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Abstract
In an object detection system, the main objective during training is to maintain the detection and false positive rates under

acceptable levels when the model is run over the test set. However, this typically translates into an unacceptable rate of

false alarms when the system is deployed in a real surveillance scenario. To deal with this situation, which often leads to

system shutdown, we propose to add a filter step to discard part of the new false positive detections that are typical of the

new scenario. This step consists of a deep autoencoder trained with the false alarm detections generated after running the

detector over a period of time in the new scenario. Therefore, this step will be in charge of determining whether the

detection is a typical false alarm of that scenario or whether it is something anomalous for the autoencoder and, therefore, a

true detection. In order to decide whether a detection must be filtered, three different approaches have been tested. The first

one uses the autoencoder reconstruction error measured with the mean squared error to make the decision. The other two

use the k-NN (k-nearest neighbors) and one-class SVMs (support vector machines) classifiers trained with the autoencoder

vector representation. In addition, a synthetic scenario has been generated with Unreal Engine 4 to test the proposed

methods in addition to a dataset with real images. The results obtained show a reduction in the number of false positives

between 22.5% and 87.2% and an increase in the system’s precision of 1.2%�47% when the autoencoder is applied.
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1 Introduction

Weapons, among other threats, need to be detected as soon

as possible to eliminate or mitigate the danger they could

cause [1]. Traditionally, the surveillance of public scenar-

ios has been accomplished by the human supervision of the

images captured by closed-circuit television (CCTV) sys-

tems. However, even an experienced guard may miss a

dangerous event due to fatigue or loss of attention [2]. To

help with this situation, the creation of automated

surveillance systems (AVSs) able to locate potentially

threatening objects (or other events) in video has been

studied during the last decades [3].

Similarly to other areas, with the introduction of the new

deep learning methods these frameworks have obtained

promising results and are closer to be used in real scenarios

[4, 5]. Nevertheless, although those detectors have high

detection (D) and low false positive (FP) rates, when they

are used in a different scenario from the one used for

training, the false positive ratio increases [6]. This fact

represents a major problem since even an increase of a

0.1% of the false positive ratio may cause 90 false alarms

per hour with a video input of 25 fps. Therefore, when

running the surveillance system in a real scenario, the

outcome is usually an unsatisfactory number of false

alarms. In most cases, this may lead to the guard switching

off the system.

In this context, we propose to include an extra step that

models the false alerts that are specific of the new scenario

while approximately maintaining the capability of identi-

fying the objects it was trained for. As an specific appli-

cation, this work focuses on detecting handguns in video

surveillance. After running the detector in a new scenario,

it is possible to collect all the detector alarms. Practically,

all of these alarms are false positives since the incidence of

the true event (a handgun in the scene) is very low.
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Therefore, all of these detections can be stored and used to

model the new scenario.

The new step will act as a filter able to recognize typical

FPs of the detector in the particular scenario. Therefore,

this problem can be seen as an anomaly detection problem

where the anomalies are those detections that are not

similar to the FPs modeled by the filter [7, 8]. In fact, the

anomalies detected on this step will be the real alarms.

To detect abnormal and extreme data, one-class classi-

fiers have been widely used in the literature [9]. More

concretely, autoencoders have proven to be the most suit-

able of the techniques, obtaining good results even where

other methods fail [10]. In order to use the autoencoder as a

filter and decide whether a detection is an anomaly or not,

we have tested different approaches: using the autoencoder

reconstruction error as a threshold and using the central

vector representation to train a nearest neighbor (NN) and a

one-class support vector machine (SVM) classifiers.

Although autoencoders have been applied in anomaly

detection problems, to the best of our knowledge, this is the

first time they have been applied to reduce false positive

detections when the detector runs in a new scenario from

which it is not possible to obtain labeled data.

For the purpose of testing our idea, we have generated

an entirely synthetic dataset from the frames captured from

a realistic 3D scenario. The synthetic scenario resembles a

school hallway from the point of view of a surveillance

camera. This allow us to generate as much data as needed

with and without handguns to train and test the

autoencoder.

The rest of the paper is organized as follows. Section 2

performs an overview of the advances in handgun detec-

tion. Section 3 shows the handgun detector used as base

detector of the proposed false positive reduction method.

Section 4 describes the datasets used including the syn-

thetic dataset that has been generated. Section 5 provides

detailed information about the proposed autoencoder-based

filtering step. Finally, Sect. 6 shows the results and Sect. 7

summarizes the main conclusions.

2 Related work

In addition to automatic CCTV video surveillance, several

approaches have been proposed to deal with concealed

handguns in X-ray or millimetric wave images. These types

of image are commonly used in airports, train stations or

the entrance of some public buildings. In 2008, Nercessian

et al. presented a system for handgun detection using X-ray

luggage scan images [11]. The approach was based on the

Gaussian mixture expectation maximization (EM) method

to perform image segmentation prior to the obtention of the

edge-based feature vectors. Gesick et al. compared three

different approaches for the detection of handguns inside

luggage [12]. The first method employs edge detection

combined with pattern matching with reliable results.

However, both the computational time and the number of

false positives were high. The second method uses Dau-

bechies wavelet transforms with inconclusive results as the

authors commented. The third algorithm proposed in that

work was based on the scale-invariant feature transform

(SIFT). Later, in 2010, Harmer et al. used a completely

different approach based on the modeling of the complex

natural resonances of handguns and compared them with

those of other objects [13]. In addition, the work of Flitton

et al. concluded that using simpler 3D feature, descriptors

outperform even complex RIFT/SIFT solutions with an

accuracy of more than 95% [14]. In [15], Xiao et al.

employed an extension of the Haar-like features with an

AdaBoost-based cascade classifier to detect handguns in

passive millimeter wave (PMMW) images. Following a

similar approach, the study of Kundegorski et al. combines

bag of visual words (BoVW) based on feature point

descriptors and support vector machines (SVMs) and ran-

dom forest classifiers [16].

While there are numerous methods and devices that can

detect concealed weapons, unfortunately, the incidence of

mass shootings requires the use of RGB surveillance

images. Tiwari and Verma proposed a framework that

applies color-based segmentation and k-means clustering to

remove irrelevant objects and then uses Harris interest

point detector and Fast Retina Keypoint (FREAK) to locate

the handguns [17]. This resulted in high robustness when

detecting the desired object at different scales and rota-

tions. In addition, Halima and Hosam worked on a detector

that combined SIFT features, k-means clustering, a word

vocabulary histogram, and SVM [18].

The recent advances in deep learning have also been

applied to the handgun detection problem using CCTV

images. The first contribution in this area came in the work

of Olmos et al. where two different approaches were used

[4]. The first one uses a classification CNN to detect

handguns with the sliding window method, whereas the

second one is based on the Faster R-CNN detection

architecture. The latter obtained the best results when tes-

ted in a dataset composed of several YouTube videos. On

the other hand, Gelana et al. followed a more traditional

approach using edge detection and a classification CNN

with the sliding window method [19]. In addition, Romero

and Salamea trained a YOLO object detection and local-

ization system to detect firearms with the particularity of

running the detector only in areas where there are people

[20]. Another study of Olmos et al. proposed using a

symmetric dual camera system to increase the performance

of the detection model in low quality surveillance videos

improving both the false positive and the detection rates.
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To model outliers, discordant objects or simply data that

has a different behavior or pattern, anomaly detection

techniques have been used [7]. Anomaly detection has a

wide range of applications. For example, it can be used to

detect anomalies in stock prices and time series [21, 22],

abnormal medical images of findings [23–25], abnormal

events in video [5, 26, 27], intrusion detection [28], or

disaster areas from radar images [29].

A simple method to model anomalies is to use neighbor-

based methods such as the k-nearest neighbor [30–32]

where anomalies are identified as those points in the data

space that differ from the surrounding data points. The

advantage of these methods is the independence of the data

distribution. However, their performance relies on the

values of the parameters selected such as the number of

neighbors.

An alternative to use neighbor-based methods is to

detect anomalies taken into account that they are grouped

in a zone of the data space. Thus, the anomaly detection

problem is solved as a subspace learning problem [33–36].

Although this method work well in some cases, finding the

number of subspaces in which the anomalies are distributed

is not trivial.

As in classification and detection tasks, CNNs have

demonstrated to improve the performance in anomaly

detection problems [26]. More concretely, convolutional

autoencoders have been used to model input data and

reduce data space dimensionality [37]. Their use has

reduced the need of reprocessing input data and compute

handcrafted features from it [10]. Following this approach,

Mabu et al. proposed to use a convolutional autoencoder

followed by a one-class SVM to model normal areas in

satellite images and detect abnormal areas caused by nat-

ural disasters in Japan [29]. Lu and Xu demonstrated the

potential of using variational autoencoders to detect

anomalies in skin disease images [23]. The authors rec-

ommend to use them instead of GANs (generative adver-

sarial networks) due to their training stability and

interpretable results. Sugimoto et al. use an autoencoder

followed by a k-NN classifier to detect myocardial

infarction.

Another approach is the one followed by Gutoski et al.

in which autoencoders and stacked denoising autoencoders

are used for clustering [38]. With the clustering, repre-

sentation in possible to define whether a new sample is an

anomaly or not according to its distance to the clusters.

Gutoski et al. also followed this approach for one-class

classification [38].

In some cases, there are more than one group of

abnormalities as in the work carried out by Mirsky et al. in

[28]. The authors proposed to use an ensemble of autoen-

coders instead of one to detect online network intrusions.

The decision of what is an anomaly or not is based on the

RMSE (root-mean-squared errors) score output by the

autoencoders.

For video input, Singh and Mohan use deep stacked

autoencoders to obtain a deep representation of spa-

tiotemporal video volumes to detect road accidents [37].

The anomaly score is obtained with a one-class SVM as in

other works.

Finally, non-symmetric autoencoders have also been

used to learn space representations. An example of this is

the work carried out by Tran and Hogg where the

autoencoder representation is used for detecting anomalies

in video [39]. In addition, recurrent autoencoders with

LSTM (long short-term memory) layers have also been

applied for anomaly detection in video in the work carried

out by Yan et al. in [40].

3 Handgun detector

Before addressing the false positive rate reduction through

the use of the autoencoder, we needed to train and test a

handgun detector. As shown in Sect. 2, there are several

approaches that can be selected, from the use of classifi-

cation CNNs with the sliding window approach to the most

modern CNN detection architectures. While the former

examines every subregion of the image, the latter uses

region proposal algorithms to reduce the number of

examined windows or process the full image in one pass

[41]. The advantage of the new architectures is the ability

to detect objects in different locations of the image without

being restricted to a certain aspect ratio. Moreover, the

number of regions to be examined is drastically reduced in

comparison with other methods. The most representative

architectures for object detection that follow a region

proposals approach are R-CNN, Fast R-CNN, and Faster

R-CNN [42].

Two well-known architectures are YOLO (You Only

Look Once) and SSD (single-shot detector). YOLO

addresses object detection as a regression problem with

spatially separated bounding boxes and their corresponding

class probabilities [43]. SSD is able to predict, with only

one pass over the entire image, the bounding boxes and the

class probabilities for them [44].

In addition to all the above, there is a recently developed

CNN-based detector called RetinaNet [45]. RetinaNet was

designed to solve the problem of having extreme fore-

ground–background class imbalanced problems and has

been also applied to X-ray images [46].

For the particular problem of weapon (handgun and

knife) detection, [47] reviews recent work and shows that

Faster R-CNN has been the prevalent method. For that

reason, we have selected the Faster R-CNN architecture to

train a handgun detector with a dataset provided by the
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University of Seville [1]. The dataset is composed of 871

images that contain 177 annotated handguns. Those images

were extracted from the video captured by 2 CCTV cam-

eras located in two different college hallways.

4 Datasets

The collection and labeling of the data necessary to train

deep learning models are tasks that require significant time

and effort. This is even more complicated in detection or

segmentation problems in which someone has to select the

area of the image in which the object is located, or the

exact contour of the object, in addition to the category. A

possible solution to this problem is the use of public

datasets, but, depending on the problem, it is not always

possible to have one available. The use of synthetic images

facilitates the work required to obtain large datasets. For

this work, a completely synthetic dataset has been gener-

ated with Unreal Engine 4 [48], rendering a scenario that

represents a high-school hallway where people are walk-

ing. There are other popular alternatives such as Unity [49]

and Lumberyard/CryEngine [50] that can also be used for

the same purpose. While some of the people on the sce-

nario carry everyday objects in their hands, such as mobile

phones, others carry guns or nothing (see Fig. 1).

Another advantage of having the data generation fully

controlled by the researcher is that it is also possible to

automatically generate a mask image with the desired

objects for each frame. In this case, each generated image

contains the people in white, the background covered in

black, and each handgun filled with a different color to help

extract the information about its location. Once all masks

are obtained, the coordinates of the bounding boxes that

contain the weapons are extracted storing the annotations

in XML files with the format defined by the Pascal VOC

2012 Challenge [51].

A total of 4000 images were generated with this method

with a resolution of 1280�720. From these, 3000 frames

were used to train and adjust the proposed autoencoder

filter, containing 5437 annotated handguns. The remaining

1000 frames were used to evaluate and compare the

detector and detector ? autoencoder systems.

In addition to the synthetic dataset, the Gun Movies

Database [52] has also been used to ensure the differences

are caused by the proposed method and not by changes in

the texture by the origin of the data. This dataset contains

Fig. 1 Synthetic scenario with a zoom on the elements of interest (in

this case, a mobile phone and a handgun)

Fig. 2 Sample frame from the Gun Movies dataset

Fig. 3 Proposed system

Fig. 4 Autoencoder training phase
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images of size 640�480 pixels from 7 laboratory-shot

movies with a total of 817 frames and 686 annotated

handguns (Fig. 2).

For this second dataset, a total of 817 images were used.

From these, 571 frames were used to train and adjust the

proposed autoencoder filter and the remaining 246 frames

were used to evaluate and compare the detector and

detector ? autoencoder systems.

5 Proposed method

As introduced above, when a detector runs in a new sce-

nario, the false positive rate increases due to its particu-

larities that were not seen in the training data. To deal with

this problem, we propose to add a filtering step after the

detector inference (see Fig. 3). The filter is used to discard

the FP detections of the object detector produced by the

particularities of the new scenario.

The filter can be considered as a one-class classifier that

learns how to identify a certain type of samples. Thus, the

rest of the samples can be considered as anomalies. This

problem has been addressed in the literature through the

use of the one-class versions of the SVM, k-nearest

neighbor (k-NN), random forests classifiers, and more

recently with deep autoencoders [9, 38, 53]. In our case, an

autoencoder is trained to model the class of the typical FP

detections.

In order to collect the training samples for the autoen-

coder, the detector is run in the particular scenario for a

certain period of time, storing all the FP detections (Fig. 4).

Initially, all detections can be considered as FPs in a real

scenario since the incidence of handguns is very low.

Deep autoencoders learn the input data distribution

using an intermediate representation. They are able to

compress the data into a small vector and then reconstruct

the input from it with accurate results. If new input data

come from a different distribution, the reconstruction error

will be higher.

Finally, according to the autoencoder structure, we

define and compare 3 different methods to check whether

the output of the detector is a typical false positive. The

Fig. 5 Autoencoder architecture

used

Table 1 Detailed description of the autoencoder architecture used.

The output of the conv2d_7 layer (in bold) is used as the FP inter-

mediate representation

Layer (type) Output shape Param #

input_1 (InputLayer) (None, 64, 64, 3) 0

conv2d_1 (Conv2D) (None, 64, 64, 4) 112

max_pooling2d_1 (MaxPooling2) (None, 32, 32, 4) 0

conv2d_2 (Conv2D) (None, 32, 32, 28) 1036

max_pooling2d_2 (MaxPooling2) (None, 16, 16, 28) 0

conv2d_3 (Conv2D) (None, 16, 16, 52) 13156

max_pooling2d_3 (MaxPooling2) (None, 8, 8, 52) 0

conv2d_4 (Conv2D) (None, 8, 8, 76) 35644

max_pooling2d_4 (MaxPooling2) (None, 4, 4, 76) 0

conv2d_5 (Conv2D) (None, 4, 4, 100) 68500

max_pooling2d_5 (MaxPooling2) (None, 2, 2, 100) 0

conv2d_6 (Conv2D) (None, 2, 2, 124) 111724

max_pooling2d_6 (MaxPooling2) (None, 1, 1, 124) 0

conv2d_7 (Conv2D) (None, 1, 1, 148) 165316

conv2d_8 (Conv2D) (None, 1, 1, 148) 197284

up_sampling2d_1 (UpSampling2) (None, 2, 2, 148) 0

conv2d_9 (Conv2D) (None, 2, 2, 124) 165292

up_sampling2d_2 (UpSampling2) (None, 4, 4, 124) 0

conv2d_10 (Conv2D) (None, 4, 4, 100) 111700

up_sampling2d_3 (UpSampling2) (None, 8, 8, 100) 0

conv2d_11 (Conv2D) (None, 8, 8, 76) 68476

up_sampling2d_4 (UpSampling2) (None, 16, 16, 76) 0

conv2d_12 (Conv2D) (None, 16, 16, 52) 35620

up_sampling2d_5 (UpSampling2) (None, 32, 32, 52) 0

conv2d_13 (Conv2D) (None, 32, 32, 28) 13132

up_sampling2d_6 (UpSampling2) (None, 64, 64, 28) 0

conv2d_14 (Conv2D) (None, 64, 64, 3) 759

Fig. 6 Subsets of the synthetic dataset used. The Gun Movies dataset

is similarly split
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simplest one is to establish a threshold for the reconstruc-

tion error. Therefore, detections with low reconstruction

error will be discarded as typical FPs of the scenario. The

other two methods are based on the use of the central

vector as a compact representation of the images and then

train a one-class classifier with it. For that, SVM and k-NN

with k ¼ 1 were used, and the thresholds were selected

according to the scores and the distance to the closest

neighbor, respectively.

5.1 Autoencoder architecture

The structure of an autoencoder consists of an encoder path

that ignores the noise and reduces the dimensionality and a

decoder path that makes the reconstruction. The compres-

sive path of the autoencoder used consists of a set of 6

convolutional and max-pooling layers (Fig. 5). Similarly,

the reconstruction path has also 6 convolutional and up-

sampling layers. The input is a 3-channel image of size

64�64, and the central vector has 148 elements (conv2d_7

layer). A more detailed description of the architecture can

be seen in Table 1.

6 Results

The Faster R-CNN model trained with the dataset from the

University of Seville obtained an mAP of 0.7933. Training

took 2 days and executed 62 epochs. An Ubuntu 14.04 LTS

(a) (b) (c) (d)

Fig. 7 Typical false positives of

the handgun detector in the

synthetic scenario (enlarged)

(a) (b) (c)

(d) (e) (f)

Fig. 9 Autoencoder reconstruction of: a TP and d) FP of the detector

from the synthetic dataset. b and e are the reconstructed images, and

c and f are the absolute difference between the reconstructions and

their corresponding original images

(a) (b) (c)

Fig. 8 Typical false positives of the handgun detector in the Gun

Movies dataset (enlarged)

Table 3 Increase in the detector precision when the autoencoder is

applied by method and dataset

MSE kNN SVM

Synthetic 1.46% 1.77% 1.2%

th = 0.0057 th = 0.34 th = 14600

Gun Movies 47% 20% 8%

th = 0.047 th = 1.92 th = 175

Table 2 Percentage of FPs that are filtered by method and dataset

MSE kNN SVM

Synthetic 26.4% 30% 22.5%

Gun Movies 87.2% 74.1% 49%
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machine with 2 nVIDIA Quadro M4000 cards, Keras with

TensorFlow backend and CUDA 8.0 were used to perform

the training.

After obtaining this base detector, both datasets were

divided into 4 parts to (1) train and (2) validate the

autoencoder, (3) fit the k-NN and SVM classifiers, and (4)

test the system variants (Fig. 6). The detector was then run

on each of the subsets, and the FP and TP patches were

stored. Although only the FP detections are used to train

and validate the autoencoder and fit the classifiers, the

correct detections were also generated and stored for the

test subset to check that the detection rate is minimally

affected.

Overall, for the autoencoder training and validation, two

sets with 4913 and 3607 FPs, respectively, were obtained

for the synthetic dataset and 586 and 405 FPs for the Gun

Movies dataset. Another set composed of 3712 FP regions

for the synthetic dataset and 95 FP regions for the Gun

Movies dataset was used to fit the classifiers used to per-

form the decision. Finally, a set of 4832 regions (4632 FPs

and 200 TPs) for the synthetic dataset and 499 regions (359

FPs and 40 TPs) for the Gun Movies dataset was reserved

for testing. Figure 7 shows some examples of the typical FP

detections obtained in the synthetic scenario.

The autoencoders were then trained and validated with

the stored FP detections of the training and validation

subsets. This process took only about an hour for each

dataset to complete 500 epochs in a Windows 10 PC with

an nVIDIA GTX 1060 MaxQ card using Keras with Ten-

sorFlow backend and CUDA 9.0. At this point, if the

autoencoder is used with some test images from TP and FP

detections, the ability to effectively reconstruct FPs is

evidenced (see Fig. 9).

The stored FP detections from the fit subset of each

dataset were used to feed each of the autoencoders and get

intermediate vectors to train the SVM and k-NN one-class

classifiers. The SVM selected uses a linear kernel. On the

other hand, k ¼ 1 was selected for the k-NN algorithm.

To illustrate the performance of both the detector and

detector ? autoencoder approaches on the two datasets,

they were tested with the 1000 images from the fourth

subset of the synthetic scenario and the 246 frames of the

Gun Movies dataset. The histograms of the reconstruction

error for the MSE thresholding-based method, the proba-

bility score for the SVM one-class classifier, and the

Fig. 10 Synthetic dataset.

Histograms of the MSE

reconstruction error, SVM

score, and K-NN distance (y-
axis uses logarithmic scale)
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distance to the nearest neighbor for the k-NN were obtained

(Figs. 10 and 11). Although TPs and FPs are overlapped in

all cases, the first part of the MSE and k-NN histograms

and the last part of the SVM histogram do not contain TPs.

Therefore, the FPs that lie on those parts of the histograms

can be potentially filtered selecting the value of the first bin

(or the last for the SVM) in the histogram that contains TPs

as threshold. For the synthetic dataset, this shows that,

without affecting the detection rate, up to 26.4% of all the

FPs can be filtered using the MSE reconstruction error,

22.5% using the one-class SVM, and 30% with the distance

to the nearest neighbor of the k-NN (2). On the other hand,

in the histograms obtained from the Gun Movies dataset

TPs and FPs are less overlapped making it possible to

remove up to 87.2% of all the FPs using the MSE recon-

struction error, 49% using the one-class SVM, and 74.1%

with the distance to the nearest neighbor of the k-NN

without affecting the detection rate.

In addition, the precision–recall curves corresponding to

the detector and the autoencoder with the three proposed

decision methods were obtained (see Figs. 12 and 13). The

experimental results show a reduction in the number of

false positives while roughly maintaining the detection

capabilities [54]. Since the precision–recall curve is cal-

culated by varying the detector output threshold and the

autoencoder has another threshold that can be varied too,

each curve was obtained under a specific value for the

autoencoder and varying the threshold of the detector (3).

For the synthetic dataset, comparing all the curves for a

specific autoencoder thresholding method, they show a

maximum increase in the precision of 1.46% at the same

recall values when the autoencoder and the MSE are used

(threshold = 0.0057), of 1.2% using the autoencoder and

the SVM classifier (threshold = 14600), and of 1.77% in

case of the autoencoder and K-NN (threshold = 0.34). For

the Gun Movies dataset, results show a maximum increase

in the precision of 47% at the same recall values when the

autoencoder and the MSE are used (threshold = 0.047), of

8% using the autoencoder and the SVM classifier (thresh-

old = 175), and of 20% in case of the autoencoder and K-

NN (threshold = 1.92).

Overall, the results show that the autoencoder is able to

filter part of the new FPs in all cases without affecting the

detection rate of the original system. All thresholding

Fig. 11 Gun movies dataset.

Histograms of the MSE

reconstruction error, SVM

score, and K-NN distance (y-
axis uses logarithmic scale)
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methods are able to reduce the number of FPS to some

degree.

7 Conclusions

In this work, a step to filter the false positive detections that

appear when a pre-trained handgun detector is deployed in

the final surveillance scenario has been proposed. This step

consists of training a deep autoencoder with the false

positive regions obtained from the particular scenario.

Once the autoencoder is trained, it can be used to decide

whether a detection is similar to the already known typical

false alarms and can be filtered, or otherwise if an alert

should be triggered.

The ability of the autoencoder to reduce the number of

FPs has been demonstrated with a potential reduction by up

to 30% for the synthetic scenario when it is combined with

Fig. 12 Precision–recall curves for the synthetic dataset. Best viewed

in color (color figure online)

Fig. 13 Precision–recall curves for the Gun Movies dataset. Best

viewed in color (color figure online)
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a k-NN classifier trained with the vector representation of

the detector FPs regions and up to 78% of the FPs for the

Gun Movies dataset when the autoencoder is combined

with the MSE error metric. Furthermore, the handgun

detection capability of the system is not compromised by

the added filtering step under a wide range of threshold

levels.

Although the proposed approach has been only applied

to two particular scenarios, it can be extended to more than

one since having different perspectives, lighting conditions

or background objects will generate different false posi-

tives. Thus, during the system’s deployment only a generic

detector (in this case a handgun detector) is required and

one autoencoder will be trained for each camera feed.
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