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Abstract
In this paper, a novel multi-exposure image fusion method based on generative adversarial networks (termed as GANFuse)

is presented. Conventional multi-exposure image fusion methods improve their fusion performance by designing

sophisticated activity-level measurement and fusion rules. However, these methods have a limited success in complex

fusion tasks. Inspired by the recent FusionGAN which firstly utilizes generative adversarial networks (GAN) to fuse

infrared and visible images and achieves promising performance, we improve its architecture and customize it in the task of

extreme exposure image fusion. To be specific, in order to keep content of extreme exposure image pairs in the fused

image, we increase the number of discriminators differentiating between fused image and extreme exposure image pairs.

While, a generator network is trained to generate fused images. Through the adversarial relationship between generator and

discriminators, the fused image will contain more information from extreme exposure image pairs. Thus, this relationship

can realize better performance of fusion. In addition, the method we proposed is an end-to-end and unsupervised learning

model, which can avoid designing hand-crafted features and does not require a number of ground truth images for training.

We conduct qualitative and quantitative experiments on a public dataset, and the experimental result shows that the

proposed model demonstrates better fusion ability than existing multi-exposure image fusion methods in both visual effect

and evaluation metrics.

Keywords Image fusion � Multi-exposure image � Generative adversarial network

1 Introduction

Powered by advanced digital image technology, the effect

of image vision is more demanding than ever before. High

dynamic range (HDR) technology, the one of the ways to

improve image quality, has aroused extensive attention. It

is widely applied in the fields of digital electronic products,

remote sensing, security monitoring and so on. The

dynamic range of image is the ratio of maximum brightness

to minimum brightness. The dynamic range of real-world

scenes is very wide [1]. However, ordinary image sensors

have fixed exposure settings and can only get images with

low dynamic range (LDR). Thus, due to the limitation of

ordinary image sensors, it is difficult for ordinary image

sensors to fully present the visual information in the real

scene. The HDR technology can improve the dynamic

range of the image. Through this technology, the visual

information of the extreme exposed area of real-world

scenes can be preserved [2]. Multi-exposure image fusion

(MEF) is the most common technique in HDR technology,

which merges LDR images with different exposures into a

well-expose image of HDR.

In 1984, MEF was firstly proposed in [3]. After that,

MEF has become a hot field, and many related methods

have been proposed. Existing MEF methods could be

generally divided into three categories: pixel- [4–7],

region- [8–12], and deep learning-based methods [13–18].

The first two categories have developed for many years and

widely used in all kinds of scenarios. Consequently, these

methods are known as traditional fusion methods.
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Generally, traditional methods contain three major steps,

including image transformation, activity-level measure-

ment and fusion rule designing [19]. However, these steps

are limited by implementation difficulty and high compu-

tational costs.

Deep learning-based methods can avoid these problems.

Because the trained network can generate the complex

relationship between source images and fused image, it can

automatically extract feature information from the images

and fuse these features without manual participation in

transformation and activity-level measurement. The fusion

process is simpler and more applicable. Through constraint

of loss function, the fused image has obvious targets, rich

details and good visual effects. Existing deep learning-

based methods have made some progress. But there is

definitely room for improvement. More effective loss

function and structure of the network will lead to better

fusion results. Specifically, SSIM is one of the quality

evaluations for image fusion, which measures the correla-

tion loss, brightness loss and contrast loss between source

images and fused image. DeepFuse sets SSIM as loss

function in their model [13]. But it will lose other key

information, such as contrast and texture information and

so on. IFCNN regards pre-trained CNN as a tool to extract

features from the source image [15]. However, the fusion

rule is still designed manually. FusionGAN formulates the

image fusion as an adversarial game between keeping the

infrared thermal radiation information and preserving the

visible appearance texture information [16]. Whereas,

FusionGAN pays too much attention on information from

the visible image and neglects information of the infrared

image, which may cause the loss of information from the

infrared image.

To overcome the above-mentioned problems, we pro-

pose a novel unsupervised MEF method based on GAN,

named as GANFuse. GANFuse consists of three compo-

nents: a generator and two discriminators. The generator

attempts to obtain a fused image which contains valid

information of the source images. Whereas, the discrimi-

nators are conducted to distinguish between fused image

and source images. This adversarial process will force the

generator to have better performance. As for loss functions,

the pixel intensities loss and gradient loss are applied in our

network that can help fused image to preserve luminance

information and texture information from the source ima-

ges. As shown in Fig. 1, the result of our GANFuse shows

the better visual effect, including luminance and texture.

Furthermore, in order to improve the robustness of the

algorithm, we establish the training dataset from extreme

exposure image pairs in different environments (indoor/

outdoor, day/night, side-lighting/back-lighting and so on).

The contributions of this work are as follows:

• A GAN-based unsupervised image fusion algorithm for

fusing extreme-exposure images is proposed. The

adversarial relationship enables fused image to have

more details from source images.

• Different from FusionGAN, a novel structure of GAN is

developed, which is more suitable for the task of MEF.

• We design a new loss function for MEF which can help

fused image to preserve more information from source

images.

• We construct a new training dataset which contains all

kinds of conditions. This dataset could enhance the

robustness of our method.

The rest parts of this paper are listed as follows. In Sect.

2, we briefly review related works from the literatures. In

Sect. 3, we introduce our proposed GANFuse, including

the architecture, loss function, training and testing pro-

cesses. The results of comparison experiments are pre-

sented in Sect. 4. And the conclusion is described in Sect.

5.

2 Related works

This section provides a brief summary of existing image

fusion methods based on deep learning. Furthermore, in

consideration of our fusion method is based on GAN, we

will discuss the basic theory of GAN, representative vari-

ants of GAN and their applications.

2.1 Fusion methods based on deep learning

In recent years, since the deep learning has aroused

extensive concern, deep learning has been applied in image

fusion, due to its outstanding ability of feature extraction

and universality. The main research theories are divided

Fig. 1 Schematic illustration of image fusion
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into the following three categories. (1) Methods combine

traditional methods with deep learning. In these methods,

deep learning framework functions as a tool to extract

image features. Representatively, Liu et al. [20] decom-

poses the source images into detail layer and base layer,

and then utilizes convolutional sparse representation (CSR)

to merge these layers. Finally, the fused image is recon-

structed by the fused base layer and detail layer. In

IFCNN [15], Liu et al. proposed a universal network for

image fusion and designed different fusion rule according

to different type of source images. (2) These methods

regard the convolutional network function as a way to

generate weight map which shows the importance of each

pixel from source images. For instance, Li et al. [21] uses

the VGGNet to extract image features and construct a

robust weight map for fusion. (3) Other methods present an

end-to-end learning framework for image fusion. Prab-

hakar et al. [13] proposes an unsupervised deep learning

framework for multi-exposure fusion. They utilize a novel

CNN architecture and designed a no-reference quality

metric as the loss function. In FusionGAN and its vari-

ants [16, 22, 23], a generative adversarial network is

applied to fuse infrared and visible images. The fused

image generated by the generator is forced to have more

details existing in the visible image by applying the dis-

criminator to distinguish differences between them.

Although these works have achieved promising pro-

gress, there are still some drawbacks. (a) Many existing

methods use neural network to extract features and

reconstruct these features. However, fusion rules are

designed manually. Thus, these methods still have limita-

tions of traditional fusion methods. (b) Unsupervised deep

learning methods are implemented by designing a suit-

able loss function. However, finding an effective loss

function is still a challenge. (c) Existing GAN-based fusion

methods applied discriminator to force fused image to

contain more details in one of the source image, leading to

the loss of information from the other source image.

To address these drawbacks, we research an approach to

MEF that can preserve more effective information from

source images under the framework of GAN. Motivated by

the success of the FusionGAN on infrared and visible

image fusion, we aim to develop the structure of Fusion-

GAN and make our structure suitable for MEF. In general,

there are three improvements in our method.

1. FusionGAN feeds visible image and fused image into

discriminator. Actually, fused image contains not only

visible information, but also infrared information.

Therefore, it is easy for discriminator to distinguish

between the visible image and fused image. According

to the principle of GAN, the stronger distinguishing

ability the discriminator has, the better the fused image

generated by the generator performs. To improve

discriminator’s ability, we want to find a way to get the

contribution of source images in the fused image and

set these contributions and fused image as input of

discriminators. By coincidence, this idea is included in

the SCD loss function [24]. The main idea of SCD is

that the difference between the fused image (F) and the

source image ðS1Þ represents the contribution of the

source image ðS2Þ and vice versa. Therefore, we think

that the difference image between the fused image (F)

and the input image ðS2Þ almost contains the informa-

tion transmitted from another input image ðS1Þ. Con-
sequently, in our networks, by feeding jF � S2j and S1
into discriminator 1 and jF � S1j and S2 into discrim-

inator 2, we make it difficult for the discriminators to

distinguish the input data and makes the adversarial

relationship between the two discriminators and the

generator more fierce. The proposed network overall

architecture is shown in Fig. 2.

2. In the generator, instead of using concat operation to

fuse feature maps which is applied in FusionGAN, we

choose tensor addition as the fusion rule. It is due to the

fact that purpose of MEF is to get the well-exposure

image whose exposure value is the average of the

source image. According to this theory, IFCNN uses

the elementwise-mean fusion rule [15] to fuse multi-

exposure images. But simply using elementwise-mean

fusion rule may cause the loss of information from

source images. Therefore, we choose tensor addition to

merge feature maps. Average operation is done by the

follow-up networks.

3. As mentioned in Sect. 1, DeepFuse sets SSIM as loss

function. Due to the fact that DeepFuse is the first work

that uses deep CNN architecture for MEF, following

with DeepFuse, many existing deep learning-based

image fusion methods employ the metric SSIM as the

loss function [15, 20, 25]. However, simply depending

on SSIM to constrain whole network leads to loss of

other information. As we know, the most important

Fig. 2 Overall architecture of GANFuse
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information in an image is texture information and

luminance information. Consequently, to preserve

these key information in fused image, we include the

gradient loss and pixel intensities loss as the loss

function. Moreover, in the experimental result section,

we use SSIM as one of metrics to evaluate the fused

image, and our result shows the highest value among

the comparison methods.

2.2 The basic theory of GAN

Generative adversarial net was initially proposed by IanJ

Goodfellow et al. in 2014 [26]. Different from conven-

tional neural networks, network training requires a gener-

ator (G) and a discriminator (D) to work simultaneously.

This framework corresponds to a minimax two-player

game. Game players are generator and discriminator net-

work. During training step, the ability of G and D are

gradually improved until the two sides to achieve equilib-

rium. Given the input variable (x), the generator G is used

to generate output y ¼ GðxÞ. Through training process, G

can learn a training distribution PGðxÞ which approximate

to real data distribution PDataðxÞ. Then, the discriminator D

is trained to determine whether the input is from PDataðxÞ or
PGðxÞ. The purpose of G is to generate a fake data which

can fool the D. However, D aims at differentiating between

real data and fake data. Through this adversarial relation-

ship, the distribution generated by G will gradually

approximate the real data.

The optimization formulation of G is formulated as:

G ¼ argmin
G

DivðPGðxÞ;PDataðxÞÞ; ð1Þ

where Div denotes the divergence between PDataðxÞ and

PGðxÞ. The function of D can be expressed as:

D ¼ argmax
D

VðG;DÞ; ð2Þ

where V(G, D) is defined as follows:

VðG;DÞ ¼ Ex�Pdata
½logPðxÞ�

þ Ex�PG
½log ð1� PðxÞÞ�:

ð3Þ

Thus, the optimization formulation of generative

adversarial network can be expressed as:

G ¼ argmin
G

max
D

VðG;DÞ: ð4Þ

G and D are alternately trained. With the advance of the

adversarial process, the data generated by G will be grad-

ually similar to the real data.

2.3 Variants of GAN and their applications

GAN is a novel network which can generate more real-like

data. However, GAN suffers from unstable training. Since

the year of 2014, several works have attempted to solve

this problem. For example, deep convolutional GAN [27]

defines a set of constraints on the architecture of GAN that

makes their model stable to train. For optimizing the

unreasonable divergence measurement in original GAN,

WGAN [28] introduces the Wasserstein distance to

improve the stability of training. To overcome the van-

ishing gradients problem caused by loss function, least

squares GAN (LSGAN) [29] adopts the least squares loss

function for the discriminator. StyleGAN [30] embeds the

input latent code into an intermediate latent space and

proposes two new distribution quality metrics for generator

architecture that makes their model more linear, less

entangled representation of variation. Conditional GAN

(cGAN) extends GAN to a conditional model by feeding

auxiliary information such as class labels or data from

other modalities into the discriminator and generator [31].

For translating clothing images between two specific

clothing categories, Liu et al. [32] proposes category-at-

tribute GAN (CA-GAN) framework, including three dis-

criminators. Overall, in the future, GANs have the potential

to apply in many fields.

3 Proposed method

The color conversion of the proposed fusion model is

presented in Fig. 3. We decomposed source images into

three channels, Y, Cb and Cr. The model we proposed is

used for fusing Y channel of source images since the tex-

ture details of image are mainly presented by luminance

channel (Y) of image. The fusion rule for chrominance

channels (Cb and Cr) will be introduced in Sect. 3.5. The

architecture of networks, loss function, training and testing

processes will be described in the remainder of this section.

Fig. 3 The whole procedure of the proposed fusion model
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3.1 GANFuse

Learning ability of GAN is depending on the structure of

network and the loss function. There are three differences

between the GANFuse and FusionGAN. Firstly, we train

two discriminators to optimize the generator that makes the

fused image to contain more details in extreme exposure

image pairs. Secondly, we design a new input mode to

improve the discretion ability of discriminators. Thirdly,

according to the purpose of MEF, we set pixel intensity

loss and gradient loss of source images as generator’s loss

function. The proposed network overall architecture is

shown in Fig. 2. The Y channel of under-exposure image

and the Y channel of over-exposure image are fed to

generator (G), and the output of the generator is the Y

channel of the fused image.

As mentioned in Sect. 2.1, we input jF � S2j and S1 into

discriminator 1 ðD1Þ to distinguish between contribution of

S1 in fused image and S1. In the meantime, we input jF �
S1j and S2 into discriminator 2 ðD2Þ to distinguish between

contribution of S2 in fused image and S2. This input model

enhances the differentiating capacity of discriminators,

which force generator to generate real-like fused image. In

the training phase, the two discriminators are trained

simultaneously by testing them against the G. After train-

ing procedure, D1 cannot differentiate between the contri-

bution of S1 in fused image and S1, and D2 cannot

differentiate between the contribution of S2 in fused image

and S2.

3.2 Loss function

The loss function contains two parts, losses of generator

and discriminators. The details are presented as follows.

The loss function of generator (G) consists of over-expo-

sure image’s loss LIo and under-exposure image’s loss LIu .

LG ¼ LIo þ cLIu ; ð5Þ

where c is used to control the trade-off between over-ex-

posure image and under-exposure image loss. LIo is defined

as follows:

LIo ¼ LadvIo
þ aLconIo

; ð6Þ

where a is a weight controlling the trade-off between two

terms. LconIo
denotes the content loss of over-exposure

image, which aims to save the over-exposure image

information in the fused image. As mentioned in Sect. 2,

we aim to reserve the gradient information and pixel

intensities information in fused image. Therefore, LconIo
is

defined as follows:

LconIo
¼ 1

h � w sumð If � Iok kFÞ
�

þ r � sumð CIf � CIok kFÞ
�
;

ð7Þ

where the weight r is used to control the trade-off. h and w

presents the height and width of the source image. sum

represents element summation of the input. �k kF is the

matrix Frobenius norm, C denotes the gradient operation.

LadvIo
conveys the adversarial loss between G and D1, which

is defined as follows:

LadvIo
¼ 1

h � w � sum½�D1ðjIf � IujÞ�: ð8Þ

In order to establish an adversarial relationship between

discriminators and generator, we set a negative sign in

front of D1.

The second term of LG presents the loss of under-ex-

posure image, which is defined as follows:

LIu ¼ LadvIu
þ bLconIu

; ð9Þ

where the weight b is used to control the trade-off. Simi-

larly, LconIu
is the content loss of Iu and If , which is defined

as follows:

LconIu
¼ 1

h � w sumð If � Iuk kFÞ
�

þ r � sumð CIf � CIuk kFÞ
�
:

ð10Þ

LadvIu
conveys the adversarial loss between G and D2,

which is defined as follows:

LadvIu
¼ 1

h � w � sum½�D2ðjIf � IojÞ�: ð11Þ

Discriminator shortens the difference between fused

image and source images. The adversarial loss of D1 and

D2 judge the similarity of source images and fused image.

The loss function of D1 and D2 are shown as follows:

LD1
¼ 1

h � w � sum½D1ðjIf � IujÞ�

� 1

h � w � sum½D1ðIoÞ�;
ð12Þ

LD2
¼ 1

h � w � sum½D2ðjIf � IojÞ�

� 1

h � w � sum½D2ðIuÞ�:
ð13Þ

We regard D1ðjIf � IujÞ and D2ðjIf � IojÞ as fake data

which is decreased by discriminator, and regard D1ðIoÞ and
D2ðIuÞ as real data which is increased by discriminator.

Thus, there was a negative sign in front of real data.
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3.3 Network structure

From Fig. 2, we can see that the whole network structure

consists of two discriminators ðD1 and D2Þ and one gen-

erator (G). In this section, the structure of ðD1, D2Þ and

G will be introduced.

3.3.1 Generator

The structure of G consists of three parts, namely, feature

extraction layers, fusion operation and reconstruction lay-

ers, as illustrated in Fig. 4. The function of feature

extraction layer is to get features from source images. We

use the same feature extraction layer to get features of

under-exposure image and over-exposure image. There-

fore, we can add these extracted information, and then fed

them into the reconstruction layer. The output of the

reconstruction model is the fused image.

Owing to the random initialized kernels, training the

end-to-end model is unstable and difficult. An effective

way to handle this issue is using a well-trained feature

extraction model [33, 34]. Thus, we choose pre-trained

Resnet V1 [35] as the feature extraction layers. It learns

residual representations between inputs and outputs by

using multiple parametric layers, which can avoid vanish-

ing gradient. As is shown in Fig. 4, our feature extraction

layers has five bottlenecks. And n48 on bottleneck 1

denotes that the depth of bottleneck 1 is 48. The archi-

tecture of each bottleneck is illustrated in Fig. 5. For

avoiding loss information in extreme exposure image pairs,

we set the stride of all kernels to 1. Reconstruction layers

comprise five CNN layers. Batch normalization and ReLU

are applied to alleviate gradient exploding and accelerate

the training.

3.3.2 Discriminator

By designing discriminators, the details of fused image are

more similar to under-exposure image and over-exposure

image. The networks of these two discriminators have the

same network, which is shown in Fig. 6. And the stride of

all layers is set to 2 without padding.

3.4 Training

As for the training data set, we collect 30 pairs of exposure

stacks which are available publicly from the Internet [36].

It contains all kinds of conditions. Due to the huge amount

of source data, we down-sample the source images and

crop them into 7552 patch pairs with the size of 84� 84.

We set the learning rate to 10�4 and train the network for 5

epochs with all the training patches being processed in each

epoch.

3.5 Testing

After training phase, we can get the fused image in the Y

channel. The chromaticity channels of fused image are got

by weighting sum of input chromaticity channel values.

The main information is presented in the Y channel. Thus,

different fusion strategies are applied in literature for Y, Cb

and Cr fusion [13, 37]. We can choose different methods to

merge RGB channels. However, there is usually a sub-

stantial correlation between the RGB channels. Therefore,

fusing source image in RGB channels will ignore this

correlation and cause obvious color difference. We merge

the chromaticity channels of the source image by following

the strategy of Prabhakar [37], which is shown as follows:

x ¼ x1jx1 � sj þ x2jx2 � sj
jx1 � sj þ jx2 � sj ; ð14Þ

where the x1 and x2 denote the pixel intensities of image

pairs. The fused chrominance value is obtained by

weighing two chrominance values with s subtracted value

from itself. In our work, the value of s is set to 128. The

Fig. 4 The structure of generator

Fig. 5 The network architecture of the bottleneck
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final step is converting Yfuse, Cbfuse and Crfuse channels into

RGB image.

4 Experiments

We have conducted extensive evaluation and comparison

study against state-of-the-art algorithms. For verifying the

effect of the experiment, we select the images pairs as the

test set with different conditions, including indoor and

outdoor, day and night, natural and artificial lighting. To

evaluate the performance of algorithms objectively, we

adopt five types of metrics. All the experiments are con-

ducted on a desktop with 2.4 GHz Intel Xeon CPU E5-

2673 v3, GeForce GTX 2080Ti, and 64 GB memory.

4.1 Comparison methods

The method we proposed is compared against with five

representative methods, including GFF [38], DSIFT [39],

FLER [40], the gradient-based method (GBM) [36],

DeepFuse [13]. GFF is a novel guided filtering-based

fusion method for creating a highly informative fused

image [38]. In DSIFT, the dense SIFT descriptor is applied

as the activity level measurement to extract information

from source images [39]. FLER proposed a strategy which

brightens the high-light regions in the dark image and

darkens the darkest regions in the bright image and finally

generates virtual image via intensity mapping func-

tions [40]. In the GBM, two different fusion strategies are

applied for chrominance and luminance channels sepa-

rately [36]. DeepFuse is the landmark multi-exposure

fusion method based on deep learning [13].

4.2 Qualitative comparisons

We firstly perform qualitative comparison experiments on

three typical image sequences. Fused results of our method

and five comparison methods are shown in Figs. 7, 8 and 9.

In this paper, we evaluate the effect of image fusion from

two aspects, the overall image visual effect and the detail

effect of the image. From the aspect of the overall visual

effect, the method we proposed is well proportioned in

light distribution and closer to the actual scene. There are

local dark areas in the image of compared methods, which

will lead to the loss of detail features. As for the detail

effect, our method can provide additional texture infor-

mation in some regions.

From Figs. 7, 8 and 9, we can see the results of the three

methods of GFF, DSIFT and FLER, these methods have

obvious black regions in the fused image. The fusion

results of GBM and DeepFuse are more consistent with

human visual perception. However, as we have shown in

the red box in the ground truth, they also have some loss of

detail textures. To be specific, as can be seen in Fig. 7, the

details of the tree in our method are of abundant texture

information. The same phenomenon can be found in Fig. 8.

In the red box, our method shows that the texture on the

wall is more clear and the outline of texture is closer to

ground truth. As for the window we marked in Fig. 9, there

is a bird pattern in the center part of the mark land. The

bird pattern of ours shows the most colorful and clear

result.

4.3 Quantitative comparisons

In the multi-exposure image fusion community, MEF-

SSIM [36] is a commonly used metric for quantitative

evaluation. In addition, we select SD, PSNR, CC and SCD

as metrics. These methods are commonly used in MEF

evaluation. We apply these metric to evaluate the source

images and fused results of five comparisons methods.

These five metrics are introduced as follows.

4.3.1 Standard deviation (SD)

SD is a metric reflecting contrast and distribution of ima-

ges. Due to the fact that human pays more attention to the

region with high contrast. Thus, the larger value of SD

means the higher contrast of the fused image. SD is defined

as follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w � h
Xh

i¼1

Xw

j¼1

ðfi;j � lfÞ
2

vuut ; ð15Þ

where h and w denotes the height and width of image. lf
denotes the mean value of image f.

4.3.2 Peak signal-to-noise ratio (PSNR)

PSNR is a metric reflecting the distortion by the ratio of

peak value power and noise power.

Fig. 6 The network architecture

of the discriminator
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PSNR ¼ 10 � log10
r2

MSN
; ð16Þ

where r is the max value of the fused image. r is set as 256

in this paper. MSE is the mean square error that measures

the dissimilarity between the source images and the fused

image that is defined as follows:

MSE ¼ 1

w � h
Xh

i¼1

Xw

j¼1

ðfi;j � gi;jÞ2: ð17Þ

A larger PSNR indicates the less distortion between

source images and fused image.

4.3.3 Correlation coefficient (CC)

CC measures the correlation between the source images

and the fused image. It is mathematically defines as

follows:

CC ¼
Ph

i¼1

Pw
j¼1ðfi;j � gi;jÞðfi;j � li;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Ph

i¼1

Pw
j¼1ðfi;j � gi;jÞ2

q
Þð
Ph

i¼1

Pw
j¼1ðfi;j � li;jÞ

2Þ
:

ð18Þ

A large CC indicates that there is a strong correlation

between the fused image and the source images.

4.3.4 Mean structural similarity (MSSIM)

MSSIM measures the average of the individual SSIM

values for each sliding window. SSIM is a metric used to

model image loss and distortion. It is defined as follows:

SSIMx;f ¼
X

x;f

2lxlf þ c1
l2x þ l2f þ c1

� 2rxrf þ c2
r2x þ r2f þ c2

� rxf þ c3
rxrf þ c3

;

ð19Þ

where x and f are the image patches of the source image X

and the fused image F, respectively, r denotes the

covariance or the standard deviation. l denotes the mean

values. C1, C2 and C3 are the parameters for stability.

4.3.5 The sum of the correlations of differences (SCD)

In the SCD loss function, the difference image between one

of the input images ðS2Þ and the fused image (F) almost

discloses the information transferred from the other input

image ðS1Þ. These differences ðD1 and D2Þ can then be

formulated as:

D1 ¼ F � S2; ð20Þ

Fig. 7 Qualitative comparison results on image sequence 1
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D2 ¼ F � S1: ð21Þ

The D1 and D2 indicates the amount of transferred infor-

mation from each of the input images into the fused image.

SCD loss function is formulated as the following:

SCD ¼ rðD1; S1Þ þ rðD2; S2Þ: ð22Þ

rðDk; SkÞ is to calculate the similarity between Dk and Sk,

which is defined as the following:

rðDk; SkÞ ¼
P

i

P
jðDkði; jÞ � �DkÞðSkði; jÞ � �SkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

i

P
jðDkði; jÞ � �DkÞ2Þð

P
i

P
jðSkði; jÞ � �SkÞ2Þ

q ;

ð23Þ

where �Dk and �Sk are the average of the pixel values of Dk

and Sk.

In addition, these metrics can only handle single-chan-

nel images. Thus, we perform these metrics on Y channel.

We test these five metrics on 30 multi-exposure image

pairs, and the results are presented in Fig. 10. And the

results of mean value are shown in Table 1. The red and

blue index we marked in Table 1 is the largest value and

second largest value, respectively.

Table 1 presents that our method can perform a good

result. Our method gets the largest mean value in CC,

PSNR, SSIM and SCD. SD of GFF and DSIFT own the

first and second place, respectively. However, these

methods have the phenomenon of inhomogeneous illumi-

nation which will result in a high value of SD. Our method

achieved the largest mean values among the rest methods.

4.4 Comparative experiment

To prove the effect of creations in our framework, we

perform an ablation study on the components of GANFuse.

The comparative experiment 1 shows the result of GAN-

Fuse without discriminators. In the comparative experi-

ment 2, removing the theory of SCD, we directly feed F

and S1 into discriminator 1 and F and S2 into discriminator

2. The qualitative result is displayed in Fig. 11. It is

obvious that the result of Fig. 11b is most similar to ground

truth, including color and textural detail. Particularly, as

presented in red box, tableware of Fig. 11b has better

visual effect. And the quantity result is given in Table 2

which also testify to the effect of creations of our method.

Moreover, we perform a parametric study on those

important parameters in our GANFuse. In our GANFuse,

we mainly set the weight r to trade off the gradient loss

and pixel intensities loss. In the following part, we will

show results of different r. In our model, we set r as 0.1.

Fig. 8 Qualitative comparison results on image sequence 2
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Fig. 9 Qualitative comparison results on image sequence 3

Fig. 10 Qualitative comparison of our GANFuse with 5 state-of-the-art methods on five metrics
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And the weight r is 0.3 and 0.5 in the comparative

experiment 3 and the comparative experiment 4, respec-

tively. The quantity result is presented in Table 3. In

Table 3, we can find that GANFuse owns the best quantity

result when the value of r is 0.1. Due to the fact that the

values of the result is approximate, the quality results are

almost same. Therefore, the quality results will not show

anymore.

Table 1 Quantitative

comparisons of the five metrics
Metrics SD PSNR SSIM CC SCD

GANFuse 0.148115426 57.33800149 1.965263834 0.850954307 1.584032931

GBM 0.13316501 57.28301727 1.96499124 0.792732864 1.031510881

DeepFuse 0.147293475 57.30245913 1.964967841 0.847856712 1.56252029

GFF 0.196556506 55.59830182 1.949333007 0.072599073 - 0.398211353

FLER 0.121066135 56.74671019 1.960781543 0.344774143 - 0.211503979

DSIFT 0.175588204 55.88504831 1.952625491 0.094026786 - 0.417428915

Fig. 11 The qualitative results

of the comparative experiments

Table 2 The quantity result in comparative experiments

Metrics SD PSNR SSIM CC SCD

GANFuse 0.148115426 57.33800149 1.965263834 0.850954307 1.584032931

The comparative experiment 1 0.148030308 57.30291199 1.964888646 0.850155029 1.574653232

The comparative experiment 2 0.139084259 57.30443939 1.964849778 0.846627754 1.449303726
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5 Conclusion and future work

In this paper, we propose a novel GAN-based multi-ex-

posure image fusion method, termed as GANFuse. On the

basis of FusionGAN, we increase the number of discrimi-

nator and propose a novel way to change the input of

discriminators. By doing so, we can preserve more infor-

mation of source images in the fused image. Furthermore,

we train and test our networks with all kinds of dataset.

Thus, our method can achieve better robust with different

conditions. Compared with other five state-of-the-art fusion

methods, our method can achieve advanced performance

both qualitatively and quantitatively. In our current work,

GANFuse is trained to fuse static multi-exposure images.

However, for moving objects in image, our method does

not possess a good visual effect. Moving objects may lead

the ghost phenomenon in fused image. For future research,

we aim to handle the ghost phenomenon and generalize

GANs or their variants to fuse multi-modal images.
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