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Abstract
In this contribution, the problem of multistability control in a simple model of 3D HNNs as well as its application to

biomedical image encryption is addressed. The space magnetization is justified by the coexistence of up to six disconnected

attractors including both chaotic and periodic. The linear augmentation method is successfully applied to control the

multistable HNNs into a monostable network. The control of the coexisting four attractors including a pair of chaotic

attractors and a pair of periodic attractors is made through three crises that enable the chaotic attractors to be metamor-

phosed in a monostable periodic attractor. Also, the control of six coexisting attractors (with two pairs of chaotic attractors

and a pair of periodic one) is made through five crises enabling all the chaotic attractors to be metamorphosed in a

monostable periodic attractor. Note that this controlled HNN is obtained for higher values of the coupling strength. These

interesting results are obtained using nonlinear analysis tools such as the phase portraits, bifurcations diagrams, graph of

maximum Lyapunov exponent, and basins of attraction. The obtained results have been perfectly supported using the

PSPICE simulation environment. Finally, a simple encryption scheme is designed jointly using the sequences of the

proposed HNNs and the sequences of real/imaginary values of the Julia fractals set. The obtained cryptosystem is validated

using some well-known metrics. The proposed method achieved entropy of 7.9992, NPCR of 99.6299, and encryption time

of 0.21 for the 256*256 sample 1 image.

Keywords Hopfield neural networks (HNNs) � Space magnetization � Multistability control � PSPICE simulations �
Biomedical images encryption

1 Introduction

Hopfield neural network (HNN) was introduced for the first

time by Hopfield in 1984 [1]. From then, a better under-

standing of the dynamical behavior of the Hopfield neural

network (HNN) is of major importance in the study of

information processing and engineering applications [2, 3],

such as pattern recognition [2], associative memory, and

signal processing [3]. In addition, many investigations

related to the dynamical properties with respect to a variety

of complex-valued neural network (CVNN) models have

been published in the literature. In the engineering science

domain, the applications of CVNN models have been

reported by many researchers, e.g., for sonic wave, elec-

tromagnetic wave, light wave, quantum devices, image

processing as well as signal processing. In regard to both

the mathematical analysis and practical application, CVNN

models have been widely studied, and many effective

methods on various dynamical analyses of CVNN models

are available [4, 5]. Mainly, the Hopfield type of neural

network (HTNN) models has been considered a key

development owing to their adaptive mathematical model
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capability, along with many powerful methods concerning

the stability of HTNN models [4–7].

We recall that HNN is an artificial model obtained from

brain dynamics and it is an essential model that plays a

substantial role in neurocomputing [8]. Such neuronal

model is capable to accumulate some information or

specimens in a way similar to the brain. We can now

realize that more and more research has been done to

develop robust encryption algorithms based on chaotic

sequences. Inverse tent map was used by Habutsu et al. in a

chaotic cryptosystem [9], in which the plaintext represents

the initial condition of the inverse tent map and the

ciphertext is obtained by iterating the map N times.

Because of the weakness of the piecewise linearity of the

tent map and the use of 75 random bits, Biham presented a

known-plaintext attack and a chosen-plaintext attack to

break it [10]. Baptista suggested a new encryption method

in which a chaotic attractor is divided into S units repre-

senting different plaintexts, the ciphertext is the number of

iteration from an initial value to the unit representing the

plaintext, and the logistic map is used for demonstration

[11]. Before applying chaos for encryption it is necessary

to analyze the dynamics of the whole system in other to

highlight its complex behaviors and properties.

Recently, several works have been focused on the

investigation of the multistable property of the HNN

[12–15]. Recall that multistability in HNNs means the

coexistence of several stable states for the same set of

synaptic weight matrix by starting the evolution of the

model from different initial conditions [13]. It has already

been found in several classes of nonlinear dynamical sys-

tems [16–26]. In this scope, there are special cases of

multistability which have attracted much attention in recent

years. Among others, we have systems with extreme

multistability (characterized by the coexistence of an infi-

nite number of attractors, in this case, the bifurcation

control parameter is one of the initial conditions) [27–30].

Other types of multistable systems found recently are

systems with megastability [31–35]. These later cases have

an infinite number of coexisting attractors, but there are no

such bifurcations in them like systems with extreme mul-

tistability [32]. In other words, the term megastable has

been used for systems with countable infinite attractors

[36], in contrast to extreme multi-stability which is related

to non-countable infinite attractors. The coexistence of

multiple attractors including up to four disconnected found

by Bao et al. [12, 15, 37]. Likewise coexistence of up to six

disconnected attractors as well as antimonotonicity phe-

nomenon is found by Njitacke et al. in some classes of 4D

HNN in [13, 14] and bursting oscillations [27] discovered

by Bao et al. in a model of two-neuron-based non-au-

tonomous memristive Hopfield neural network. Very

recently, Bao et al., 2019 have explored the effect of the

gradient variation on the dynamics of a 3D HNN. As result,

the authors found that when gradients of the activation

functions were varied, the proposed model was able to

display a bistable property [38]. From the point of view of

the application, the coexistence of different stable states

offers great flexibility in the system performance without

major parameter changes; that can be exploited with the

right control strategies to induce a definite switching

between different coexisting states [39, 40]. However,

multistability may create inconvenience, for instance, in

the design of a commercial device with a specific charac-

teristic where coexisting stable states need to be avoided or

the desired state has to be controlled/stabilized against a

noisy environment [40]. Many strategies/technics are

existing in the literature to control multistability (by

annihilating some stable trajectories) or target specific

attractors such as pseudo-forcing [41], short pulses [42],

noise selection [43], harmonic perturbation [44], and linear

augmentation [45]. Except for linear augmentation method,

in almost all other existing methods, the control is applied

to one parameter of the system parameters to delete (can-

cel, disappear, remove) on the attractors for all initial

points. Thus, external control like the linear augmentation

method would be preferred. Since its solid successful

application prior in 2011 on the stabilization of fixed-point

solution in chaotic systems by Sharma et al. [46], the linear

augmentation scheme has been extended later on the con-

trol of bistability in chaotic attractors comprising of well-

separated unstable steady state [47]. In addition, Fozin

et al. [48] have exploited this technic on linear augmen-

tation to control the coexistence of three attractors in a

hyperchaotic system. However, from these aforementioned

works, there is no one focused on the control of multista-

bility in a dynamical system with up to four or more than

four attractors. More particularly, there are no works

focused on the multistability control in the Hopfield neural

network despite their various applications in engineering

[1–3, 8].

New researches are developed to propose modern

encryption algorithms. A chaotic system is a major tool in

this prominent research domain due to ergodicity, deter-

ministic dynamics, unpredictable behaviors, nonlinear

transformation, and sensitivity dependence of the system

[49–52]. For instance, Gao et al. [49] designed an

encryption algorithm based on Chen hyperchaotic system.

A simple diffusion–confusion encryption scheme is

developed in their work. Zhou et al. [50] used 1-D chaotic

map to establish the encryption key for both color and gray

images. Analysis of the proposed scheme showed a high

security level. As strong cryptographic technics are

developed, cryptanalysis is also growing. Another idea of

chaos encryption is to use the discrete output of the neural

network to increase the security of the process. In this line,
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Xing et al. [51] designed an encryption scheme using both

the sequences of the Lorenz attractor and the discrete

output of the perceptron model. Experimental results show

a high security algorithm. Lakshmi et al. [52] design an

encryption algorithm based on HNN. The technics uses a

simple diffusion–confusion algorithm, and security against

some existing attacks is achieved.

A variety of encryption methods can be found in the

literature and classified either as q spatial domain or fre-

quency domain encryption algorithms [49–52]. The first

method directly considers the pixel of the original image

without any transformation. The second method applies a

mathematical transformation on the original image to

compute some coefficients based on image pixels. Trans-

form domain-based algorithms seem to be more efficient

and robust than the spatial domain. The above-mentioned

techniques combining both chaos and neural network in

cryptography rely on the spatial domain algorithms. In this

paper, we will use the Julia set and the discrete sequences

of the proposed HNN to transform the pixels of the plain

image. Then, the sequences of a simple 3D Hopfield neural

network will be applied for encryption.

Thus, our objectives in this work are as follows:

• To propose a novel topological configuration (with

different activation gradients) of a simple 3D HNN

• To present the space magnetization which enables the

coexistence of multiple stable states through attraction

basins

• To control the multistable behavior using linear

augmentation and show that only one stable state

survive.

• Finally, use the sequences of the proposed HNN to

design a robust encryption scheme relying on the

transform domain algorithms.

It is important to stress that the linear augmentation

method has been considered in the literature only to control

two different attractors (i.e., bistable or tristable systems)

[48]. Also to the best of authors’ knowledge, no other

chaotic systems, particularly no HNN with up to six dis-

connected stable states, have been successfully controlled

in the literature until date. Finally, the complex HNN has

been equally used for robust image encryption. Thus, the

present results contribute to enrich the literature about

HNN behavior as well as their engineering applications.

The layout of the paper is as follows: Sect. 2 focuses on

the mathematical model and some basic properties of the

introduced HNN model. In Sect. 3, investigations are car-

ried out in order to highlight different windows with the

proposed HNN displaying the magnetization of the space

and thus the phenomenon of coexistence of multiple

attractors. In Sect. 4, a recall on the linear augmentation

control method is discussed. Section 5 presents the

discussion of results when the control method is applied to

the HNN. The PSPICE verification of the obtained result is

addressed in Sect. 6. The cryptosystem is designed and

analyzed in Sect. 7. Finally, we conclude and proposed

some future issues in the last section.

2 Mathematical expression
of the investigated model

It is well known that Hopfield neural networks (HNNs) can

be used to describe and simulate some brain behaviors in

the context of the learning and memory process. In such

type of neuron, the circuit equation can be described as

Ci
dxi
dt

¼ � xi
Ri

þ
Xn

j¼1

wij tanh bjxj
� �

þ Ii ð1Þ

The term xi is a state variable corresponding to the

voltage across the capacitor Ci. Ri is a resistor related to the

membrane robustness between the inside and outside of the

neuron. Ii denotes the input bias current. The matrix W ¼
wij is a n� n synaptic weight matrix. Synaptic weight

represents the strength of coupling that one neuron has on

another [1, 12–14, 38]. tanhðbjxjÞ is the smooth neuron

activation function indicating the voltage input from the jth

neuron where the term bj is the gradient. In this contribu-

tion, we consider thatCi ¼ 1, Ri ¼ 1, Ii ¼ 0 and n ¼ 3.

Now considering the following weight matrix:

w ¼
w11 w12 w13

w21 w22 w23

w31 w32 w33

2
4

3
5 ¼

2 �1:2 0:48
3:6 1:7 1:076
�9 0 0

2
4

3
5 ð2Þ

From all the above considerations, the smooth nonlinear

third-order differential equations highlighting the dynamics

of the Hopfield neural networks model is taken in a

dimensionless form as:

_x1 ¼ �x1 þ 2 tanhðb1x1Þ � 1:2 tanhðb2x2Þ þ 0:48 tanhðb3x3Þ
_x2 ¼ �x2 þ 3:6 tanhðb1x1Þ þ 1:7 tanhðb2x2Þ þ 1:776 tanhðb3x3Þ
_x3 ¼ �x3 � 9 tanhðb1x1Þ

8
<

:

ð3Þ

In Eq. 3, bi are the variable gradient of the activation

function. When b ¼ 1, it corresponds to a standard gra-

dient, b[ 1 to a high gradient and step-like curve with

the faster response speed of the neuronal electrical

activities, and b\1 to a low gradient and flat sigmoid

curve with the slower response speed of the neuronal

electrical activities [1]. For b1 ¼ 0:9, b3 ¼ 1:4, b2 ¼
tuneable several properties of the model are investigated.

It can be seen that the model investigated in this work is

symmetric meaning that it is invariant under the trans-

formation x1; x2; x3ð Þ ! �x1;�x2;�x3ð Þ. It is easy to
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demonstrate that the volume contraction rated of the

model is given by

r:f ¼ �3þ 1:8 1� tanh2ð0:9x1Þ
� �

þ 1:7b2 1� tanh2ðb2x2Þ
� �

ð4Þ

Since 0� 1� tanh2ðbixiÞ
� �

� 1 and that

�1� tanhðbixiÞ� 1, the model can be dissipative and thus

support attractors for a judicious choice of b2.

3 Different windows of multistability

In this section, we show how transitions between

stable states in the model of HNNs occur using bifurcation

diagrams and graphs of Lyapunov exponents. Numerical

simulations are made using the fourth-order Runge–Kutta

formula. For each iteration, the time grid is always Dt ¼
2� 10�4 and the computations are made using parameters

and variables in extended precision mode. After several

computer simulations, we have obtained bifurcation

diagrams of Fig. 1 with their corresponding graph of the

largest Lyapunov exponent. In this figure, up to four dia-

grams are superimposed. So, these diagrams highlight the

phenomenon of coexisting bifurcation which justified the

coexistence of several stable states for the same set of

synaptic weight but different initial conditions. The dia-

grams of the previous figure are obtained by increasing the

gradient of the second neuron starting from different initial

conditions as presented in Table 1. For b2 ¼ 1:15, the

model displays the coexistence of four disconnected

stable states. The cross sections of the basin of attraction

which enable to obtain each of the previous attractors are

presented in Fig. 2.

The basins of attraction associated with each of the

previous coexisting attractors are provided in Fig. 3. These

basins show the set of the initial conditions which enable to

obtain each of the previous coexisting stable states. From

these attraction basins, it can be seen that the one of the

chaotic stable states is larger than one of the periodic

stable states. In the same line when b2 ¼ 1:183 the model

under consideration displays the coexistence of six

Fig. 1 Bifurcation diagram showing local maxima of neuron state

variable x1 when the activation gradient b2 of the second neuron is

varied in the range 1:15� b2 � 1:25: a, b exhibit the coexistence of

four different bifurcation diagrams while c, d show the corresponding

graph of the maximal Lyapunov exponents (with respect colors). The

activation gradients of the first and the third neuron are b1 ¼ 0:9 and

b3 ¼ 1:4
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disconnected stable states for different initial conditions as

depicted in Fig. 4. For each coexisting attractor, the

domain of initial conditions which permits to capture it is

provided in Fig. 5. As in the case of the coexistence of four

attractors, the attraction basins of the chaotic stable state

are also larger than one of the periodic stable states.

Table 2 provides a summary of the initial condition used to

capture each of the coexisting stable states presented in this

work. In order to obtain the stability of the region where

the model defined in Eq. 3 displays coexisting attractors,

let _x1 ¼ _x2 ¼ _x3 ¼ 0. Using the MATLAB built-in func-

tion’’ fsolve,’’ the stability of our model is provided in

Table 3. From the results of this table, we conclude that the

system experiences self-excited stable states.

Table 1 Method used to obtain

coexisting bifurcation diagrams

of Fig. 1

Figure Gradient range Color diagram Scanning direction Initial condition starting

Figure 1 1:15� b2 � 1:25 Red Downward 1:44; 0; 0ð Þ
1:15� b2 � 1:25 Green Downward 2; 0; 0ð Þ
1:15� b2 � 1:25 Blue Downward 1:2; 0; 0ð Þ
1:15� b2 � 1:2 Magenta Downward 1:84; 0; 0ð Þ

Fig. 2 Coexisting multiple attractors’ behavior of chaotic and

periodic attractors near b2 ¼ 1:15 in the plane x1; x2ð Þ. Phase plane

trajectories of a pair of single scroll chaotic attractors are given in

(a) while the one given the for period-1 limit cycle is provided in

(b) for initial condition, see Table 2; the rest of the parameters are the

same used for Fig. 1

Fig. 3 Cross sections of the basin of attraction obtained when the

initial state of the third and the second neuron are x3ð0Þ ¼ 0 and

x2ð0Þ ¼ 0, respectively. These attraction basins correspond to the

asymmetric pair of period-1 cycle (red and blue) and the pair of

chaotic attractors (green and magenta). Parameters are those of Fig. 2
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Fig. 4 Coexisting multiple attractors’ behavior of two pairs chaotic attractors and one pair of periodic attractors near the activation gradient of

the second neuron b2 ¼ 1:183. The initial conditions used to obtain each attractor are provided in Table 2

Fig. 5 Cross sections of the basin of attraction obtained when the

initial state of the third and the second neuron are x3ð0Þ ¼ 0 and

x2ð0Þ ¼ 0, respectively. These attraction basins are associated with

the asymmetric pair of period-1 cycle (red and blue), the first pair of

chaotic attractors (green and magenta), and the second pair of chaotic

attractors (purple and cyan). Parameters are those of Fig. 4
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4 Theory of linear augmentation

The implementation of this control method of linear aug-

mentation consists to couple a linear dynamic system with

a nonlinear system and then increasing the coupling

strength in order to achieve the control goal, which can be

described as [45–48]

_X ¼ G Xð Þ þ eY
_Y ¼ �kY � e X � bð Þ

�
ð5Þ

In Eq. 5, _X ¼ G Xð Þ represents any nonlinear system,
_Y ¼ �kY is the linear dynamical system coupled to the

nonlinear system, and k is its decay parameter [47]. In

Eq. (5), the linear system disappears in the absence of

coupling i.e. e ¼ 0ð Þ. In other words, the dynamic behavior

of the nonlinear system will not be influenced by the linear

system when this parameter condition is satisfied. Another

important parameter is b which is exploited to locate the

expected attractor based on the fixed points of the nonlinear

system. For higher values of the coupling strength, only

one desired attractor is obtained turning the system for

chosen parameter sets from multistable to monostable one.

In addition, the choice of adaptive feedback control instead

of non-adaptive control was guided by some recent results

Table 2 Initial conditions used

to obtain coexisting attractors of

Figs. 2 and 4

Figures Coexisting Corresponding colors Corresponding initial condition

Figure 2 Period-1 limit cycles Red 1; 0; 0ð Þ
Blue �1; 0; 0ð Þ

Chaotic attractor Magenta 2; 0; 0ð Þ
Green �2; 0; 0ð Þ

Figure 4 Period-1 limit cycles Blue 1:44; 0; 0ð Þ
Red �1:44; 0; 0ð Þ

Spiral chaotic attractor Magenta 0:5; 0; 0ð Þ
Green �0:5; 0; 0ð Þ

Spiral chaotic attractor Violet 1; 0; 0ð Þ
Cyan �1; 0; 0ð Þ

Table 3 Coexistence types, the equilibrium points states, their eigenvalues, and stabilities for different values of b2

b2 Coexistence Equilibrium points states P0;1;2;3;4 Eigen values k1;2;3 Stabilities

1.15 Period-1 limit cycles (lower and upper) and

Chaotic attractor (lower and upper)

P0 0; 0; 0ð Þ - 0.4351 ? 3.1857i

- 0.4351 - 3.1857i

1.6253 ? 0.0000i

Unstable saddle

focus

P1;2 �3:674;�0:5449� 1.3659i;�8:9759ð Þ - 1.0000 - 0.0000i

- 0.9782 - 0.0000i

- 5.3874 ? 0.0002i

Stable saddle

focus

P3;4 �0:3886;�0:1434;�3:0253ð Þ 0.7483 ? 1.9585i

0.7483 - 1.9585i

- 0.9971 ? 0.0000i

Unstable saddle

focus

1.183 Period-1 limit cycles (lower and upper), spiral

chaotic attractor (lower and upper), and spiral

chaotic attractor (lower and upper)

P0 0; 0; 0ð Þ - 0.4269 ? 3.2062i

- 0.4269 - 3.2062i

1.6648 ? 0.0000i

Unstable saddle

focus

P1;2 �3:665;�0:5325� 1.3278i;�8:9755ð Þ - 1.0000 ? 0.0000i

- 0.9778 ? 0.0000i

- 5.4599 - 0.0001i

Stable saddle

focus

P3;4 �0:3898;�0:1389;�3:0339ð Þ 0.7752 ? 1.9836i

0.7752 - 1.9836i

- 0.9972 ? 0.0000i

Unstable saddle

focus
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of control and synchronization on some nonlinear dynam-

ical systems [23, 53–57]. Indeed, it has been demonstrated

in these recent works that control and synchronization of

the nonlinear system using adaptive feedback control offer

robustness to the system more than non-adaptive control. In

addition, the use of the adaptive feedback control can also

view as a scalar controller; thus, only one state of the

systems is used in the process. Thus, the energy as well the

resources consumption is very low. Also, the control

method used in this work is external and preferred in case

of inaccessibility of the internal system parameter and/or

variables.

5 Control of the multistability

When a linear controller is coupled with a nonlinear 3D

HNN, an autonomous 4D dynamical system describing the

dynamics of the controlled HNN is given in Eq. 6

_x1 ¼ �x1 þ 2 tanh b1x1ð Þ � 1:2 tanh b2x2ð Þ þ 0:48 tanh b3x3ð Þ
_x2 ¼ �x2 þ 3:6 tanh b1x1ð Þ þ 1:7 tanh b2x2ð Þ þ 1:776 tanh b3x3ð Þ
_x3 ¼ �x3 � 9 tanh b1x1ð Þ þ ey
_y ¼ �ky� e x3 � bð Þ

8
>><

>>:

ð6Þ

To explore the annihilation process from multi-

stable system to monostable one with a unique survive

stable state, we exploit the equilibrium points of Eq. 3 in

the window of multistable behavior. When we set

b2 ¼ 1:15, k ¼ 0:5 and b ¼ 8:9759. The value of b repre-

sents one among the value of the equilibrium point x3 0ð Þ
which enables to obtain the stability of the four coexisting

attractors depicted in Fig. 2.

5.1 Control of four coexisting attractors

When we set b2 ¼ 1:15 and increasing the control

parameter e in the range 0 ! 0:15½ � as shown in Fig. 6,

four sets of data are superimposed. Each set of data cor-

responds to the route followed by each attractor during the

control mechanism. As depicted in Fig. 6, three crises

enable all the other routes to follow only the red route. In

the region (A1), for very small values of e four attractors

coexist including two chaotic attractors (magenta color and

green color) with two periodic attractors (red color and

blue color) being depicted. At the upper boundary of (A1),

the diagram in green (chaotic one) undergoes a crisis (first

crisis) and merges with the diagram in blue. In the region

(A2), because of the previous merging crisis, there are only

three distinct diagrams that follow their bifurcations. For a

discrete value e ¼ 0:016, we have the coexistence of three

disconnected attractors, involving a pair of period-1 limit

cycle with an asymmetric chaotic attractor as presented in

Fig. 7.

In the region (A3), we observe the superposition of three

periodic diagrams. At the upper boundary of (A3), a crisis

(second crisis) enables the diagram in magenta displaying

a period-3 limit cycle to merge with the diagram in red. In

the region (A4), because of the second crisis, there are only

two distinct diagrams that follow their bifurcations. At the

upper boundary of (A4), a crisis (third crisis) enables the

bifurcation diagram in blue (displaying Period-2 limit

cycle) to merge also with the red bifurcation diagram.

When the critical value e ¼ 0:1, all the diagrams have

already merged with the red one and the control goal is

achieved as depicted in the region (A5). For a particular

value e ¼ 0:12, Fig. 8 displays the unique attractor with

their corresponding frequency spectrum which has sur-

vived through the control scheme. We can say that the

route exhibited by the red diagram is a magnetized route

which attracts toward its all the other routes as the control

parameter is increased.

5.2 Control of six coexisting attractors

When we set b2 ¼ 1:183, k ¼ 0:5, b ¼ 8:9755 and varying

e in the range 0 ! 0:15½ �, six set of data are superimposed

(magenta, green, blue, red, black, and yellow color). Each

set of data corresponds to the bifurcation route follows by

each attractor during the control mechanism. As depicted

in Fig. 9, five crises enable all the other routes to follow

Fig. 6 Bifurcation diagram showing local maxima of the state

variable of the third x3 versus the coupling strength e in the range

0 0:15½ � of the controlled system (see Eq. 6). Four separated

diagrams are superimposed when increasing the coupling strength e
for four different initial conditions. The diagram in green is obtained

with the initial conditions �2; 0; 0; 0ð Þ, the one in magenta is obtained

for the initial conditions 2; 0; 0; 0ð Þ, red is for the initial conditions

1; 0; 0; 0ð Þ, and blue diagram is obtained for the initial conditions

�1; 0; 0; 0ð Þ The rest of the controller parameters are fixed to k ¼ 0:5
and b ¼ 8:9759 while those of neural network are the same with

Fig. 2
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only the yellow one. For a very small value of e, six distinct
diagrams coexist; when gradually increasing the control

parameter, several crises occur.

At the critical point (C1), the first crisis arises and the

chaotic diagram in magenta merges with the chaotic one in

green. Note that after the first crisis, only five bifurcation

diagrams coexist before the second crisis. When perform-

ing a tiny incrementation of e, the second crisis happens at

the crucial value (C2), and the diagram in green merges

with the blue diagram. When further increasing the control

parameter, at the critical value (C3), the third crisis occurs

and the blue diagram merges with the diagram in yellow.

As shown in Fig. 9, for the critical value (C4), the fourth

crisis occurs and the diagram in red merges with the dia-

gram in black. A further incrementation of the control

parameter enables the fifth crisis to occur at (C5); the route

followed by the black diagram merges with the one of the

yellow. Past the critical value (C5), all the routes followed

by the diagrams have merged in a unique one and the

control goal is achieved. Note that after each crisis, the

number of routes becomes one less than the initial number.

Also, we can say that the route exhibited by the yellow

diagram is a magnetized route which attracts toward it all

the other routes as the control parameter is increased.

Based on these investigations, we can easily conclude that

the linear augmentation scheme enables to move from a

multistable HNN (with six coexisting attractors) to a

monostable HNN (one attractor) using a judicious choice

of controller parameters.

6 Circuit implementation

In order to confirm the results obtained previously, this

section focused on the implementation of the controlled

HNN using PSPICE simulations software

[13, 14, 18, 29, 30, 48]. Remark that the hardware exper-

iments on a breadboard would have been welcome.

Fig. 7 Attractors of the controlled system, showing three coexisting

attractors (a pair of symmetric period-1 limit cycle (red and blue

colors) and asymmetric chaotic attractor (magenta color) when the

coupling strength e ¼ 0:016. The rest of the system parameters are

those of Fig. 6 and the other initial conditions fixed to zero

Fig. 8 Phase portrait of the surviving attractor obtained when the control scheme is achieved for a discrete value the coupling strength e ¼ 0:12
with their corresponding frequency spectrum
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However, the PSPICE simulation (which confirms our

theoretical/numerical results) represents an alternative

approach to solving the mathematical model of the con-

trolled HNN considered in this work. A schematic diagram

of a chaotic HNN coupled with a linear dynamical system

is presented in Fig. 10. The circuit in Fig. 10 has been

designed following the method of analog computer-based

on Miller integrators, using operational amplifiers, capac-

itors, resistors [13, 14, 18, 29, 30, 48]. The neuron state

variables xj j ¼ 1; 2; 3ð Þ and the controller state variable y

of Eq. 6 are associated with the voltages across the

capacitors C1, C2, C3 and C4, respectively. Differential

equations of system (7) are obtained by applying Kirch-

hoff’s laws

C1

dX1

dt
¼ � 1

R
X1 þ

1

R1

tanh b1X1ð Þ � 1

R2

tanh b2X2ð Þ þ 1

R3

tanh b3X3ð Þ

C2

dX2

dt
¼ � 1

R
X2 þ

1

R4

tanh b1X1ð Þ þ 1

R5

tanh b2X2ð Þ þ 1

R6

tanh b3X3ð Þ

C3

dX3

dt
¼ � 1

R
X3 �

1

R7

tanh b1X1ð Þ þ 1

Re
Y

C4

dY

dt
¼ � 1

Rk
Y � 1

Re
X3 �

R

Rb
VCC

� �

8
>>>>>>>>>><

>>>>>>>>>>:

ð7Þ

where X1, X2, X3, and Y are the voltage across capacitors

C1, C2, C3 and C4 With C1 ¼ C2 ¼ C3 ¼ C4 ¼ C ¼ 10 nF,

R ¼ 10KX, RC ¼ 1KX, I0 ¼ 1:1mA, Vcc ¼ 15V,

tanh
Rbj

2RVT
Vin

� �
¼ tanh bjVin

� �
so bj ¼

Rbj

2RVT
with VT ¼

26mV thus, Rb1 ¼ 2RVTb1 ¼ 520� 0:9 ¼ 468X,
Rb3 ¼ 2RVTb3 ¼ 520� 1:4 ¼ 728X, t ¼ sRC, Xi ¼
1V � xiði ¼ 1; 2; 3Þ, R1 ¼ R

w11j j ¼ 5 kX, R2 ¼ R
w12j j

¼ 8:333 kX, R3 ¼ R
w13j j ¼ 20:833 kX, R4 ¼ R

w21j j ¼ 2:777 kX,

R5 ¼ R
w22j j ¼ 5:882 kX, R6 ¼ R

w23j j ¼ 9:293 kX et R7 ¼ R
w31j j

¼ 1:111 kX, Rk ¼ 20 kX, Rb2 ¼ tuneable, Re ¼ tuneable,

Rb ¼ tuneable.

As it can be observed in the controlled HNN depicted in

Fig. 10, there is a switch which enables the linear con-

troller to be connected to the nonlinear HNN. When the

switch is opened, the controller is OFF and the HNN dis-

plays the coexistence of up to six disconnected attractors as

shown in Fig. 11. Know when the switch is closed the

controller is ON. For a suitable choice of the controller

parameter (i.e., Rb ¼ 16:71 kX, Re ¼ 83:33 kX and

Rk ¼ 20 kX), the HNN circuit exhibits a monostable dy-

namics. Figure 12 displays a monostable period-1 limit

cycle and their corresponding frequency spectrum which

supports the control schema used in this work. Thus, we

have provided an alternative method to support our

obtained results using the PSPICE simulation environment.

7 Application of the proposed HNN
to image encryption

7.1 The algorithm

Chaos acts as a vital tool in modern cryptographic proce-

dures [58]. Based on the advantages of the presented HNN

chaotic system, we proposed a new image encryption

algorithm based on fractal Julia set. In effect, Julia set is a

fractal of complex numbers considered as input whose

output through a quadratic function f ðzÞ ¼ z2 þ c is

bounded [59]. Here c is a complex constant. The function

f ðzÞ is initialized and iterated. Setting the real values of the

complex number z as the x pixel index and the imaginary

values of the complex number z as the y pixel index, the

Julia set can be visualized for different values of the

complex constant c. An issue of this visualization for a

complex Julia set is illustrated in Fig. 13 for

c = - 0.745429. The encryption procedure of our pro-

posed approach is described in Fig. 14, and the detailed

steps are stated as follows:

Fig. 9 Bifurcation diagram showing local maxima of the neuron state

variable x3 versus the coupling strength e in the range 0 0:15½ � of
the controlled system (see Eq. 6). Six separated diagrams are

superimposed when increasing the coupling strength e from three

different initial states. The diagram in yellow is obtained with the

initial states 1:44; 0; 0; 0ð Þ; the blue one is obtained for the initial

states �1:44; 0; 0; 0ð Þ. The one in magenta is obtained for the initial

states 0:5; 0; 0; 0ð Þ. The diagram in red is obtained for the initial states

�0:5; 0; 0; 0ð Þ. The black diagram is obtained with the initial states

1; 0; 0; 0ð Þ and green one for the initial states �1; 0; 0; 0ð Þ. The rest of
the controller parameters are fixed to k ¼ 0:5 and b ¼ 8:9755 while

those of neural network are the same with Fig. 2
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Step 1 Select the initial values (x10, x20, x30, b1; b2; b3)
for iterating the presented HNN chaotic system

for h 9 w 9 c times to outcome three sequences

{X1}, {X2}, and {X3}, where h 9 w is the

dimension of the plain image.

Step 2 Compute the sequence of real values Re and the

sequence of imaginary values Im from the

complex domain of the Julia set of fractals.

Step 3 Convert the real sequence X1 to integer as

X ¼ fix X1i � 1016 mod 256
� �

; then, perform Bit-

XORed process on the sequence X and the

sequence of real values Re of the Julia set to

construct the first key sequence Key1 as

Key1 ¼ X 	 Re.

Step 4 Substitute the plain image (P) using Key1:

C1 ¼ P	 Key1.

Step 5 Permute the C1 matrix using two sequences X2

and X3 as follows.

(a)

(b)

Fig. 10 Circuit diagram of the

controlled HNN. a Represents

the main neural network follows

by the linear system; b is the

smooth activation function
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(a)

(b)

(c) 

V(X2)

-1.0V 0V 1.0V
V(X3)

-2.0V

0V

2.0V

4.0V

V(X2)

-1.0V 0V 1.0V
V(X3)

-4.0V

-2.0V

0V

2.0V

V(X2)

-2.0V 0V 2.0V
V(X3)

-4.0V

0V

4.0V

8.0V

V(X2)

-2.0V 0V 2.0V
V(X3)

-8.0V

-4.0V

0V

4.0V

V(X2)

-2.0V 0V 2.0V
V(X3)

-5.0V

0V

5.0V

V(X2)

-2.0V 0V 2.0V
V(X3)

-8.0V

-4.0V

0V

4.0V

Fig. 11 PSPICE simulation showing the coexistence of six different

attractors for Rb2 ¼ 625X. The diagrams in a, b and c show the pair f

period-1 limit cycles (lower and upper), the first pair of spiral chaotic

attractors (lower and upper), and the second pair spiral chaotic

attractors (lower and upper), respectively. The initial conditions used

to obtain these attractors are VðX1ð0Þ;X2ð0Þ;X3ð0ÞÞ ¼ ð�5:5; 0; 0Þ;
ð�0:5; 0; 0Þ; and ð�1:5; 0; 0Þ, respectively
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Step 6 Convert the real sequence X3 to integer as

Z ¼ fix X3i � 1016 mod 256
� �

; then, perform Bit-

XORed process on the sequence Z and the

sequence of imaginary values Im of the Julia set

to construct the second key sequence Key2 as

Key2 ¼ Z 	 Im.

Step 7 Substitute the permutated image (PerIm) using

Key2 to obtain the final encrypted image (C).

C ¼ PerIm	 Key2.

7.2 Experimental analysis

With the aim to assess the proposed cryptosystem, exper-

imentations are performed on a laptop equipped with Intel

CoreTM i7-3630QM, 16 GB RAM, and provided with

MATLAB R2016b. Our dataset consists of three medical

images each of size 256 9 256 (see Fig. 15) obtained from

various medical image sources including the COVID-CT

database [60] which is the most important database of

COVID-19 computed tomography (CT) images available

for the public. The initial values for iterating the presented

HNN chaotic system are set as x10 = 2, x20 = 0, x30 = 0,

b1¼ 0.9, b2¼ 1.15, b3¼ 1.4.

7.2.1 Correlation of adjacent pixels

One of the fundamental tools to measure the robustness of

an image is the correlation coefficient of adjacent pixels

Cmn. For regular images, Cmn values are near to 1 in every

direction while for cipher images of a good encryption

algorithm Cmn values should close to 0 [59]. To evaluate

(a)  (b) 

V(X2)

-1.0V 0V 1.0V
V(X3)

-2.0V

0V

2.0V

4.0V

Frequency

0Hz 2.5KHz 7.5KHz

V(X3)

1.0V

100uV

Fig. 12 PSPICE simulations results showing in a the monostable attractor generated from the controlled HNN with their corresponding

frequency spectra. This result is obtained for Rb ¼ 16:71 kX, Re ¼ 83:33 kX, and Rk ¼ 20 kX. Initial conditions are ð�0:3; 0; 0; 0Þ

OH= order(X2(1 : h));  //Order the elements in acceding order.
OW= order(X3(1 : w));  

PerH=index (OH in X2(1 : h));  //Gets the index of each element of sequence OH in 
sequence X2(1 : h).
PerW=index (OW in X3(1 : w));  
// Permutation process using PerH and PerW sequences , which PerH acting to shuffle 
rows and PerW acting to shuffle columns. 

for i=1 to h 
for j=1 to w

 for k=1:d 
PerIm(i,j,k)=P(PerH(i),PerW(j),k);

end 
end 

end 
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Cmn, we randomly selected 104 pairs of neighboring pixels

in every direction. Cmn are usually stated as follows:

Cmn ¼
PA

x¼1 mx � mð Þ nx � nð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPA
x¼1 mx � mð Þ2

PA
x¼1 nx � nð Þ2

q ð8Þ

where mx, nx are used to point out the values of adjacent

pixels and A points out the whole amount of nearby pixel

pairs. It is evident from the outcomes plots presented in

Fig. 16 that no profitable information can be retrieved from

the encrypted data.

7.2.2 Information entropy

To assess the concentration of the pixel values in the

image, information entropy is applied, which can be

computed as:

EðYÞ ¼ �
X2b�1

a¼1

pðyaÞ log2 pðyaÞð Þ ð9Þ

where pðyaÞ represents the possibility of ya and b indicates

the pixel bit level, which is equivalent to the typical

entropy value 8-bits [61]. Table 4 states the outcomes of

Fig. 13 Visualization of the Julia set for c = - 0.745429

Substitution

Permutation

Julia set Re(Z)

Substitution

Julia set Im(z)

H
N

N
 C

haotic System

Using X2 and X3

Using X2

Using X1

Fig. 14 Outline of the

encryption process for the

proposed encryption mechanism
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entropy values for original images and their equivalent

cipher ones, whose values for the cipher images are very

close to 8.

7.2.3 Histogram test and Chi-square test

The reverberation of the organization of pixels in an image

is evaluated using the histogram test. A good designed

Plain-Sample1 Plain-Sample2 Plain-Sample3

Enc-Sample1 Enc-Sample2 Enc-Sample3

Fig. 15 Encryption issues and

experimental dataset of images

Fig. 16 Distribution of Cmn for original and cipher sample 1 image. This is the representation of pixels gray values on position (x ? 1, y ? 1)

with respect to pixels gray values on position (x, y)
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image encryption approach has a similar distribution of

distinct cipher images for guaranteeing to resist statistical

attacks [62]. Figure 17 presents the histograms of the

experimented grayscale images which are distinct from

each other, whereas the distributions of their equivalent

cipher ones are identical with each other and are almost

flat. This uniformity may be verified by using the Chi-

square test. Table 5 provides the results of Chi-square

values with 0.05 as weight value. Usually, the flatness of

the histogram is validated if Chi-square value of the test

sample is less than 293.2478 indicating a p value higher

than 0.5. Regarding Table 5, the histogram test of various

test samples is validated.

7.2.4 NPCR tests

The outcome of varying pixels in the original image on its

equivalent cipher one is measured using NPCR (‘‘Number

of Pixels Change Rate’’), which can be computed as

follows.

NPCRP;C ¼
P

m;n Diffðm; nÞ
D

� 100%;

Diffðm; nÞ ¼ 0 if Pðm; nÞ ¼ Cðm; nÞ
1 if Pðm; nÞ 6¼ Cðm; nÞ

� ð10Þ

here D denotes the complete pixel numbers in the image.

The outcomes of NPCR for the experimented dataset are

displayed in Table 6, in which the medium value for the

experimented dataset is 99.6175%; consequently, the given

encryption approach is high sensitive to tiny pixel changes

in the original image.

7.2.5 Time analysis and comparison of the proposed
cryptosystem

One of the important measures to assess the performance of

an algorithm is its running speed. Definitely, an encryption

algorithm should take minimum execution time so that it

can be effectively used in enciphering images. Table 7

Table 4 Outcomes of information entropy

Image Original Cipher

Sample 1 7.486792 7.99929

Sample 2 7.31105479210 7.99924

Sample 3 4.738529048 7.99922

Plain (Sample1) Plain (Sample2) Plain (Sample3)

Cipher (Sample1) Cipher (Sample2) Cipher (Sample3) 

Fig. 17 Histograms of the experimented grayscale images for original and cipher images. This is the representation of frequency distribution of

pixels with respect to their respective gray values
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shows the running speed of Sample 1 images for different

sizes. The computational platform is equipped with Intel�

core TM i7-3630QM 16 GB RAM and a MATLAB

R2016b software. The computational time increases with

respect to the size of the plain image. Note this computa-

tional time also relies on the capacity of the workstation

(the processor and the RAM). Table 7 shows that an

acceptable running speed is obtained and the algorithm is

competitive with the results of the literature.

8 Comparative analyses and discussions

This analysis is done in two ways: First, we show the

superiority of the dynamical behaviors on the proposed

HNN. Second, we compare the results of the encryption

scheme with the existing literature.

8.1 Dynamic analysis

Very recently, several research works have been carried out

on the dynamic analysis of some particular classes of

HNNs among with those with fixed activation gradients

and those with variable activation gradients

[12–15, 20, 38]. From some of these works summarized in

Table 8, it has been found that the investigated models

were the phenomenon of the multistability characterized by

the coexistence of several firing patterns for the same set of

the synaptic weights by starting from different initial

conditions. The obtained results were further sup-

ported/validated using either hardware experiments of

PSPICE simulations. It is well known that in some cases

the multistable behavior is an undesirable behavior and

needs to beavoid sometimes. This is why in this work, we

introduce a simple 3D HNNs with variable activation

gradient.

In addition, we show the introduced model is able to

display the coexistence of up to six disconnected firing

patterns. We equally used the linear augmentation method

to annihilate the coexisting pattern of the neural networks.

It is good to mention that this annihilation process of the

multistability has not yet been addressed in the previous

works related to such neural networks with coexisting

behavior as well as the application in engineering.

8.2 Encryption technics

A variety of encryption methods can be found in the lit-

erature and classified either as a spatial domain or fre-

quency domain encryption algorithms. The first method

directly considers the pixel of the original image without

any transformation. The second method applies a mathe-

matical transformation on the original image to compute

some coefficients based on image pixels. Transform

domain-based algorithms seem to be more efficient and

robust than the spatial domain. In this paper, we will use

the Julia set and the discrete sequences of the proposed

HNN to transform the pixels of the plain image. Then, the

controlled sequences of a simple 3D Hopfield neural net-

work will be applied for encryption. Some achievements of

the proposed encryption technics are resumed in Table 9,

and a comparative analysis is carried out. It is obvious that

the proposed encryption scheme provides high security

over the existing literature.

Table 5 Chi-square values for

each encrypted test data
Images v2 values Decision

R G B Average

Sample 1 35,203.9231 42,540.1518 18,654.2550 32 132,7766 Non-uniform

Enc-Sample 1 255.3854 251.0452 253.7126 253.3810 Uniform

Sample 2 66,821.1256 18,764.5220 61,778.2589 49,121,3021 Non-uniform

Enc-Sample 2 262.0040 258.3696 268.2821 262,8852 Uniform

Sample 3 78,021.5000 50,118.2843 59,897.3678 62 679,0507 Non-uniform

Enc-Sample 3 249.8526 259.3578 265.8527 258,3543 Uniform

Table 6 Outcomes of NPCR

test for the experimented dataset
Image NPCR%

Sample 1 99.6299

Sample 2 99.6044

Sample 3 99.6185

Table 7 Comparison of the running speed of sample 1 images

Algorithm Image size

128*128 256*256 512*512 1024*1024

Proposed 0.12 0.21 0.99 3.56

[63] 0.05 0.22 0.97 3.93

[64] 6.30 8.20 16.43 38.00

[65] 21.03 27.12 36.53 63.82
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9 Conclusion

In this paper, a novel simple 3D autonomous HNN has

been introduced and investigated. Based on nonlinear

analysis technics, we have demonstrated that the investi-

gated system was able to exhibit the phenomenon of

multistability with up to six competing attractors. Using the

linear augmentation method, we have equally controlled

the multistable found in the HNN for some suitable choice

of controller parameters as well as the coupling strength.

Remark that, in the work of [39], the surviving attractor

was different from the initial coexisting ones, whereas in

the control scheme adopted in this work, the surviving

attractor is one among the initial coexisting attractors. It is

found that the control goal is achieved for the highest of the

coupling strength and the multistable HNN is metamor-

phosed in a monostable HNN. PSPICE simulations are also

provided to support the obtained results. It is important to

stress that the linear augmentation method has been con-

sidered in the literature only to control two or three dif-

ferent attractors (i.e., bistable or tri-stable systems) [39].

Also to the best of authors’ knowledge, no other chaotic

system, particularly no HNN with up to six disconnected

stable states, was successfully controlled in the literature

until date. Thus, the present results contribute to enrich the

literature about multistability and multistability control.

Finally, a simple encryption scheme is designed jointly

using the sequences of the proposed HNN and the

sequences of real/imaginary values of the Julia fractals set.

It is shown that the obtained cryptosystem is competitive

with the results of the literature given that the proposed

method achieved entropy of 7.9992, NPCR of 99.6299, and

encryption time of 0.21 for the 256*256 sample 1 image.

These results can be improved in the next future by

exploring the effect of the adapting synapse-based neuron

model also known as the tabu learning neuron model with

their applications to secure medical images in IoHT.
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