Skip to main content
Log in

Pore type identification in carbonate rocks using convolutional neural network based on acoustic logging data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Existing methods of well logging interpretation often contain uncertainties in the exploration and evaluation of carbonate reservoirs due to the complex pore types. Based on the time–frequency analysis of array acoustic logging data, the identification of pore types based on a convolutional neural network (CNN) was established. The continuous wavelet transform was first used to transform the 1-D acoustic wave data into 2-D time–frequency spectra as the input data of the CNN based on the pore aspect ratios. According to the acoustic logging data obtained from numerical simulations, a three-type (vug, interparticle-pores, and crack) prediction was established to validate the identification method. The noise-sensitivity analyses demonstrate that our method is stable for noise mixed signals. The CNN-based identification method was used to analyze the field acoustic logging data in a carbonate reservoir. According to the description of the pore structures from the core analysis, the formation pores were divided into two types (cracks and interparticle-pores). The accuracy of the method using field acoustic logging data can reach 90%. This work provides promising means for pore type identification from complex acoustic logging data by applying deep learning technologies, which can be easily extended into other similar neighboring carbonate reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang LI, Zhijiang K, Zhaojie X et al (2018) Theories and practices of carbonate reservoirs development in China. Petrol Explor Develop 45(1):712–724

    Google Scholar 

  2. Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493. https://doi.org/10.1190/1.1438493

    Article  Google Scholar 

  3. Verwer K, Eberli G, Baechle G, Weger R (2010) Effect of carbonate pore structure on dynamic shear moduli. Geophysics 75:E1–E8. https://doi.org/10.1190/1.3280225

    Article  Google Scholar 

  4. Weger RJ, Eberli GP, Baechle GT et al (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bulletin 93:1297–1317. https://doi.org/10.1306/05270909001

    Article  Google Scholar 

  5. Han Y, Zhang C, Zhang Z et al (2019) Pore structure classification and logging evaluation method for carbonate reservoirs: a case study from an oilfield in the Middle East. Energy Sour Part A Recovery Util Environ Effects 41:1701–1715. https://doi.org/10.1080/15567036.2018.1549145

    Article  Google Scholar 

  6. Luthi SM, Souhaité P (1990) Fracture apertures from electrical borehole scans. Geophysics 55:821–833

    Article  Google Scholar 

  7. Özkaya SI (2003) Fracture length estimation from borehole image logs. Math Geosci 35:737–753

    MATH  Google Scholar 

  8. Tang XM, Zheng Y, Patterson D (2007) Processing array acoustic-logging data to image near-borehole geologic structures. Geophysics 72:E87–E97. https://doi.org/10.1190/1.2435083

    Article  Google Scholar 

  9. Tang XM, Cheng A (2003) Quantitative borehole acoustic methods. Elsevier, Amsterdam

    Google Scholar 

  10. Chen X, Tang X, Qian Y (2013) Simulation of multipole acoustic logging in cracked porous formations. Geophysics 79:D1–D10

    Article  Google Scholar 

  11. Tang X, Li Z, Hei C, Su Y (2016) Elastic wave scattering to characterize heterogeneities in the borehole environment. Geophys J Int 205:594–603. https://doi.org/10.1093/gji/ggw037

    Article  Google Scholar 

  12. Hornby BE, Johnson DL, Winkler KW, Plumb RA (1989) Fracture evaluation using reflected Stoneley-wave arrivals. Geophysics 54:1274–1288

    Article  Google Scholar 

  13. Li T, Wang R, Wang Z et al (2018) Prediction of fracture density using genetic algorithm support vector machine based on acoustic logging data. Geophysics 83:D49–D60. https://doi.org/10.1190/geo2017-0229.1

    Article  Google Scholar 

  14. Coléou T, Poupon M, Azbel K (2003) Unsupervised seismic facies classification: a review and comparison of techniques and implementation. Lead Edge 22:942–953

    Article  Google Scholar 

  15. Yang H, Pan H, Ma H et al (2016) Performance of the synergetic wavelet transform and modified K-means clustering in lithology classification using nuclear log. J Petrol Sci Eng 144:1–9. https://doi.org/10.1016/j.petrol.2016.02.031

    Article  Google Scholar 

  16. Karmakar M, Maiti S, Singh A et al (2018) Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and Bayesian neural networks: an example from IODP 323 site. Marine Geophys Res 39:407–419. https://doi.org/10.1007/s11001-017-9327-2

    Article  Google Scholar 

  17. Jenkins C, Ouenes A, Zellou A, Wingard J (2009) Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. AAPG Bullet 93:1597–1608

    Article  Google Scholar 

  18. Tran NH, Rahman SS (2012) Modelling discrete fracture networks using neuro-fractal-stochastic simulation. J Eng Appl Sci 1(2):154–160

    Google Scholar 

  19. Zazoun RS (2013) Fracture density estimation from core and conventional well logs data using artificial neural networks: the Cambro-ordovician reservoir of Mesdar oil field, Algeria. J Afr Earth Sci 83:55–73

    Article  Google Scholar 

  20. Karmakar M, Maiti S (2019) Short term memory efficient pore pressure prediction via Bayesian neural networks at Bering Sea slope of IODP expedition 323. Measure J Int Measure Confeder 135:852–868. https://doi.org/10.1016/j.measurement.2018.12.034

    Article  Google Scholar 

  21. Maiti S, Krishna Tiwari R, Kümpel HJ (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys J Int 169:733–746. https://doi.org/10.1111/j.1365-246X.2007.03342.x

    Article  Google Scholar 

  22. Maiti S, Ravi Kumar C, Sarkar P et al (2020) Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach. Neural Comput Appl 32:3183–3202. https://doi.org/10.1007/s00521-019-04276-9

    Article  Google Scholar 

  23. Maiti S, Tiwari RK (2010) Neural network modeling and an uncertainty analysis in Bayesian framework: a case study from the KTB borehole site. J Geophys Res 115:B10208. https://doi.org/10.1029/2010JB000864

    Article  Google Scholar 

  24. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  25. Li CF (2003) Rescaled-range and power spectrum analyses on well-logginjg data. Geophys J Int 153:201–212

    Article  Google Scholar 

  26. Maiti S, Tiwari RK (2010) Automatic discriminations among geophysical signals via the Bayesian neural networks approach. Geophysics 75:E67–E78. https://doi.org/10.1190/1.3298501

    Article  Google Scholar 

  27. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  28. Minar MR, Naher J (2018) Recent advances in deep learning: an overview. https://doi.org/10.13140/RG.2.2.24831.10403

  29. Collobert R, Weston J (2008) A unified architecture for natural language processing. In: Association for computing machinery (ACM), pp 160–167

  30. Huang L, Dong X, Clee TE (2017) A scalable deep learning platform for identifying geologic features from seismic attributes. Lead Edge 36:249–256. https://doi.org/10.1190/tle36030249.1

    Article  Google Scholar 

  31. Yu S, Ma J, Wang W (2019) Deep learning for denoising. Geophysics 84:V333–V350. https://doi.org/10.1190/geo2018-0668.1

    Article  Google Scholar 

  32. Zhong Z, Carr TR, Wu X, Wang G (2019) Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics 84:B363–B373. https://doi.org/10.1190/geo2018-0588.1

    Article  Google Scholar 

  33. Shao S, Pyrak-Nolte LJ (2016) Wave propagation in isotropic media with two orthogonal fracture sets. Rock Mech Rock Eng 49:4033–4048. https://doi.org/10.1007/s00603-016-1084-z

    Article  Google Scholar 

  34. Li T, Wang Z, Gu YJ et al (2019) Experimental study of fracture structure effects on acoustic logging data using a synthetic borehole model. J pet sci eng 183:106433. https://doi.org/10.1016/j.petrol.2019.106433

    Article  Google Scholar 

  35. Li T, Wang Z, Yu N et al (2020) Numerical study of pore structure effects on acoustic logging data in the borehole environment. Fractals 28(3):2050049–2050518. https://doi.org/10.1142/S0218348X20500498

    Article  Google Scholar 

  36. Kadkhodaie A, Rezaee R (2017) Intelligent sequence stratigraphy through a wavelet-based decomposition of well log data. J Nat Gas Sci Eng 40:38–50. https://doi.org/10.1016/j.jngse.2017.02.010

    Article  Google Scholar 

  37. Galiana-Merino JJ, Rosa-Herranz JL, Parolai S (2008) Seismic P phase picking using a kurtosis-based criterion in the stationary wavelet domain. IEEE Trans Geosci Remote Sens 46:3815–3826. https://doi.org/10.1109/TGRS.2008.2002647

    Article  Google Scholar 

  38. Grossmann A, Kronland-Martinet R, Morlet J (1990) Reading and understanding continuous wavelet transforms. Springer, Berlin, pp 2–20

    MATH  Google Scholar 

  39. Mousavi SM, Langston CA, Horton SP (2016) Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics 81:V341–V355. https://doi.org/10.1190/GEO2015-0598.1

    Article  Google Scholar 

  40. Yuan D, Li A (2017) Joint inversion for effective anisotropic velocity model and event locations using S-wave splitting measurements from downhole microseismic data. Geophysics 82:C133–C143. https://doi.org/10.1190/geo2016-0221.1

    Article  Google Scholar 

  41. Xue Y, Cao J, Wang X et al (2019) Recent developments in local wave decomposition methods for understanding seismic data: application to seismic interpretation. Surv Geophys 40:1185–1210. https://doi.org/10.1007/s10712-019-09568-2

    Article  Google Scholar 

  42. Maiti S, Tiwari RK (2005) Automatic detection of lithologic boundaries using the Walsh transform: a case study from the KTB borehole. Comput Geosci 31:949–955. https://doi.org/10.1016/j.cageo.2005.01.016

    Article  Google Scholar 

  43. Dokht RMH, Kao H, Visser R, Smith B (2019) Seismic event and phase detection using time-frequency representation and convolutional neural networks. Seismol Res Lett 90:481–490. https://doi.org/10.1785/0220180308

    Article  Google Scholar 

  44. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39:640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  45. Kim Y (2014) Convolutional neural networks for sentence classification

  46. Karpathy A, Toderici G, Shetty S, et al (2014) Large-scale video classification with convolutional neural networks. In: 2014 IEEE conference on computer vision and pattern recognition. IEEE, pp 1725–1732

  47. Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling sentences

  48. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314. https://doi.org/10.1007/BF02551274

    Article  MathSciNet  MATH  Google Scholar 

  49. Gu J, Wang Z, Kuen J et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  50. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10). pp 807–814

  51. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105

  52. Ranjan R, Castillo CD, Chellappa R (2017) L2-constrained Softmax loss for discriminative face verification

  53. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning representations, International conference on learning representations, ICLR 2015—conference track proceedings

  54. Ketkar N (2017) Introduction to PyTorch. In: Deep learning with python. Apress, Berkeley, CA, pp 195–208

  55. Lyu W, Zeng L, Liu Z et al (2016) Fracture responses of conventional logs in tight-oil sandstones: a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China. AAPG Bull 100:1399–1417. https://doi.org/10.1306/04041615129

    Article  Google Scholar 

  56. Han T, Yang S (2019) Dielectric properties of fractured carbonate rocks from finite-difference modeling. Geophysics 84:MR37–MR44. https://doi.org/10.1190/geo2018-0003.1

    Article  Google Scholar 

  57. Li T, Wang R, Wang Z (2019) A method of rough pore surface model and application in elastic wave propagation. Appl Acoust 143:100–111. https://doi.org/10.1016/J.APACOUST.2018.08.031

    Article  Google Scholar 

  58. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys 14:227. https://doi.org/10.1029/RG014i002p00227

    Article  Google Scholar 

  59. Erling F, Holt RM, Raaen AM et al (2008) Petroleum related rock mechanics. Elsevier, Amsterdam

    Google Scholar 

  60. Cohen M (1980) Silent boundary methods for transient wave analysis. California Institute of Technology, Pasadena

    Google Scholar 

  61. Song X, Zhao Y, Dykstra J (2017) Active damping of acoustic ringing effect for oil well sonic logging system. IEEE Trans Ind Electron 64:3423–3432. https://doi.org/10.1109/TIE.2016.2598315

    Article  Google Scholar 

  62. Maslennikova YS, Bochkarev VV, Savinkov AV, Davydov DA (2012) Spectral noise logging data processing technology. In: SPE Russian oil and gas exploration and production technical conference and exhibition. Society of petroleum engineers

Download references

Acknowledgements

The authors are grateful to the editor and two anonymous reviewers for their insightful reviews. This work was funded by the Future Engergy Systems at the Unversity of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyang Li or Nian Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, Z., Wang, R. et al. Pore type identification in carbonate rocks using convolutional neural network based on acoustic logging data. Neural Comput & Applic 33, 4151–4163 (2021). https://doi.org/10.1007/s00521-020-05246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05246-2

Keywords

Navigation