November 2019

66. Ashok Leyland, Hino Motors renew partnership for Euro VI

engines (2018) The Economic Times.https://auto.economictimes.

indiatimes.com/news/commercial-vehicle/mhcv/ashok-leyland-

hino-motors-renew-partnership-for-euro-vi-engines/61818121.

Accessed 20 November 2019

11154 Neural Computing and Applications (2021) 33:11125–11155

123

https://doi.org/10.1007/978-3-642-29873-8_38
https://doi.org/10.1007/978-3-642-29873-8_38
https://doi.org/10.3182/20120523-3-RO-2023.00242
https://doi.org/10.3182/20120523-3-RO-2023.00242
https://doi.org/10.1080/2287108X.2012.11006075
https://doi.org/10.1080/2287108X.2012.11006075
https://doi.org/10.1080/21642583.2013.817959
https://doi.org/10.1080/00207543.2012.663106
https://doi.org/10.1007/s40436-014-0071-4
https://doi.org/10.1080/21693277.2014.898219
https://doi.org/10.1080/21693277.2014.898219
https://doi.org/10.1007/978-3-662-44739-0_45
https://doi.org/10.1007/978-3-662-44739-0_45
https://doi.org/10.1016/j.ejor.2014.11.017
https://doi.org/10.1016/j.ejor.2014.11.017
https://doi.org/10.1016/j.promfg.2015.07.072
https://doi.org/10.1016/j.promfg.2015.07.072
https://doi.org/10.1109/ICIT.2015.7125374
https://doi.org/10.1108/AA-07-2015-063
https://doi.org/10.1108/AA-07-2015-063
https://doi.org/10.1016/j.cie.2018.04.025
https://doi.org/10.1016/j.cie.2018.04.025
https://doi.org/10.1016/j.ijpe.2019.04.025
https://doi.org/10.1016/j.ijpe.2019.04.025
https://doi.org/10.1016/j.ijpe.2019.08.014
https://doi.org/10.1016/j.ijpe.2019.08.014
https://doi.org/10.1016/j.knosys.2013.12.011
https://doi.org/10.1016/j.knosys.2013.12.011
https://doi.org/10.1016/j.eswa.2016.08.039
https://doi.org/10.1109/ams.2009.119
https://doi.org/10.1109/ams.2009.119
https://doi.org/10.1007/978-3-642-23424-8_7
https://doi.org/10.1007/978-3-642-23424-8_7
https://doi.org/10.1109/IConAC.2016.7604954
https://doi.org/10.1109/IConAC.2016.7604954
https://doi.org/10.1016/j.rcim.2019.05.015
https://doi.org/10.1016/j.rcim.2019.05.015
https://doi.org/10.1007/s00521-018-3725-5
https://doi.org/10.1007/s00521-018-3725-5
https://doi.org/10.1108/BIJ-05-2018-0120
https://doi.org/10.1108/BIJ-05-2018-0120
https://www.youtube.com/watch%3fv%3dxPkRL_Gt6PI
https://www.youtube.com/watch%3fv%3dxPkRL_Gt6PI
https://doi.org/10.1109/6.591665
https://doi.org/10.1016/j.procir.2018.02.007
https://doi.org/10.1016/j.procir.2018.02.007
https://doi.org/10.1108/IJOPM-07-2014-0339
https://doi.org/10.1108/IJOPM-07-2014-0339
https://doi.org/10.1080/00207540701484921
https://doi.org/10.1080/00207540701484921
https://doi.org/10.1080/23311835.2015.1048581
https://doi.org/10.1080/23311835.2015.1048581
https://ieeexplore.ieee.org/document/7100231
https://ieeexplore.ieee.org/document/7100231
https://doi.org/10.1016/j.cie.2016.12.045
https://doi.org/10.1016/j.cie.2016.12.045
https://www.medicaldesignandoutsourcing.com/toshiba-expands-line-up-of-arm-cortex-m-based-microcontrollers/
https://www.medicaldesignandoutsourcing.com/toshiba-expands-line-up-of-arm-cortex-m-based-microcontrollers/
https://www.medicaldesignandoutsourcing.com/toshiba-expands-line-up-of-arm-cortex-m-based-microcontrollers/
https://auto.economictimes.indiatimes.com/news/commercial-vehicle/mhcv/ashok-leyland-hino-motors-renew-partnership-for-euro-vi-engines/61818121
https://auto.economictimes.indiatimes.com/news/commercial-vehicle/mhcv/ashok-leyland-hino-motors-renew-partnership-for-euro-vi-engines/61818121
https://auto.economictimes.indiatimes.com/news/commercial-vehicle/mhcv/ashok-leyland-hino-motors-renew-partnership-for-euro-vi-engines/61818121

67. Thakkar K (2017) Fiat India inks fresh deals to supply 2.2 lakh

diesel engines to Maruti, Tata Motors. The Economic Times.

https://economictimes.indiatimes.com/industry/fiat-india-inks-

fresh-deals-to-supply-2-5-litre-diesel-engines-to-maruti-tata-

motors/articleshow/58491966.cms?from=mdr. Accessed 24

November 2019

68. Ma A, Nassehi A, Snider C (2018) Anarchic manufacturing. Int J

Prod Res 57(8):2514–2530. https://doi.org/10.1080/00207543.

2018.1521534

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:11125–11155 11155

123

https://economictimes.indiatimes.com/industry/fiat-india-inks-fresh-deals-to-supply-2-5-litre-diesel-engines-to-maruti-tata-motors/articleshow/58491966.cms%3ffrom%3dmdr
https://economictimes.indiatimes.com/industry/fiat-india-inks-fresh-deals-to-supply-2-5-litre-diesel-engines-to-maruti-tata-motors/articleshow/58491966.cms%3ffrom%3dmdr
https://economictimes.indiatimes.com/industry/fiat-india-inks-fresh-deals-to-supply-2-5-litre-diesel-engines-to-maruti-tata-motors/articleshow/58491966.cms%3ffrom%3dmdr
https://doi.org/10.1080/00207543.2018.1521534
https://doi.org/10.1080/00207543.2018.1521534

	Optimization of decoupling point position using metaheuristic evolutionary algorithms for smart mass customization manufacturing
	Abstract
	Introduction
	Literature review
	Problem description and methodology
	Defining the problem
	Problem statement
	Fruit fly model assumptions
	Fruit fly program code and experimental run
	PSO model assumptions
	PSO algorithm code and experimental run

	Results and discussion
	Results of FF optimization run
	Results of PSO optimization run
	Incorporation of learning functions into optimization

	Models for modularity search and complexity reduction
	Splitting internal and external complexities
	Usage of smart models

	Conclusion
	Code availability
	References

