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Abstract
In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd

immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle

coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals

directly contact with other society members. In order to protect other members of society from the disease, social distancing is

suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which

results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO

mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for

herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes

with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of

CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted.

The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other

well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-

CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm

that can be used to tackle many optimization problems across a wide variety of optimization domains.
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1 Introduction

Optimization is the process of finding the best configura-

tions of some entities following limited resources respect-

ing predefined constraints [1]. The optimization process

can be utilized in several research domains such as health,

engineering, mathematics, economics, linguistics, and sci-

ence to optimize (minimize or maximize) their objective

[2]. In order to tackle optimization problems, two types of

optimization methods emerge deterministic-based and
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approximation-based [3]. Traditionally, deterministic-

based methods are utilized to tackle some optimization

problems with small dimensions and less complexity.

Although they can find an exact solution for the opti-

mization problem, they suffer from some dilemmas such as

they cannot be used to tackle the NP-hard problems; they

require heavy mathematical derivation, especially for gra-

dient-based techniques; they can easily be stuck in a local

optima [4]. Thus, they are inefficient in tackling real-world

problems. Consequently, the optimization research com-

munities tend their attentions to utilize approximation

methods for their optimization problems.

Approximation methods have stochastic components to

intelligently overcome the deterministic-based dilemmas.

The traditional approximation-based methods were

heuristic-based in which the optimization problem is con-

structively tackled element by element until a complete

solution is reached [5]. Heuristic methods are problem-

specific where each optimization problem has its own

heuristic methods; for example, graph coloring problems

use saturation algorithm heuristic methods [6]. The

heuristic-based approaches although they can easily find a

solution for the optimization problem, and the quality of

the constructed solution is not unfortunately respected. The

ultimate objective of tackling optimization problem is not

only to find any solution, but also to find a ‘‘good enough’’

solution. Therefore, the emergence of metaheuristic algo-

rithms as an efficient approximation-based method

acquired high attention due to its superior advantages.

Metaheuristic-based approaches provide a general opti-

mization framework that can iteratively improve the cur-

rent solution(s) using intelligent knowledge-acquisition

operators with stochastic features controlled by tuned

parameters until an optimal solution is reached [2]. The

operators of the powerful metaheuristic algorithms can

efficiently explore several regions in the problem search

space as well as exploit the accumulative knowledge

acquired during the search process. Exploitation and

exploration are contradictory, and achieving the right

balance between them during the search is the main

algorithmic challenge. The main advantages of these

metaheuristic algorithms are [4]: (1) Their simplicity is

adapted for a wide range of optimization problems with

very small tweaking. They are dealt with the optimiza-

tion problem as black-box mathematically formulated in

terms of objective function and solution representation in

which the problem-specific knowledge is not necessarily

deeply studied. (2) They do not require mathematical-

derivative information in the initial search. (3) They can

easily escape the local optima using their stochastic-

based components. Interestingly, the most metaheuristic-

based algorithms are originated from nature-inspired

phenomena which can be categorized into four classes:

evolutionary-based, swarm-based, physical-based, and

human-based algorithms [7, 8]. These categories of

metaheuristic-based algorithms are summarized in

Table 1.

Evolutionary algorithms (EA) are naturally inspired

from the evolution process initiated with a population of

random individuals. Generation after generation, the gens

of the parent individuals in the population are recombined

and mutated to come up with offspring individuals which

are adopted based on the survival-of-the-fittest principle in

the natural selection scheme. The first developed EA is

genetic algorithm (GA) proposed by John Henry Holland in

1960 to utilize the Darwinian principle of natural evolution

[9]. Swarm-based algorithms are normally inspired by the

social behavior of animal swarms. The main merit of such

class is their ability to collaboratively survive. The earlier

and considered first swarm-based algorithms are particle

swarm optimization (PSO) [10] which imitates the bird

flocking social behavior. The particles (solutions) fly

around their environment (search space) searching for the

optimal position (global best). During the flying process,

the best positions (local best) in the path to the optimal

position are recorded. Other base swarm-based optimizer is

ant colony optimization (ACO) [11], artificial bee colony

(ABC) [12], and many others summarized in Table 1.

Physical-based algorithms are inspired by the physical laws

appeared in the universe. The base algorithm of such cat-

egory is simulated annealing (SA) which imitates thermo-

dynamics process when the metals are cooled and annealed

[13]. Other physical-based algorithms are summarized in

Table 1. Finally, human-based algorithm stimulates the

human’s behavior, lifestyle, or perception. The base

method of such class is harmony search algorithm (HSA)

in which a group of JAZZ musicians plays the notes of

their instruments, practice after practice until a pleasing

harmony (optimal solution) is obtained [14]. Other popular

human-based algorithms are fireworks algorithm (FA) [15]

and many others as reported in Table 1.

Apparently, there are a plethora of nature-inspired

algorithms which can be efficiently used for a wide range

of optimization problems. However, according to the No

Free Lunch (NFL) theorem, the optimization algorithm

cannot work efficiently for all types of optimization prob-

lems [51]. Furthermore, most deterministic or even

heuristic optimization is not workable for problems with

nonlinearity and multimodality. Therefore, the tremendous

developments of metaheuristic algorithms, although come

up with very powerful algorithms, there is still a window to

develop other nature-based metaheuristic algorithms with

intelligence characteristics with hope to tackle some

complex optimization problems powerfully.

Nowadays, human-based nature-inspired phenomenon

is emerged with as algorithms such as HSA or bHC
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achieve pleasing results when compared to other nature-

inspired algorithms. This paper proposed a new human-

based nature-inspired algorithm coronavirus herd immunity

optimizer (CHIO). Quite recently, the novel 2019 coron-

avirus evolved and start to spread from Wuhan, China,

since December 2019. Consequently, the virus spread

across several countries and the World Health Organization

(WHO) announces the name of the new contagious disease

to be Coronavirus Disease (COVID-19) [52].

There are several differences between COVID-19 and

influenza such as transmission speed, mortality rate, and

reproductive number [53]. The mortality rate higher than

influenza 3–4%; the reproductive number is higher with

2–2.5; the transmission speed is faster 3–5 days [53].

Herd immunity is proposed as one of the techniques to

control the COVID19 epidemic outbreak [54]. The pro-

posed algorithm relies on the concept of how to best protect

the community against the disease by converting the

majority of the susceptible population which is not infected

to become immuned. The phases of herd immunity can be

summarized as follows [54–56] first, a group of infected

people will infect another group of people. Second, a large

number of infected people will recover and become

immuned and a small number of people will die. Finally,

after some time the majority of the population will become

protected against the virus.

Recent research confirms the impact of herd immunity

on the spread of COVID-19 as neutralizing antibodies are

detected at many individuals [57, 58]. Another researcher

recommended that herd immunity is a plausible strategy

against COVID-19 [59].

CHIO is modeled for continuous optimization. Ini-

tially, the population individuals are randomly generated

and marked as susceptible, and very few members are

marked infected. According to the basic reproduction

rate (BRr), the herd immunity of the population is

evolved using three rules of spreading the pandemic

following social distancing concepts: susceptible, infec-

ted, and immuned cases rules. The population members

are moved from susceptible to infected and from infected

to immuned according to herd immunity threshold by

adopting the survival-of-the-fittest principle. A few

numbers of infected individuals will reach the fatality

state. The search is stopped when the population reaches

the state of herd immunity. In order to verify the effi-

ciency of CHIO, 23 well-known benchmark functions are

used for evaluation. The effect of parameters on CHIO

performance is initially studied. Then, alternative social

distancing strategies are analyzed. Finally, the compara-

tive evaluation against seven well-regarded methods is

provided. The comparative results prove the viability of

the proposed CHIO. For more validations, three real-

world engineering optimization problems extracted from

IEEE-CEC 2011 are used. Again, CHIO is proved to be

efficient. In a nutshell, the new CHIO is a very powerful

human-based optimization method that is pregnant with

tremendous and successful developments for those who

are interested to tackle their problems using natural-in-

spired metaheuristic-based algorithms.

The remaining sections of this paper are as follows:

The proposed CHIO algorithm and the concepts behind it

are introduced in Sect. 2. The performance of the pro-

posed algorithm is evaluated and analyzed in Sect. 3.

Finally, the conclusion and some future directions are

provided in Sect. 4.

Table 1 Nurtured-inspired optimization algorithms

Nurtured-inspired

categories

Nurtured-inspired algorithms

Evaluation-based Genetic algorithm (GA) [9], evolution strategy (ES) [16], genetic programming (GP) [17], and biogeography-based

optimizer (BBO) [18]

Swarm-based Particle swarm optimization (PSO) [10], ant colony optimization (ACO) [11], cuckoo search (CS) [19], bat algorithm

(BA) [20], ant lion optimizer (ALO) [21], butterfly optimization algorithm (BOA) [22], dragonfly algorithm (DA)

[23], fruit fly optimization algorithm (FOA) [24], grey wolf optimizer (GWO) [4], krill herd algorithm (KHA) [25],

red deer algorithm (RDA) [26], bird mating optimizer (BMO) [27], flower pollination algorithm (FPA) [28], monarch

butterfly optimization (MBO) [29], moth-flame optimization algorithm (MFO) [30], whale optimization algorithm

(WOA) [7], firefly algorithm (FA) [31], artificial bee colony (ABC) [12], salp swarm algorithm (SSA) [32], Harris

hawks optimization (HHO) [33], and crow search algorithm (CSA) [34]

Physical-based Simulated annealing (SA) [13], multi-verse optimizer (MVO) [35], sine cosine algorithm (SCA) [36], water cycle

algorithm (WCA) [37], electromagnetism-like mechanism (EM) [38], gravitational search algorithm (GSA) [39],

charged system search (CSS) [40], big bang–big crunch (BBBC) [41], and Henry gas solubility optimization (HGSO)

[42]

Human-Based Fireworks algorithm (FA) [15], harmony search algorithm (HSA) [14], wisdom of artificial crowds (WAC) [43], b-hill
climbing (bHC) [44], Tabu search (TS) [45], group search optimizer (GSO) [46], interior search algorithm (ISA)

[47], seeker optimization algorithm [48], social-based algorithm (SBA) [49], and mine blast algorithm (MBA) [50]
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2 Coronavirus herd immunity optimizer

Viruses are normally spread and evolved very quickly

among individuals of the population. The health commu-

nities normally use a vaccine to build immunity against

viruses. However, new viruses need a period of time until

their vaccine discovered. In the meanwhile, the health care

organizations recommend to treat the virus in one of two

ways: i) They isolate the infected individuals from their

surrounding communities and isolate all the people they

contact. ii) They use herd immunity principle to stop

pandemics where herd immunity accrued when a signifi-

cant portion of a population is immune resulting in pro-

tecting susceptible individuals.

2.1 Inspiration

Viruses can be transmitted biologically and it can be

replicated by the amplifying hosts [60]. The novel 2019

coronavirus (2019-nCoV) evolved and start to spread from

Wuhan, China, since December 2019. Consequently, the

virus spread across several countries and the World Health

Organization (WHO) announces the name of the new

contagious disease to be Coronavirus Disease (COVID-19)

[52]. As of March 27, 2020, the number of cases reaches

532,279 in 199 countries and territories around the world1.

The incubation period of the COVID-19 varies between

2.1 and 11.1 days [52]. As to yet, no powerful remedy for

COVID-19 is found [52]. The fatality rate of COVID-19

can range between 0.25 and 3.0% [54].

Herd immunity means that the population has a large

number of people that are protected from being infected

(either by vaccination or natural infection) and as a result,

the disease will stop from spreading. This happened

because more than 60% (i.e., herd immunity threshold) of

the population is recovered from the infection. Herd

immunity can affect the epidemic transmission as it can

downsize the spread of the infection [56]. Herd immunity is

proposed as one of the techniques to control the COVID-19

epidemic outbreak [54]. Note that this approach applies the

Darwinian theory about survival-of-the-fittest principle.

According to the social distancing, the COVID-19 can

be transmitted from human to human if the person is in

close contact to another person (within 1.8 meters), by the

droplets originated when the infected person sneezes or

coughs, or when the person touches his/her mouth, nose, or

eyes after contacting a surface or object that has the virus

on it2. The governments followed two approaches to con-

trol the spread of COVID-19 as still there is no vaccination

available the in country lockdown or herd immunity3.

A normal person that is not immuned against the virus is

called susceptible. Once infected with the COVID-19, the

person becomes a transmitting case. Now, based on the

strength of the person’s immune system, s/he can be either

recovered (i.e., immuned) or unfortunately dead. Generally

speaking, the elderly immune system is usually weaker

than young people because they would have other diseases

such as diabetes, cardiovascular diseases, or cancer. As a

result, the person’s age plays an important role in being

recovered or not. The average age of the people who are

died in Italy is 81 years [61].

According to many researchers [54–56], the main phases

of achieving herd immunity are as follows:

• A large number of infected people infect another large

group of people.

• Most of the infected people are recovered, and a small

number are dead.

• After a while, most of the population will have

immunity against the disease.

2.2 Herd immunity

Herd immunity refers to a situation where enough people in

a population have immunity to the infection to be able to

effectively stop that disease from spreading. For herd

immunity, it does not matter whether the immunity comes

from vaccination, or from the people who had the disease.

The crucial thing is that they are immune.

As more people become infected with COVID-19, the

disease caused by the virus, there will be more people who

recover and who are then immune to future infection.

Herd immunity is affected by the basic reproduction

rate, which represents how many people will be probably

infected from the transmitting cases. This can indicate how

quickly the disease will spread in the population. Generally

speaking, when the number of immune cases reaches to be

a large percentage of the population (i.e., larger than 60%)

the population will be shielded from having more infected

cases, and such percentage is called herd immunity

threshold.

The transmitting cases pass the infection, and the

immune system of the infected person will preserve an

immunological memory of the disease. This will enable the

infected person to become immune against that virus in the

future, and thus, it will stop the disease from circulation.

The coronavirus herd immunity concept is mathemati-

cally modeled to develop the proposed optimization algo-

rithm. The algorithm relies on the concept of how to best

1 https://www.worldometers.info/coronavirus/.
2 https://www.cdc.gov/coronavirus/2019-ncov/prepare/transmission.

html
3 https://economictimes.indiatimes.com/news/economy/policy/india-

needs-to-achieve-herd-immunity-to-effectively-counter-covid-19-swa

minathan-aiyar/articleshow/74860557.cms
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protect the community against the disease by converting

the majority of the susceptible population which is not

infected to become immuned. As a result, even the

remaining susceptible cases will not be infected because

the immuned population will not be transmitting the dis-

ease anymore.

2.3 Population hierarchy

The herd immunity population individuals can be classified

into three types [62]: susceptible, infected (or confirmed),

and immuned (or recovered) individuals [63]. Figure 2

shows how the three types of individuals are distributed.

The figure is represented as a tree where the root is the

infected individual and the edges point to the contacted

people. The right part of the figure shows that if the root

individual is immuned, the virus will not be spread to its

contacted individual. Therefore, it is functionally utilized

as a firewall against virus pandemics. These types of

individuals can be defined as follows:

• susceptible individuals These individuals are not

infected by the virus, but it can be infected when they

contact other infected individuals (i.e., did not follow

the recommended social distancing).

• infected individuals The individuals of this type have a

confirmed case where they can transmit the virus to

other susceptible individuals who are in direct contact

with according to the social distancing factor.

• immuned individuals The individuals who are catego-

rized as immuned are protected against the virus, and

they are not affected by infected individuals. This type

of individual can help the population to stop spreading

the pandemic as can be shown in Fig. 1.

In order to represent the hierarchy of population when the

CHIO is designed in terms of optimization context, the

susceptible individuals take a large portion from the pop-

ulation. The second portion of the population is marked as

infected individuals which are initiated by a small number

which represent the first infected individuals appeared in

the population, and this portion of the population grows up

if they did not follow the recommendation of social dis-

tancing until all the infected individuals are either

immuned (i.e., recovered) or dead. The last portion of the

population is the immuned individuals which are initiated

by null and grow up according to how many are the

recovered cases in the population. In the last course of the

run, the majority of individuals are immuned, and there-

fore, the pandemic is stopped. In CHIO, the improvement

process is derived by susceptible, infected, and immuned

individuals as shown in CHIO procedure section below.

2.4 Social distancing

The concept of social distancing is used in the case of virus

pandemics as a strategy to reduce the spreading of infec-

tions [64]. Normally, the governments and health care

institutions suggest such action to advise individuals to

Fig. 1 Herd immunity
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keep a space of 2 meters (6.5 feet) between each other

when going to crowded places [65]. Some other precau-

tionary actions can avoid crowded places such as malls,

schools, and universities.

The effect of social distancing is shown in Fig. 3. The

spread of the disease would decline which can ultimately

result in the outbreak of the pandemic. The transmission

chains of the virus will be broken and would result in

slowing down the spread of the disease and reaching the

pandemic peak with a smaller number of infected cases

[66]. Therefore, the country’s health care system would be

able to continue to serve a smaller number of infected

cases.

The two normal distribution charts presented in Fig. 3

show the effect of social distancing in controlling the

spread of the pandemic. Apparently, the social distancing

would distribute the infected cases on a longer period of

time which reduces the unmet need region (i.e., the health

care services are not satisfactory).

In CHIO, the social distancing concept is achieved

through taking the difference between the current individ-

ual and a selected individual from the population which

might be susceptible, infected, or immuned.

2.5 Herd immunity real cases

The concept of using a controlled herd immunity to contain

COVID-19 is used by some countries (e.g., UK and

Sweden).

Sweden followed a controlled approach to herd immu-

nity in which they keep schools, restaurants, and most

businesses open and asked its citizens to voluntarily

Fig. 3 Effect of social

distancing on the spreading of

virus pandemics in the

population

Fig. 2 Population hierarchy
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practice social distancing [67]. The Swedish herd immunity

takes longer than expected [68]. This is presented in Fig. 4

as it shows the number of confirmed cases and deaths in

Sweden from February to May 2020. As of June 28, 2020,

Sweden have 65,137 confirmed cases and 5,280 deaths

[69].

Some countries (e.g., UK) allow the spread of the virus

to increase the population herd immunity while protecting

the elderly because they are the most vulnerable to this

virus [54]. The UK government recommended using herd

immunity to contain COVID-19 [70]. Figure 4 shows the

decrease in the number of confirmed cases, and the number

of deaths over time in the UK from February to May 2020.

As of June 28, 2020, the UK have 310,254 confirmed cases

and 43,514 deaths [71].

2.6 CHIO procedure

Herd immunity strategy is modeled in the proposed opti-

mization algorithm. The concepts of COVID-19 are map-

ped to the optimization context in Table 2, and the CHIO is

represented as a set of steps which thoroughly discussed

below. The flowchart of CHIO algorithm is illustrated in

Fig. 5 while CHIO is pseudocoded in Algorithm 1. The

algorithm has six main steps discussed as follows:

Step 1 Initialize parameters of CHIO and optimization

problem In this step, the optimization problem is

formulated in the context of objective function as

follows:

Fig. 4 COVID-19 confirmed and death cases in the UK and Sweden

Table 2 Bridge between

COVID-19 and optimization

concept

No COVID-19 context Optimization context

1 (infected, susceptible, immuned) Case Solution

2 Social distancing Pick random case and rely on the basic reproduction rate

3 Mortality rate Reaching maximum age

4 Reproductive number Basic reproduction rate

5 Transmission speed Basic reproduction rate

6 Immunity rate Fitness value

7 Possibility of infection Weak fitness value and inherit COVID-19 features

Fig. 5 Flowchart of CHIO algorithm
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min
x

f ðxÞ x 2 ½lb; ub� ð1Þ

where f ðxÞ is the objective function (or immunity rate)

calculated for the case (or the individual) x ¼
ðx1; x2; . . .; xnÞ where xi is the gene (or the decision

variable) indexed by i and n is the total number of genes

in each individual. Note that the value range of each

gene xi 2 ½lbi; ubi� where lbi and ubi represent the lower

and upper bounds of gene xi.

CHIO has four algorithmic parameters and two con-

trol parameters. The four algorithmic parameters are

• C0: which represents the number of initial infected

cases where it is here initiated by one.

• Max Itr: which is the maximum number of

iterations.

• HIS: which is the population size.

• n: which is the problem dimensionality.

The CHIO has two main control parameters to be ini-

tialized in this step:

• Basic reproduction rate (BRr) which controls the

CHIO operators through spreading the virus pan-

demic between individuals.

• Maximum infected cases age (MaxAge): It determines

the status of the infected cases where cases that reach

MaxAge is either recovered or died.

Step 2 Generate herd immunity population Initially,

CHIO randomly (or heuristically) generates a set of cases

(individuals) as many as HIS. The generated cases are

stored as two-dimensional matrix of size n� HIS in herd

immunity population (HIP) as follows:

HIP ¼

x11 x12 � � � x1n
x21 x22 � � � x2n

..

. ..
.

� � � ..
.

xHIS1 xHIS2 � � � xHISn

2
66664

3
77775

ð2Þ

where each row j represents a case xj, which is basically

generated as follows:x j
i ¼ lbi þ ðubi � lbiÞ � Uð0; 1Þ,

8i ¼ 1; 2; . . .; n. The objective function (or immunity

rate) for each case is calculated using equation (1).

Furthermore, the status vector (S) of length HIS for all

cases in HIP is also initiated by either zero (susceptible

case) or one (infected case). Note that the number of

ones in (S) is randomly initiated as many as C0.

Step 3 Coronavirus herd immunity evolution This is the

main improvement loop of CHIO. The gene (xji) of case

xj is either remain the same or affected by social

distancing using three rules according to the percentage

of the BRr as follows:

xjiðtþ1Þ 

xjiðtÞ r�BRr

CðxjiðtÞÞ r\
1

3
�BRr: //infected case

NðxjiðtÞÞ r\
2

3
�BRr: //susceptible case

RðxjiðtÞÞ r\BRr: //immuned case

8>>>>>>><
>>>>>>>:

ð3Þ

where r generates a random number between 0 and 1.

The three rules can be discussed as follows:

Infected case: Within the range of r 2 ½0; 1
3
BRrÞ, the

new gene value of xjiðt þ 1Þ is affected by some social

distancing which is achieved by the difference

between current gene and a gene taken from an

infected case xm such as

xjiðt þ 1Þ ¼ CðxjiðtÞÞ ð4Þ

where

CðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xci ðtÞÞ ð5Þ

Note that the value xci ðtÞ is randomly chosen from any

infected case xc based on the status vector (S) such

that c ¼ fijSi ¼ 1g
Susceptible case: Within the range of

r 2 ½1
3
BRr;

2
3
BRrÞ, the new gene value of xjiðt þ 1Þ is

affected by some social distancing which is achieved

by the difference between the current gene and a gene

taken from a susceptible case xm such as

xjiðt þ 1Þ ¼ NðxjiðtÞÞ ð6Þ

where

NðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xmi ðtÞÞ ð7Þ

Note that the value xmi ðtÞ is randomly spread from any

susceptible case xm based on the status vector (S) such
that m ¼ fijSi ¼ 0g.
Immuned case:Within the range of r 2 ½2

3
BRr;BRrÞ,

the new gene value of xjiðt þ 1Þ is affected by some

social distancing which is achieved by the difference

between the current gene and a gene taken from an
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immuned case xv such as

xjiðt þ 1Þ ¼ RðxjiðtÞÞ ð8Þ

where

RðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xmi ðtÞÞ ð9Þ

Note that the value xvi ðtÞ is spread from the best

immuned case xv based on the status vector (S) such
that

f ðxvÞ ¼ arg min
js fkjSk¼2g

f ðxjÞ:

Step 4 Update herd immunity population The immunity

rate f ðxjðt þ 1ÞÞ of each generated case xjðt þ 1Þ is

calculated and the current case xjðtÞ is replaced by the

generated case xjðt þ 1Þ, if better, such as

f ðxjðt þ 1ÞÞ\f ðxjðtÞÞ. The age vector Aj is also

increased by one if Sj ¼ 1.

The status vector (Sj) is updated for each case xj

based on the herd immune threshold which utilizes the

following equation:

Sj  
1 f ðxjðt þ 1ÞÞ\ f ðxÞjðt þ 1Þ

Mf ðxÞ ^ Sj ¼ 0 ^ is Coronaðxjðt þ 1ÞÞ

2 f ðxjðt þ 1ÞÞ[ f ðxÞjðt þ 1Þ
Mf ðxÞ ^ Sj ¼ 1

8>>>><
>>>>:

ð10Þ

where iscoronaðxjðt þ 1ÞÞ is a binary value equal to one

when the new case xjðt þ 1Þ inherited a value from any

infected case. The Mf ðxÞ is the mean value of the pop-

ulation immune rates such as

PHIS

i¼1 f ðxiÞ
HIS . Note that the

individuals’ immunity rate in the population will be

changed based on the social distancing calculated before,

if the newly generated individual immunity rate is better

than the average immunity rate of the population. This

means that we are starting to have a better-immuned

population. If the newly generated population is strong

enough to be immuned against the pandemic, then we

reach the herd immunity threshold.

Step 5 Fatality cases In case the immunity rate

(f ðxjðt þ 1Þ) of the current infected case (Sj == 1) could

not improve for a certain number of iterations as

specified by the parameter Max Age (i.e., Aj �
Max Age), then this case is considered died. After that,

it is regenerated from scratch using x j
i ðt þ 1Þ =

lbi þ ðubi � lbiÞ � Uð0; 1Þ, 8i ¼ 1; 2; . . .; n. Further-

more, Aj and Sj are set to zero. This can be useful to

diversify the current population and thus escaping local

optima.

Step 6 Stop criterion CHIO repeats Step 3 to step 6 until

the termination criterion which normally depends if the

maximum number of iteration is reached. In this case,

the total number of susceptible and immuned cases

dominate the population. The infected cases are also

disappeared.

3 Experiments and results

In this section, the proposed CHIO algorithm is evaluated

from various aspects by using a set of experiments con-

ducted on 23 test functions. These test functions are cir-

culated widely to evaluate newly established methods. The

characteristics of these test functions are provided in Sect.

3.1. The experimental scenarios that are designed to study

the behavior of CHIO algorithm are summarized in Sect

3.2. The sensitivity of CHIO to its control parameters:

spreading rate (Sr) and maximum age of confirmed cases

(MaxAge) are illustrated in Sects. 3.3 and 3.4, respectively.
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Thereafter, the effect of the social distancing strategies on

the convergence behavior of the herd immunity evolution

is analyzed in Sect. 3.5. Finally, the comparative evaluation

against the state-of-the-art algorithms is discussed in Sect.

3.6.

3.1 Test functions

In order to evaluate the performance of the proposed

CHIO, 23 common test functions are considered. All of

these test functions are minimization problems, which are

different in size and complexity. Table 3 provides the main

characteristics of test functions used which includes the

functions names, the test function key, the mathematical

formulation of each test function, the rang which deter-

mines the boundary of the search space, the function

dimensions (n), and the optimum solution f ðx�Þ. The cat-

egory of each test function is also provided: unimodal

(U) and multimodal (M). It should be noted that the uni-

modal test functions have a single optimum, while the

multimodal test functions have more than one optimum.

The unimodal test functions are used to evaluate the

exploitation ability of the optimization algorithms, while

the multimodal test functions are used to evaluate the

exploration ability of the optimization algorithms [42]. As

shown in Table 3, F1 – F7 are categorized as unimodal test

functions, while F8 – F23 are categorized as multimodal

test functions. Furthermore, The dimensions of the test

functions F14 – F23 are fixed.

Figure 6 shows the 2D search space for each benchmark

function and the convergence behavior of CHIO of the first

solution in the first dimension for each benchmark

function.

3.2 Experimental settings

The evaluations of the CHIO performance are tested and

analyzed using different convergence scenarios. The sen-

sitivity of CHIO to its two control parameters (i.e., BRr and

MaxAge) is studied as shown in Table 4: Sen1–Sen8. The

convergence scenarios are conducted based on ad hoc

strategy where the first set of scenarios study one operator

and the remaining operators are remaining constant.

The effect of basic reproduction rate (BRr) on the con-

vergence of CHIO is studied using four values

(BRr ¼ 0:005, BRr ¼ 0:05, BRr ¼ 0:01, and BRr ¼ 0:5)

from Sen1 to Sen4. Note that BRr determines the per-

centage of the population affected by the coronavirus

pandemic. The smaller the value is, the slower the coron-

avirus spreading will be.

The effect of the maximum infected age (MaxAge) on the

convergence of CHIO is studied using four numbers
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Fig. 6 Functions and

convergence plots
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(MaxAge ¼ 50, MaxAge ¼ 100, MaxAge ¼ 300, and

MaxAge ¼ 500) from Sen5 to Sen8. As remembering, the

MaxAge is the maximum number of iterations where the

infected solution remains unimproved. Therefore, a new

solution is constructed from scratch to replace the dis-

carded solution.

The last four convergence scenarios (i.e., Sen9 –

Sen12) are designed to study the social distancing strat-

egy. Recall, the social distancing in herd immunity evo-

lution step has three main rules for infection: susceptible,

infected, and immuned. The first two rules update the

generated solution based on the difference between the

current solution and a randomly selected solution. The last

rule updates the generated solution based on the differ-

ence between the current solution and the best solution.

Sen9 – Sen12 study four possible combinations of social

distancing strategies: random–random–random, random–

random–best, random–best–random, and random–best–

best.

Note that CHIO replicates 30 runs for each experimental

scenario, the herd immunity size (HIS) used is 30, and the

maximum number of iteration (i.e., Maxitr) is equal to

100,000. The results are statistically recorded in terms of

best, mean, worst, and standard deviation for all designed

scenarios.

3.3 Effect of the basic reproduction rate (BRr)

The effect of the basic reproduction rate (BRr) on the

performance of CHIO using various values of BRr (i.e.,

BRr ¼ 0:005, BRr ¼ 0:05, BRr ¼ 0:1, and BRr ¼ 0:5) has

been studied here. The value of the parameter BRr deter-

mines the speed of spreading the coronavirus pandemic

across the population. A higher value of BRr leads to a

higher rate of spreading the disease and thus the explo-

ration becomes large. The results recorded in Table 5

summarize the best, worst, mean, and standard deviation

(Stdev.) of the 23 test functions over 30 replicated runs.

As can be noticed, CHIO in Sen2 can achieve the most

best mean results. This is because a larger value of BRr

increases the exploration, and thus, the search will require

longer time to converge. On the other hand, when the value

of BRr ¼ 0:001, the exploration source of the generated

individuals is not that much, and thus, fast convergence

will be occurred.

As remembering, the first seven benchmark functions

are unimodal and they have higher complexity to be solved

due to their ruggedness in the search space. Sen2 can

outperform other three scenarios in five out of seven

benchmark functions. The next six benchmark functions

(F8–F13) are multimodal, and their dimensions are flexi-

ble. The search space of this type of benchmark functions

is not that complex in comparison with unimodal bench-

mark functions. Interestingly, Sen2 can excel all other

designed scenarios for all multimodal flexible dimensions

benchmark functions. The search space of the last ten

benchmark functions of type multimodal and fixed

dimensions is the simplest where Sen2 can outperform the

other three scenarios in eight of ten benchmark functions.

Apparently, using BRr ¼ 0:01 represented in Sen2

empower the convergence behavior of CHIO to achieve the

right balance between the exploration and exploitation of

the search space and thus the best performance. Therefore,

the value of BRr ¼ 0:01 will be used in the experiments of

the upcoming designed scenarios.

3.4 Effect of MaxAge

The effect of the maximum age of the infected cases

(MaxAge) on the performance of CHIO using various values

of (MaxAge ¼ 50, MaxAge ¼ 100, MaxAge ¼ 300, and

MaxAge ¼ 500) is investigated in this subsection. The value

Table 4 Twelve experimental

scenarios designed to evaluate

the sensitivity of the proposed

CHIO to its parameters

Scenario BRr MaxAge infected susceptible immuned Notes

Sen1 0.005 100 Random Random Best

Sen2 0.05

Sen3 0.1

Sen4 0.5

Sen5 50 Random Random Best

Sen6 100 Sen6 = Sen 2

Sen7 300

Sen8 500

Sen9 Random Random Random

Sen10 Random Random Best Sen10 = Sen 6

Sen11 Random Best Random

Sen12 Random Best Best
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Table 5 Performance of CHIO algorithm using different settings of BRr

Function Sen1 Sen2 Sen3 Sen4

F1 Best 1.1915E-73 0.0000E100 0.0000E100 0.0000E100

Worst 9.3388E-02 2.1364E-16 2.0496E-04 5.3245E?03

Mean 1.7232E-02 7.1578E218 6.9120E-06 1.7251E?03

Stdev. 1.7232E-02 3.8999E-17 3.7407E-05 1.4528E?03

F2 Best 1.6108E-35 3.6009E2179 5.9705E-27 7.2303E-14

Worst 7.1296E?02 2.2255E-09 3.2453E-03 1.5847E?01

Mean 2.8919E?01 1.0336E210 1.1464E-04 6.6956E?00

Stdev. 1.3216E?02 4.1628E-10 5.9190E-04 5.2267E?00

F3 Best 1.5125E?03 6.8219E-01 2.7157E-04 6.8886E212

Worst 6.5132E?03 1.4758E?02 1.1900E?02 4.1768E?03

Mean 3.3855E?03 5.3496E?01 3.8246E101 5.3926E?02

Stdev. 1.1490E?03 4.1604E?01 3.6283E?01 1.1309E?03

F4 Best 2.0556E-01 1.4323E-14 1.7012E-20 4.1184E229

Worst 6.5107E?01 8.6072E-02 1.7094E-01 2.6488E?01

Mean 5.7485E?00 1.2869E202 3.6961E-02 5.0840E?00

Stdev. 1.5723E?01 2.0007E-02 5.3978E-02 7.1575E?00

F5 Best 6.5458E-04 2.0602E204 5.4126E-03 2.3175E?01

Worst 9.6098E?01 1.2583E?00 1.8537E?01 1.1408E?06

Mean 1.5704E?01 3.0925E201 3.5249E?00 1.4873E?05

Stdev. 2.4355E?01 4.4332E-01 4.5043E?00 2.7048E?05

F6 Best 0.0000E100 0.0000E100 0.0000E100 1.2089E-03

Worst 5.3341E-02 2.1121E-03 4.3919E-05 5.8506E?03

Mean 1.7786E-03 7.0403E-05 1.4664E206 1.2989E?03

Stdev. 9.7386E-03 3.8561E-04 8.0180E-06 1.3499E?03

F7 Best 1.8090E-02 2.2048E-03 2.4062E-03 8.4391E204

Worst 5.7765E-02 7.5511E-03 8.9773E-03 1.5651E?00

Mean 3.2510E-02 4.5852E203 5.4953E-03 3.1551E-01

Stdev. 9.9587E-03 1.3483E-03 1.6943E-03 4.0446E-01

F8 Best 2 1.2569E104 2 1.2569E104 2 1.2569E104 2 1.2569E104

Worst - 1.2451E?04 - 1.2569E?04 - 1.1401E?04 - 8.5119E?03

Mean - 1.2565E?04 2 1.2569E104 - 1.2357E?04 - 1.1176E?04

Stdev. 2.1538E?01 0.0000E?00 3.4241E?02 9.5714E?02

F9 Best 0.0000E100 0.0000E100 0.0000E100 2.1068E-06

Worst 1.3049E-04 2.1364E-16 2.9849E?00 1.0683E?02

Mean 4.3838E-06 7.1578E218 4.6432E-01 2.8554E?01

Stdev. 2.3818E-05 3.8999E-17 8.5604E-01 2.7109E?01

F10 Best 2.2204E-14 1.5099E214 1.5099E214 6.6650E-05

Worst 3.6980E-02 2.9142E-04 9.3130E-01 1.4479E?01

Mean 1.2502E-03 1.0244E205 3.1072E-02 5.3867E?00

Stdev. 6.7487E-03 5.3185E-05 1.7003E-01 3.4723E?00

F11 Best 0.0000E100 0.0000E100 0.0000E100 5.3118E-01

Worst 5.9121E-02 1.1316E-05 3.6524E-02 4.9415E?01

Mean 3.2896E-03 4.4131E207 1.8787E-03 1.5387E?01

Stdev. 1.1039E-02 2.0830E-06 7.4673E-03 1.1417E?01

F12 Best 1.5705E232 1.5705E232 1.5705E232 1.5786E-32

Worst 3.6124E-05 1.0144E-15 2.0264E-12 2.7489E?03

Mean 2.5452E-06 3.3819E217 6.9156E-14 2.1803E?02

Stdev. 7.4542E-06 1.8520E-16 3.6972E-13 6.5459E?02
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Table 5 (continued)

Function Sen1 Sen2 Sen3 Sen4

F13 Best 1.3498E232 1.3498E232 1.3498E232 1.7920E-30

Worst 3.1017E-02 8.9261E-29 9.0058E-03 1.5117E?06

Mean 1.3740E-03 2.9886E230 3.0019E-04 9.5468E?04

Stdev. 5.7660E-03 1.6294E-29 1.6442E-03 2.9145E?05

F14 Best 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Worst 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01

Mean 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F15 Best 5.5859E-04 3.1027E-04 3.1755E-04 3.0749E204

Worst 1.0558E-03 7.4299E-04 6.1261E-04 7.2917E-04

Mean 7.4781E-04 4.8287E-04 4.2580E-04 3.6978E204

Stdev. 1.0901E-04 1.1762E-04 8.8041E-05 1.0701E-04

F16 Best - 1.0316E?00 - 1.0316E?00 - 1.0316E?00 - 1.0316E?00

Worst - 1.0316E?00 - 1.0316E?00 - 1.0316E?00 - 1.0316E?00

Mean - 1.0316E?00 - 1.0316E?00 - 1.0316E?00 - 1.0316E?00

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F17 Best 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Worst 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01

Mean 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F18 Best 3.0000E100 3.0000E100 3.0000E100 3.0000E100

Worst 3.0031E?00 3.0000E?00 3.0000E?00 3.0000E?00

Mean 3.0006E?00 3.0000E100 3.0000E100 3.0000E100

Stdev. 7.3438E-04 0.0000E?00 0.0000E?00 0.0000E?00

F19 Best 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Worst - 3.8628E?00 - 3.8628E?00 - 3.8628E?00 - 3.8628E?00

Mean 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F20 Best 2 3.3220E100 2 3.3220E100 2 3.3220E100 2 3.3220E100

Worst - 3.2584E?00 - 3.3220E?00 - 3.3220E?00 - 3.3220E?00

Mean - 3.3150E?00 2 3.3220E100 2 3.3220E100 2 3.3220E100

Stdev. 1.8824E-02 0.0000E?00 0.0000E?00 0.0000E?00

F21 Best 2 1.0153E101 2 1.0153E101 2 1.0153E101 2 1.0153E101

Worst - 7.8455E?00 - 1.0153E?01 - 1.0153E?01 - 1.0153E?01

Mean - 9.6105E?00 2 1.0153E101 2 1.0153E101 2 1.0153E101

Stdev. 8.4268E-01 0.0000E?00 0.0000E?00 0.0000E?00

F22 Best 2 1.0403E101 2 1.0403E101 2 1.0403E101 2 1.0403E101

Worst - 6.3599E?00 - 1.0403E?01 - 1.0403E?01 - 1.0403E?01

Mean - 9.4503E?00 2 1.0403E101 2 1.0403E101 2 1.0403E101

Stdev. 1.2046E?00 0.0000E100 0.0000E100 0.0000E100

F23 Best - 1.0536E?01 - 1.0536E?01 - 1.0536E?01 - 1.0536E?01

Worst - 7.3257E?00 - 1.0536E?01 - 1.0536E?01 - 1.0536E?01

Mean - 9.6771E?00 2 1.0536E101 2 1.0536E101 2 1.0536E101

Stdev. 9.9204E-01 0.0000E?00 0.0000E?00 0.0000E?00

Bold font refers to the best recorded result
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Table 6 Performance of CHIO algorithm using different settings of MaxAge

Function Sen5 Sen6 Sen7 Sen8

F1 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 7.2289E-18 2.1364E-16 3.2278E-05 5.1485E?00

Mean 2.4096E219 7.1578E-18 1.4947E-06 1.7162E-01

Stdev. 1.3198E-18 3.8999E-17 6.1433E-06 9.3998E-01

F2 Best 7.1594E-272 3.6009E-179 9.5408E-111 2.0725E2273

Worst 1.0062E-03 2.2255E-09 2.6313E-02 2.3157E-02

Mean 5.2922E-05 1.0336E210 9.3354E-04 2.1896E-03

Stdev. 2.0701E-04 4.1628E-10 4.7953E-03 6.3889E-03

F3 Best 2.5397E?00 6.8219E-01 4.6399E-01 2.3176E201

Worst 1.8566E?02 1.4758E?02 1.6224E?02 1.2954E?02

Mean 6.8452E?01 5.3496E?01 5.4905E?01 4.4860E101

Stdev. 5.1942E?01 4.1604E?01 4.7754E?01 3.9250E?01

F4 Best 1.5053E-14 1.4323E-14 9.3573E-15 8.5950E215

Worst 1.3080E-01 8.6072E-02 1.2431E-01 7.4766E-02

Mean 2.2018E-02 1.2869E-02 1.8668E-02 1.0511E202

Stdev. 3.6482E-02 2.0007E-02 3.0738E-02 1.9717E-02

F5 Best 6.7196E-04 2.0602E204 3.1663E-03 1.1587E-03

Worst 1.0773E?01 1.2583E?00 1.2215E?04 5.7580E?00

Mean 7.3006E-01 3.0925E201 4.0829E?02 1.3770E?00

Stdev. 1.9983E?00 4.4332E-01 2.2299E?03 1.6805E?00

F6 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 2.1015E-16 2.1121E-03 9.2760E?01 3.9408E-03

Mean 7.0050E218 7.0403E-05 3.0920E?00 1.5185E-04

Stdev. 3.8368E-17 3.8561E-04 1.6936E?01 7.2334E-04

F7 Best 2.4045E-03 2.2048E203 2.9042E-03 2.2303E-03

Worst 8.9010E-03 7.5511E-03 1.1137E-02 2.3980E-02

Mean 5.1565E-03 4.5852E203 5.3464E-03 6.7864E-03

Stdev. 1.5305E-03 1.3483E-03 1.6764E-03 5.1579E-03

F8 Best 2 1.2569E104 2 1.2569E104 2 1.2569E104 2 1.2569E104

Worst - 1.2451E?04 - 1.2569E?04 - 1.1148E?04 - 1.1912E?04

Mean - 1.2565E?04 2 1.2569E104 - 1.2487E?04 - 1.2520E?04

Stdev. 2.1544E?01 0.0000E?00 2.6373E?02 1.3638E?02

F9 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 3.4106E-13 2.1364E-16 9.9502E-01 9.0767E?00

Mean 3.4106E-14 7.1578E218 3.3179E-02 8.3617E-01

Stdev. 6.4380E-14 3.8999E-17 1.8166E-01 2.2866E?00

F10 Best 1.5099E-14 1.5099E-14 1.1546E214 1.5099E-14

Worst 3.9968E-14 2.9142E-04 2.6673E-03 5.0244E-04

Mean 2.7534E214 1.0244E-05 1.5374E-04 3.2880E-05

Stdev. 7.1514E-15 5.3185E-05 5.3564E-04 1.0915E-04

F11 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 7.4057E-03 1.1316E-05 1.3499E-04 1.1164E?00

Mean 2.4690E-04 4.4131E207 1.2273E-05 3.9179E-02

Stdev. 1.3521E-03 2.0830E-06 3.1948E-05 2.0360E-01

F12 Best 1.5705E232 1.5705E232 1.5705E232 1.5705E232

Worst 7.5517E-16 1.0144E-15 5.1535E-06 6.2437E-06

Mean 2.5172E217 3.3819E-17 1.7178E-07 2.2798E-07

Stdev. 1.3787E-16 1.8520E-16 9.4090E-07 1.1387E-06
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of the parameter MaxAge determines the fatality condition

of the infected cases. The infected cases that are reached

the MaxAge threshold without improvement will be

destroyed, and a new solution will be rebuilt from scratch.

The results recorded in Table 6 summarize the best, worst,

mean, and standard deviation (Stdev.) of the 23 test

Table 6 (continued)

Function Sen5 Sen6 Sen7 Sen8

F13 Best 1.3498E232 1.3498E232 1.3498E232 1.3498E232

Worst 4.5096E-20 8.9261E-29 2.1435E-08 9.4083E-07

Mean 1.5038E-21 2.9886E230 7.4931E-10 5.0727E-08

Stdev. 8.2333E-21 1.6294E-29 3.9111E-09 1.9867E-07

F14 Best 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Worst 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01

Mean 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F15 Best 3.5295E-04 3.1027E204 3.1141E-04 3.1057E-04

Worst 8.0620E-04 7.4299E-04 6.3479E-04 6.8806E-04

Mean 5.2965E-04 4.8287E-04 4.3896E-04 4.3822E204

Stdev. 1.1758E-04 1.1762E-04 9.8883E-05 9.3258E-05

F16 Best 2 1.0316E100 2 1.0316E100 2 1.0316E100 2 1.0316E100

Worst - 1.0316E?00 - 1.0316E?00 - 1.0316E?00 - 1.0316E?00

Mean 2 1.0316E100 2 1.0316E100 2 1.0316E100 2 1.0316E100

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F17 Best 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Worst 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01

Mean 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F18 Best 3.0000E100 3.0000E100 3.0000E100 3.0000E100

Worst 3.0000E?00 3.0000E?00 3.0000E?00 3.0000E?00

Mean 3.0000E100 3.0000E100 3.0000E100 3.0000E100

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F19 Best 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Worst - 3.8628E?00 - 3.8628E?00 - 3.8628E?00 - 3.8628E?00

Mean 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F20 Best 2 3.3220E100 2 3.3220E100 2 3.3220E100 2 3.3220E100

Worst - 3.3220E?00 - 3.3220E?00 - 3.3220E?00 - 3.3220E?00

Mean 2 3.3220E100 2 3.3220E100 2 3.3220E100 2 3.3220E100

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F21 Best 2 1.0153E101 2 1.0153E101 2 1.0153E101 2 1.0153E101

Worst - 1.0153E?01 - 1.0153E?01 - 1.0153E?01 - 1.0153E?01

Mean 2 1.0153E101 2 1.0153E101 2 1.0153E101 2 1.0153E101

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F22 Best 2 1.0403E101 2 1.0403E101 2 1.0403E101 2 1.0403E101

Worst - 1.0403E?01 - 1.0403E?01 - 1.0403E?01 - 1.0403E?01

Mean 2 1.0403E101 2 1.0403E101 2 1.0403E101 2 1.0403E101

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F23 Best 2 1.0536E101 2 1.0536E101 2 1.0536E101 2 1.0536E101

Worst - 1.0536E?01 - 1.0536E?01 - 1.0536E?01 - 1.0536E?01

Mean 2 1.0536E101 2 1.0536E101 2 1.0536E101 v1.0536E101

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

Bold font refers to the best recorded result
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functions over 30 replicated runs. The best solution, as well

as the best mean obtained, is highlighted in bold font. Note

that in the results, the lowest is the best.

The results in Table 6 show that when the value of

MaxAge is equal to 100, the best mean results are obtained.

Note that the best results are highlighted in bold. The

MaxAge refers to the number of iterations for which the

infected cases remain unimproved. This operation can be

considered as a source of exploration. The smaller the

value of MaxAge, the higher the exploration. The value of

MaxAge ¼ 100 seems reasonable to diversify the search.

However, there is no significant effect on the value of

MaxAge on the results produced.

3.5 Study of social distancing strategies in herd
immunity evolution

The effect of social distancing strategies on the herd

immunity evolution step is studied using the last four

convergence scenarios (i.e., Sen9 – Sen12). The social

distancing in herd immunity evolution step has three main

rules for infection: infected, susceptible, and immuned.

Sen9 changes the functionality of the social distancing

strategy where the three rules update the generated solution

based on the difference between the current solution and a

randomly selected solution which is called a random–ran-

dom–random social distancing strategy. Sen10 changes the

functionality of the social distancing strategy and is called

a random–random–best where the infected case and the

susceptible case use a randomly selected solution while the

immuned cases use the difference between the current

solution and the best solution to update the values of the

newly generated solution.

Sen11 assumed that the functionality of the social dis-

tancing strategy updates the newly generated solutions

based on the random–best–random strategy where the

infected case uses a randomly selected solution while the

susceptible case uses the difference between the current

solution and the best solution to update the values of the

newly generated solution, while the immuned cases use the

difference between the current solution and the randomly

selected solution to update the values of the newly gener-

ated solution. The last scenario (Sen12) adopts random–

best–best social distancing strategy where the infected rule

uses the difference between the current solution and the

randomly selected solution to update the values of the

newly generated solution, while the rules of the susceptible

and immuned cases use the difference between the current

solution and the best solution to update the values of the

newly generated solution.

The results recorded in Table 5 summarize the best,

worst, mean, and standard deviation (Stdev.) of the 23 test

functions over 30 replicated runs. The best solution, as well

as the best mean obtained, is highlighted in bold font. Note

that in the results, the lowest is the best. The results sum-

marized in Table 7 show that Sen9 can achieve the best

mean results for 22 out of 23 benchmark functions. Recall,

Sen9 uses a random–random–random social distancing

strategy. This means that the stochastic strategy in social

distancing is very efficient and empower the convergence

strength of the proposed CHIO.

The convergence behaviour of CHIO using different

social distancing strategies are illustrated in Fig. 7. As can

be noticed, Sen9 adopted random–random–random social

distance strategy shows the best convergence behaviour in

comparison with other three social distancing strategies.

3.6 Comparison with the swarm-based
optimization algorithms

In this section, the performance of the proposed CHIO

algorithm is compared to seven swarm-based algorithms.

The flower pollination algorithm (FPA) [28], bat algorithm

(BA) [20], artificial bee colony (ABC) [12], sine cosine

algorithm (SCA) [36], Harris hawks optimization (HHO)

[33], salp swarm algorithm (SSA), and JAYA algorithm

[72] are utilized to deeply investigate the efficiency of the

proposed CHIO algorithm when compared against these

algorithms.

It should be noted that all these algorithms are experi-

mented using the same conditions in order to ensure fair-

ness. These conditions include the maximum number of

iterations is 100,000, the size of the population is 30, and

the number of runs is 30 times. The algorithmic parameters

of the other comparative algorithms are p=0.8 in FPA;

fmin ¼ 0, fmax ¼ 1, Aj ¼ 0:95, r0j ¼ 0:1, a ¼ 0:95, c ¼ 0:95,

and � ¼ 0:001 in BA; a = 2 in SCA; limit = Number of

onlooker bees � n in ABC; and v0 ¼ 0 in SSA.

Table 8 exposes the experimental results of the proposed

CHIO algorithm as well as the other comparative methods

in terms of the best results, worst results, mean of the

results, and the standard derivation when running theses

algorithms 30 independent runs. In Table 8, the best results

are highlighted in bold font.

In terms of the best of the results, it can be observed

from the results provided in Table 8 that all the algorithms

obtained the same optimal results on four test functions

(i.e., F14, F16, F17, and F18). This is because the dimen-

sions of the solutions in these test functions are small, and

the algorithms did not need big effort to reach the optimal

results. On other hand, the HHO algorithm obtained the

best results in 19 test functions, and this is the highest

number of best results reached by one of the comparative

algorithms, while the JAYA and FPA algorithms achieved
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Table 7 Performance of CHIO algorithm using different social distancing strategies

Function Sen 9 Sen 10 Sen 11 Sen 12

F1 Best 0.0000E100 0.0000E100 0.0000E100 5.6986E-238

Worst 6.9210E-192 2.1364E-16 6.5822E?02 2.6445E?03

Mean 2.5633E2193 7.1578E-18 2.4379E?01 2.2585E?02

Stdev. 0.0000E?00 3.8999E-17 1.2667E?02 6.9561E?02

F2 Best 3.1404E2284 3.6009E-179 6.9821E-251 1.5648E-43

Worst 5.9875E-36 2.2255E-09 5.6621E-24 5.5872E-06

Mean 1.9958E237 1.0336E-10 1.8874E-25 1.8624E-07

Stdev. 1.0932E-36 4.1628E-10 1.0338E-24 1.0201E-06

F3 Best 7.8863E-01 6.8219E-01 4.1503E201 8.2422E?00

Worst 8.3445E?01 1.4758E?02 5.5907E?01 1.4537E?02

Mean 1.4510E?01 5.3496E?01 1.2282E101 6.3900E?01

Stdev. 1.9350E?01 4.1604E?01 1.4082E?01 3.5922E?01

F4 Best 1.0365E-13 1.4323E214 4.1831E-12 7.4064E-08

Worst 1.1238E-03 8.6072E-02 3.3300E?01 5.0596E?01

Mean 1.1663E204 1.2869E-02 1.9450E?00 2.2038E?00

Stdev. 2.7763E-04 2.0007E-02 7.4795E?00 9.5325E?00

F5 Best 6.6029E-04 2.0602E204 6.2803E-04 1.0870E-02

Worst 1.0315E?00 1.2583E?00 3.2189E?06 6.0425E?06

Mean 1.6330E201 3.0925E-01 2.2734E?05 3.0083E?05

Stdev. 2.5698E-01 4.4332E-01 7.0727E?05 1.1549E?06

F6 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 0.0000E?00 2.1121E-03 3.9047E?03 5.5317E?03

Mean 0.0000E100 7.0403E-05 2.8332E?02 4.0554E?02

Stdev. 0.0000E?00 3.8561E-04 8.5671E?02 1.2405E?03

F7 Best 1.8820E-03 2.2048E-03 1.7919E203 3.4210E-03

Worst 6.0311E-03 7.5511E-03 5.4759E-01 2.1158E?00

Mean 2.9852E203 4.5852E-03 3.0172E-02 7.5764E-02

Stdev. 8.5775E-04 1.3483E-03 1.0903E-01 3.8530E-01

F8 Best 2 1.2569E104 2 1.2569E104 2 1.2569E104 2 1.2569E104

Worst - 1.2569E?04 - 1.2569E?04 - 9.7458E?03 - 1.0143E?04

Mean 2 1.2569E104 2 1.2569E104 - 1.2389E?04 - 1.2457E?04

Stdev. 0.0000E?00 0.0000E?00 6.8472E?02 4.6989E?02

F9 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 0.0000E?00 2.1364E-16 4.6785E?01 4.8754E?01

Mean 0.0000E100 7.1578E-18 5.2139E?00 1.6251E?00

Stdev. 0.0000E?00 3.8999E-17 1.3842E?01 8.9012E?00

F10 Best 1.5099E214 1.5099E214 1.5099E214 1.8652E-14

Worst 2.9310E-14 2.9142E-04 1.2547E?01 1.2153E?01

Mean 2.0191E214 1.0244E-05 8.2750E-01 1.4744E?00

Stdev. 4.4435E-15 5.3185E-05 3.1494E?00 3.8314E?00

F11 Best 0.0000E100 0.0000E100 0.0000E100 0.0000E100

Worst 0.0000E?00 1.1316E-05 3.4024E?01 4.5916E?01

Mean 0.0000E100 4.4131E-07 2.0627E?00 3.6401E?00

Stdev. 0.0000E?00 2.0830E-06 7.1892E?00 1.1629E?01

F12 Best 1.5705E232 1.5705E232 1.5705E232 1.5705E232

Worst 1.5705E-32 1.0144E-15 3.4909E?05 9.9692E?06

Mean 1.5705E232 3.3819E-17 1.1636E?04 3.3236E?05

Stdev. 0.0000E?00 1.8520E-16 6.3735E?04 1.8201E?06
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the best results in 16 test functions. Interestingly, the CHIO

algorithm obtained the best results in 15 test functions,

while ABC, SSA, SCA, and BA get the best results in 12,

10, 8, and 7 test functions, respectively. In comparison

between the proposed CHIO algorithm and each of the

comparative methods, it can be seen that the performance

Table 7 (continued)

Function Sen 9 Sen 10 Sen 11 Sen 12

F13 Best 1.3498E232 1.3498E232 1.3498E232 1.3498E232

Worst 1.3498E-32 8.9261E-29 6.3660E?06 4.4663E?05

Mean 1.3498E232 2.9886E-30 3.7489E?05 1.4888E?04

Stdev. 0.0000E?00 1.6294E-29 1.4400E?06 8.1543E?04

F14 Best 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Worst 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01

Mean 9.9800E201 9.9800E201 9.9800E201 9.9800E201

Stdev. 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

F15 Best 3.0836E204 3.1027E-04 3.1304E-04 3.2137E-04

Worst 7.8177E-04 7.4299E-04 9.2408E-04 8.5773E-04

Mean 4.5139E204 4.8287E-04 5.3261E-04 5.6904E-04

Stdev. 1.1921E-04 1.1762E-04 1.5902E-04 1.5870E-04

F16 Best 2 1.0316E100 2 1.0316E100 2 1.0316E100 2 1.0316E100

Worst - 1.0316E?00 - 1.0316E?00 - 1.0316E?00 - 1.0316E?00

Mean 2 1.0316E100 2 1.0316E100 2 1.0316E100 2 1.0316E100

Stdev. 0.0000E?00 0.0000E?00 1.1709E-07 6.7752E-16

F17 Best 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Worst 3.9789E-01 3.9789E-01 3.9789E-01 3.9790E-01

Mean 3.9789E201 3.9789E201 3.9789E201 3.9789E201

Stdev. 0.0000E?00 0.0000E?00 1.6938E-16 1.8257E-06

F18 Best 3.0000E100 3.0000E100 3.0000E100 3.0000E100

Worst 3.0000E?00 3.0000E?00 3.0001E?00 3.0000E?00

Mean 3.0000E100 3.0000E100 3.0000E100 3.0000E100

Stdev. 0.0000E?00 0.0000E?00 2.6272E-05 6.2293E-06

F19 Best 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Worst - 3.8628E?00 - 3.8628E?00 - 3.8628E?00 - 3.8626E?00

Mean 2 3.8628E100 2 3.8628E100 2 3.8628E100 2 3.8628E100

Stdev. 0.0000E?00 0.0000E?00 4.6999E-08 2.7174E-05

F20 Best 2 3.3220E100 2 3.3220E100 2 3.3220E100 2 3.3220E100

Worst - 3.3220E?00 - 3.3220E?00 - 3.3220E?00 - 3.3086E?00

Mean 2 3.3220E100 2 3.3220E100 2 3.3220E100 - 3.3215E?00

Stdev. 0.0000E?00 0.0000E?00 7.0028E-07 2.4435E-03

F21 Best 2 1.0153E101 2 1.0153E101 2 1.0153E101 2 1.0153E101

Worst - 1.0153E?01 - 1.0153E?01 - 7.3062E?00 - 1.0153E?01

Mean 2 1.0153E101 2 1.0153E101 - 1.0003E?01 2 1.0153E101

Stdev. 0.0000E?00 0.0000E?00 5.9311E-01 6.7700E-06

F22 Best 2 1.0403E101 2 1.0403E101 2 1.0403E101 2 1.0403E101

Worst - 1.0403E?01 - 1.0403E?01 - 4.5713E?00 - 1.0403E?01

Mean 2 1.0403E101 2 1.0403E101 - 1.0072E?01 2 1.0403E101

Stdev. 0.0000E?00 0.0000E?00 1.2791E?00 3.0275E-05

F23 Best 2 1.0536E101 2 1.0536E101 2 1.0536E101 2 1.0536E101

Worst - 1.0536E?01 - 1.0536E?01 - 5.8221E?00 - 1.0536E?01

Mean 2 1.0536E101 2 1.0536E101 - 1.0379E?01 2 1.0536E101

Stdev. 0.0000E?00 0.0000E?00 8.6070E-01 1.5540E-05

Bold font refers to the best recorded result
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of the CHIO algorithm is similar or better than the BA,

SSA, HHO, JAYA, FPA, SCA, and ABC algorithms in 20,

17, 16, 16, 19, 17, and 21 test functions, respectively.

Similarly, in terms of the results mean, it can be seen

from Table 8 that the performance of all of the comparative

algorithms is similar in four test functions (i.e., F14, F16,

F17, and F18) as they reach the optimal results. The HHO

obtained the best results in 18 test functions, and the pro-

posed CHIO algorithm achieves the best results in 15 test

functions. While the ABC and FPA get the best results in

12 and 10 test functions, respectively. The JAYA and SCA

obtain the best results in eight test functions, while the BA

and SSA get the best results in seven datasets. In com-

parison between the proposed CHIO algorithm and each of

the comparative methods, it can be seen that the perfor-

mance of the CHIO algorithm is similar or better than the

BA, SSA, HHO, JAYA, FPA, SCA, and ABC algorithms in

20, 20, 15, 15, 20, 17, and 20 datasets, respectively.

Figure 8 illustrates the convergence behavior of the

proposed CHIO algorithm against the other comparative

algorithms. The x-axis represents the number of iterations,

while the y-axis represents the values of the fitness func-

tion. It should be noted that eight out of the 23 test func-

tions are considered in this figure to show the differences

between algorithms visually. Figure 8 elaborates that the

proposed CHIO algorithm did not have fast convergence

like the other comparative methods, where the convergence

of the CHIO algorithm is gradually improved during the

search. This allows CHIO to avoid the problem of getting

stuck in local optima.

Figure 9 plots the Hamming distance between the

solutions in the population for the proposed CHIO algo-

rithm as well as the other comparative methods. It can be

observed from Fig. 9 that the proposed CHIO algorithm

can maintain a good distance between the population. This

is because the infected case is killed when it is not

improved after a certain number of iterations. Then, these

cases are regenerated from scratch and thus solve the

problem of fast convergence.

Friedman’s statistical test is used to illustrate the aver-

age rankings of the proposed CHIO algorithm when com-

pared against other comparative methods. Table 9 shows

the rankings where these rankings are calculated based on

the best results recorded in Table 8. It is worthy to mention

that the lower rankings indicate better performance, while

the significant level a = 0.05. Table 9 shows that HHO

algorithm is ranked first, while the proposed CHIO algo-

rithm is ranked third. The q-value computed by Friedman’s
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Fig. 7 Convergence plots of CHIO algorithm using different social distancing strategies
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test is 1.54E-5, which is below the significant level. This

value indicates that there are significant differences

between the performance of the comparative methods.

Thereafter, the Holm’s procedure as a post hoc tech-

nique is used to confirm that there are significant differ-

ences among the controlled methods (the method with the

first rankings) and the remaining comparative methods. It

can be seen from the results recorded in Table 10 that the

hypothesis is accepted. This means that there is a signifi-

cant difference between the HHO algorithm and two of the

other methods (BA, and SCA). On the other hand, there is

no significant difference between HHO and the remaining

comparative methods.

Table 11 illustrates the average rankings of the com-

parative methods, where these rankings are calculated

based on the mean results recorded in Table 8. Table 9

points out that HHO algorithm is ranked first, while the

proposed CHIO algorithm is placed second. The q-value
computed by Friedman’s test is 3.97E-5, which is below

the significant level. This value indicates that there is a

significant difference between the performance of the

comparative methods.

Thereafter, the Holm’s procedure as a post hoc tech-

nique is used to confirm that there is a significant difference

between HHO and the other comparative methods. It can

be seen from the results recorded in Table 12 that the

hypothesis is accepted. It is clear that there is a significant

difference between the HHO algorithm and four of the

comparative methods (BA, JAYA, SSA, and SCA). On the

other hand, there no significant difference between HHO

and the remaining comparative methods including the

proposed CHIO algorithm (please refers to the Table 12).

The performance of the CHIO algorithm has been

evaluated using the Wilcoxon signed-rank statistical test

[73] to verify whether there is a significant difference

between CHIO and the other comparative algorithms. The

Wilcoxon signed-rank is applied using the best results of

30 runs for each algorithm with P_value equal 0.05.

Table 13 shows a pair-wise comparison against all algo-

rithms and CHIO, showing whether two algorithms are
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Fig. 8 Convergence plots of CHIO algorithm against the other swarm-based algorithms
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considered similar (‘–’) or not (‘??’) to each other. The

most algorithm that has been considered similar to CHIO is

ABC with 11 functions. The results show that CHIO and

HHO are similar with ten functions. Finally, FPA is similar

to CHIO in nine functions.

3.7 Real-world engineering optimization
problems

For further validations, the applicability of the proposed

CHIO algorithm on real-world optimization problems is

discussed in this section. The proposed CHIO is tested

using three bound-constrained real-world optimization

problems which are:
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Fig. 9 Hamming distance of CHIO algorithm against the other swarm-based algorithms

Table 9 Average rankings of

the algorithms calculated using

Friedman’s test (based on the

best results)

Order Algorithm Ranking

1 HHO 3.37

2 FPA 3.54

3 CHIO 3.83

4 JAYA 3.85

5 ABC 4.43

6 SSA 4.61

7 SCA 5.89

8 BA 6.48

Table 10 Holm’s results between the HHO algorithm and other

comparative methods (Based on the best results)

Order Algorithm Adjusted q-value (a/Rank)

7 BA 1.68E-05 0.0071

6 SCA 4.81E-04 0.0083

5 SSA 0.0863 0.0100

4 ABC 0.1403 0.0125

3 JAYA 0.5079 0.0167

2 CHIO 0.5274 0.0250

1 FPA 0.8097 0.0500
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• Parameter estimation for frequency-modulated (FM)

sound waves.

• The bifunctional catalyst blend optimal control

problem.

• Transmission network expansion planning (TNEP)

problem.

It should be noted that details of these problems are

introduced in the 2011 IEEE Congress on Evolutionary

Computation (IEEE-CEC 2011) [74].

The performance of the CHIO algorithm is compared

with nine other comparative methods such as adaptive

population-based simplex algorithm (APS) [75], adaptive

differential evolution algorithm (ADE) [76], continuous

differential ant-stigmergy algorithm (CDASA) [77], dif-

ferential evolution (DE) [78], hybrid DE-with random hill

climber (DE-RHC) [79], genetic algorithm with a new

multi-parent crossover (GA-MPC) [80], hybrid DE algo-

rithm with adaptive crossover operator (HDE) [81], hybrid

EA-DE-Memetic algorithm (HMA) [82], intellects-masses

optimizer (IMO) [83], artificial bee colony [84], acceler-

ated artificial bee colony algorithm [84], and krill herd and

artificial bee colony with information exchange (KHABC)

[85].

It should be noted that the parameter settings of the

CHIO algorithm followed the rules of IEEE-CEC 2011 by

having the maximum number of iterations is set to 150,000

and the number of runs is set to 25 times. While the settings

of the other parameters include HIS ¼ 30, BRr ¼ 0:01, and

MaxAge ¼ 100. These settings are obtained from the best

results in the previous sections.

3.7.1 Parameter estimation for frequency-modulated (FM)
sound waves

The performance of the proposed CHIO algorithm when

compared against other comparative methods is reported in

Table 14. It can be observed from Table 14 that the per-

formance of the proposed CHIO is competitive when

compared against other methods.

3.7.2 The bifunctional catalyst blend optimal control
problem

Table 15 lists the optimization results of the proposed

CHIO algorithm when compared against nine comparative

methods. As it can be seen from Table 15, the CHIO

algorithm obtained the optimal results in this problem

based on the best results or the mean of the results. This

proofs the efficiency of the proposed CHIO algorithm on

solving this kind of problems.

3.7.3 Transmission network expansion planning (TNEP)
problem

The experimental results of the proposed CHIO algorithm

against other comparative methods are presented in

Table 16. Clearly, the best result obtained by the proposed

CHIO algorithm for this problem is equivalent to the

results in the literature in terms of the best results, the mean

of the results, the median of the results, the worst results,

and the standard deviation.

4 Conclusion and future work

In this paper, a new natural-inspired human-based meta-

heuristic optimization algorithm is proposed which is

called coronavirus herd immunity optimizer (CHIO) for

global optimization problems. CHIO is inspired by the herd

immunity strategy as a way to tackle the spreading of

coronavirus pandemics (COVID-19). The population is

initiated by several susceptible cases and very few (might

be one) infected cases. During the herd immunity evolu-

tion, the population is evolved according to the basic

reproduction rate (BRr) affected by social distancing real-

ized in the way of updating the newly generated individuals

using three intervention with three possible cases: suscep-

tible, infected, and immuned until the herd immunity is

achieved in the population. During the search process,

Table 11 Average rankings of

the algorithms calculated using

Friedman’s test (based on the

mean results)

Order Algorithm Ranking

1 HHO 3.07

2 CHIO 3.26

3 ABC 3.74

4 FPA 4.24

5 SSA 4.87

6 JAYA 5.30

7 BA 5.48

8 SCA 6.04

Table 12 Holm’s results between the HHO algorithm and other

comparative methods (Based on the mean results)

Order Algorithm Adjusted q-value (a/Rank)

7 SCA 3.74E-05 0.0071

6 BA 8.36E-04 0.0083

5 JAYA 0.0019 0.0100

4 SSA 0.0125 0.0125

3 FPA 0.1041 0.0167

2 ABC 0.3508 0.0250

1 CHIO 0.7865 0.0500
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Table 13 Wilcoxon signed-rank test evaluation between the proposed CHIO algorithm and other methods

Function BA SSA HHO JAYA

P Value Results P Value Results P Value Results P Value Results

F1 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F2 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F3 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F4 \1:0E� 05 ?? 0.025 ?? \1:0E� 05 ?? \1:0E� 05 ??

F5 0.00695 ?? 0.23885 – \1:0E� 05 ?? \1:0E� 05 ??

F6 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F7 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F8 0.5 – \1:0E� 05 ?? 0.5 – 0.1867 –

F9 \1:0E� 05 ?? \1:0E� 05 ?? 0.5 – \1:0E� 05 ??

F10 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F11 \1:0E� 05 ?? \1:0E� 05 ?? 0.5 – \1:0E� 05 ??

F12 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F13 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F14 0.5 – \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F15 \1:0E� 05 ?? 0.33724 – \1:0E� 05 ?? \1:0E� 05 ??

F16 0.5 – 0.5 – 0.5 – 0.5 –

F17 0.5 – 0.5 – 0.5 – 0.5 –

F18 \1:0E� 05 ?? 0.5 – 0.5 – 0.5 –

F19 \1:0E� 05 ?? 0.5 – 0.5 – 0.5 –

F20 \1:0E� 05 ?? \1:0E� 05 ?? 0.039 ?? 0.00048 ??

F21 \1:0E� 05 ?? 0.5 – 0.5 – 0.00256 ??

F22 \1:0E� 05 ?? 0.5 – 0.5 – 0.00144 ??

F23 \1:0E� 05 ?? 0.038928 ?? 0.5 – 0.0777 –

Function FPA SCA ABC

P Value Results P Value Results P Value Results

F1 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F2 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F3 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F4 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F5 \1:0E� 05 ?? \1:0E� 05 ?? 0.00014 ??

F6 0.5 – \1:0E� 05 ?? \1:0E� 05 ??

F7 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F8 0.00139 ?? \1:0E� 05 ?? 0.5 –

F9 \1:0E� 05 ?? 0.5 – 0.5 –

F10 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F11 \1:0E� 05 ?? 0.5 – 0.5 –

F12 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F13 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F14 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F15 \1:0E� 05 ?? \1:0E� 05 ?? \1:0E� 05 ??

F16 0.5 – \1:0E� 05 ?? 0.5 –

F17 0.5 – \1:0E� 05 ?? 0.5 –

F18 0.5 – 0.00074 ?? 0.5 –

F19 0.5 – \1:0E� 05 ?? 0.5 –

F20 0.5 – \1:0E� 05 ?? 0.5 –
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some fatality cases are occurred according to the maximum

number of iterations (MaxAge) when it remains unimproved

with the infected state. The state of cases are updated

during the search from susceptible to infected and from

infected to immuned according to the herd immunity

threshold, and it depends on the immunity rate of the

generated cases.

The viability of the proposed CHIO is tested using 23

well-known benchmark functions with different size and

complexity: seven unimodal, six multimodal with flexible

dimensions, and ten multimodal with fixed dimensions.

These functions are well circulated in the literature to

evaluate newly proposed optimization algorithms.

Initially, the effect of the control parameters (BRr and

MaxAge) on the convergence behavior of CHIO is studied.

In conclusion, using a small value of BRr is desired to

strike the right balance between exploration and exploita-

tion of the search space. Furthermore, the value of MaxAge

Table 13 (continued)

Function FPA SCA ABC

P Value Results P Value Results P Value Results

F21 0.5 – \1:0E� 05 ?? 0.5 –

F22 0.5 – \1:0E� 05 ?? 0.5 –

F23 0.5 – \1:0E� 05 ?? 0.5 –

?? means results is significant, and – means results is not significant

Table 14 Comparison results of

parameter estimation for

frequency-modulated (FM)

sound waves problem over 25

runs and 150,000 function

evaluations

Algorithm Best Median Mean Worst Stdv

CHIO 9.0573E?00 1.7060E?01 1.8311E?01 4.0233E?01 8.1538E?00

ABC 2.7725E?00 NA NA NA NA

AABC 3.6696E-01 NA NA NA NA

APS 9 0.0000E100 1.4813E?01 1.1935E?01 1.8698E?01 6.5169E?00

DE-RHC 5.0200E-20 NA 8.9100E?00 1.5600E?01 6.3700E?00

ADE 0.0000E100 0.0000E?00 3.8526E?00 1.7021E?01 5.6900E?00

CDASA 3.2789E-18 1.1376E?01 1.0128E?01 2.1171E?01 7.0955E?00

GA-MPC 0.0000E100 0.0000E?00 0.0000E?00 0.0000E?00 0.0000E?00

HDE 7.2093E-15 1.2362E-11 8.7697E-01 1.1757E?01 3.0439E?00

IMO 0.0000E100 0.0000E?00 8.9894E-01 1.2306E?01 3.1266E?00

KHABC 1.2310E?01 NA 2.2310E?01 2.7790E?01 3.5300E?00

HMA 1.1674E-11 6.0847E-10 2.0949E?00 1.1374E?01 4.3064E?00

DE 0.0000E100 1.0854E-27 6.0448E-13 1.3127E-11 2.6388E-12

Bold font refers to the best recorded result

Table 15 Comparison results of

bifunctional catalyst blend

optimal control problem over 25

runs and 150,000 function

evaluations

Algorithm Best Median Mean Worst Stdv

CHIO 1.1515E205 1.1516E-05 1.1515E-05 1.1516E-05 4.5343E-10

APS 9 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 4.8070E-19

DE-RHC 1.1515E205 NA 1.1515E-05 1.1515E-05 0.0000E?00

ADE 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 3.8043E-19

CDASA 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 1.6885E-24

GA-MPC 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 0.0000E?00

HDE 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 6.1087E-18

IMO 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 0.0000E?00

HMA 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 9.9711E-19

DE 1.1515E205 1.1515E-05 1.1515E-05 1.1515E-05 2.0039E-19

Bold font refers to the best recorded result
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does not have a high impact on the performance of CHIO.

However, using a small value of this parameter is necessary

to diversify the search. The social distancing strategies in

the herd immunity evolution are also investigated which

are random–random–random, random–best–random, ran-

dom–random–best, and random–best–best. In conclusion,

The random–random–random social distancing strategies

in the herd immunity evolution revealed the best perfor-

mance of CHIO. For comparative evaluation, the proposed

CHIO is compared against seven well-established com-

parative methods using the same benchmark functions. The

comparative results show that CHIO is very competitive

which is able to obtain 16 out of 23 new results for the test-

bed functions. For more validations, three real-world

engineering optimization problems extracted from

IEEE-CEC 2011 are used. Again, CHIO is proved to be

efficient.

As the proposed CHIO reveals very successful out-

comes, CHIO can be widely used in the future for several

kinds of real-world optimization problems. Furthermore,

the optimization structure of CHIO can be improved by

adapting its parameters to result in a parameter-less CHIO.

Also for the future, the binary, discrete, multi-objective

versions of CHIO can be proposed. Another future direc-

tion can use the herd immunity threshold as a stop condi-

tion for the algorithm.
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