
ORIGINAL ARTICLE

E-mail classification with machine learning and word embeddings
for improved customer support

Anton Borg1 • Martin Boldt1 • Oliver Rosander1 • Jim Ahlstrand1

Received: 16 August 2018 / Accepted: 3 June 2020 / Published online: 19 June 2020
� The Author(s) 2020

Abstract
Classifying e-mails into distinct labels can have a great impact on customer support. By using machine learning to label

e-mails, the system can set up queues containing e-mails of a specific category. This enables support personnel to handle

request quicker and more easily by selecting a queue that match their expertise. This study aims to improve a manually

defined rule-based algorithm, currently implemented at a large telecom company, by using machine learning. The proposed

model should have higher F1-score and classification rate. Integrating or migrating from a manually defined rule-based

model to a machine learning model should also reduce the administrative and maintenance work. It should also make the

model more flexible. By using the frameworks, TensorFlow, Scikit-learn and Gensim, the authors conduct a number of

experiments to test the performance of several common machine learning algorithms, text-representations, word embed-

dings to investigate how they work together. A long short-term memory network showed best classification performance

with an F1-score of 0.91. The authors conclude that long short-term memory networks outperform other non-sequential

models such as support vector machines and AdaBoost when predicting labels for e-mails. Further, the study also presents a

Web-based interface that were implemented around the LSTM network, which can classify e-mails into 33 different labels.

Keywords E-mail classification � Machine learning � Long short-term memory � Natural language processing

1 Introduction

Communication is part of everyday business, and it is vital

for operations to run smoothly as well as for establishing

stable and positive relations with customers. A crucial

aspect of the latter is to efficiently resolve various business-

related issues that customers encounter, since failing to do

so risk negatively affect both the image and the reputation

of the corporation. In highly competitive markets, a single

negative customer service experience can deter potential

new customers from a company or increase the risk of

existing customers to drop out [22], both negatively

affecting the sales. Although recent years have shown a

shift in the means of communication between customers

and customer service divisions within corporations, e.g.,

using autonomous chat-bots or social network-based

communication solutions, traditional e-mails still account

for an important means of communication due to both its

ease and widespread use within almost all customer age

groups. Thus, implementing efficient customer service

processes that target customer e-mail communication is a

necessity for larger corporations as they receive large

numbers of such customer service e-mails each day.

This is also true for customer service in the telecom-

munication businesses sector, which is mainly based on

e-mail and chat correspondence. So, in this study we focus

on e-mail communication and we refer to an individual

e-mail from a customer as a support ticket. For small or

medium-sized companies, it might be sufficient to have a

single e-mail inbox for which the whole support team

collaborate on customer support tickets. However, this

& Anton Borg

anton.borg@bth.se

Martin Boldt

martin.boldt@bth.se

Oliver Rosander

oliver.rosander@student.bth.se

Jim Ahlstrand

jim.ahlstrand@student.bth.se

1 Department of Computer Science and Engineering, Blekinge

Institute of Technology, 371 79 Karlskrona, Sweden

123

Neural Computing and Applications (2021) 33:1881–1902
https://doi.org/10.1007/s00521-020-05058-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8929-7220
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05058-4&domain=pdf
https://doi.org/10.1007/s00521-020-05058-4

approach is not scalable, as the company grows, the sup-

port team also grows. Consider a scenario with a large

support team divided into smaller specialized teams that

each handle different errands.

In order to optimize the performance and minimize the

time the support ticket spends in the system, it is necessary

to sort incoming tickets and assign them the correct support

team. This task is both time-consuming and labor-inten-

sive. Failing to sort and assign messages to a suitable team

would result in both inefficient use of the support personnel

as well as inferior replies to the incoming support tickets.

This could result in overall decrease quality of service and

also that support tickets remain unsolved for longer times.

However, automating the sorting and assignment to support

teams are not trivial tasks because of the complex natural

languages that has to be understood by the model. Any

model that is doing processing of natural languages, i.e., a

language used by humans to communicate, is performing

natural language processing (NLP) [8].

Automating e-mail labeling and sorting requires an NLP

model that can differentiate between different types of

errands and support requests. Such models must be able to

do this even if the e-mail contains spelling mistakes, pre-

vious conversations, irrelevant information, different for-

matting or simply rubbish. One such interesting candidate

is the long short-term memory (LSTM) model that is an

extended version of the recurrent neural network (RNN)

network, and it is a sequential model often used in text

classification [44]. Another important part of any NLP

solution is the word embedding models that aim to model

the words of a language in a vector space and placing

words with similar semantic meaning close to each

other [27, 33]. This helps the classifier to understand the

meaning of the text and therefore improving its ability to

predict the correct class [27].

In this work, we investigate the classification perfor-

mance of a NLP system that uses a machine learning

classifier, e.g., LSTM, to tag e-mails based on the contents

of the e-mail. The tagged e-mails are then sent to the

correct e-mail queue where they are processed by the

specialized support personnel.

1.1 Outline

This work is structured as follows, first the use case is

presented in more detail in Sect. 2. Then, the related work

and the identified research gap is presented in Sect. 3.

Next, the background is presented in Sect. 4, from which

the experiments, discussions and conclusions are based on.

Section 5 describes the method and how each experiment

was conducted. The results are presented in Sect. 6, fol-

lowed by the discussion and conclusion which is presented

in Sects. 7 and 8, respectively.

1.2 Aims and objectives

This study aims to investigate how the use of an automated

machine learning-based classifier can increase classifica-

tion performance when it comes to classify incoming

customer support e-mails in the Swedish branch of a large

telecommunication company. The studied classifiers are

evaluated on a dataset labeled using manually handled

keyword-based rules, and which acts as the baseline in the

study.

An extensive study of relevant variables is conducted in

order to model the problem correctly. Thus, the study

investigates:

– To which degree the NLP model (e.g., word2vec)

affects the classifiers classification performance.

– How well LSTM compare to non-sequential machine

learning models in classifying e-mails.

– To which degree the corpora affects the LSTM.

performance, i.e., whether the model requires only the

provided e-mail dataset or whether additional language

information is needed.

– To which degree the LSTM network size and depth

affect the classifier performance, which is useful during

the parameter tuning of the model.

– How the aggregation of class labels affects the classi-

fication performance compared to having distinct

labels.

2 Case setting

In the Introduction, the problem of scaling customer sup-

port were touched upon. The problem description is based

on a real case setting, and the results of this study have

been implemented in the form of a customer service e-mail

management system. This system uses a supervised learn-

ing paradigm with a multi-class classifier, see Fig. 1 for an

example of the system.

The customer service e-mail management system exists

within one of the bigger telecom operators in Europe with

over 200 million customers worldwide, and some 2.5

million in Sweden. When these customers experience

problems, they often turn to e-mail as their means of

communication with the company, by submitting an e-mail

to a generic customer service e-mail address. Conse-

quently, such customer service e-mails might be sorted into

an global inbox or assigned to random customer service

personnel. In the former case, support agents might have to

look through several e-mails before they come across one

they are suited to handle. In the latter, the support per-

sonnel might be assigned an e-mail they are ill-equipped to

1882 Neural Computing and Applications (2021) 33:1881–1902

123

handle. That is, the experience and knowledge possessed

by customer support personnel concerning the different

areas requiring support might differ. A person with

knowledge in the financial aspects of the business does not

have the same knowledge in the technical aspects. As

explained earlier, in this setting this is done by dividing the

customer support personnel into teams with different areas

of expertise. Each team has their own inbox or e-mail

queue. E-mails are assigned to the queues depending on

their content. The problem then becomes how to assign the

e-mails to the correct support personnel based on the

content of the messages. To address this problem, an

intelligent model that classifies the content, i.e., the type of

issue in an e-mail makes it is easier to direct e-mails to the

most suitable handlers.

The implemented model labels each e-mail based on

their content, an process that previously was done using a

rule-based approach. These labels are then used in the

customer support organization, where manager can set up

support queues. A support queue consists of a combination

of labels decided by a manager, e.g., queue1 consists of e-

mails that can be labeled with either ChangeUser, Invoice,

Assignment and queue2 might consist of e-mails that can be

labeled with either Order, TechnicalIssue. The different

customer support teams then subscribe to queue decided by

their manager. Throughout their workday, customer sup-

port personnel picks e-mails from their queue to work with.

Less time is spent by customer support personnel locating

e-mails of their topics or answering support errands outside

of their area of expertise. Consequently, by enabling a

high-accuracy labeling of the received e-mails, customer

support efficiency is improved.

3 Related work

In the E-mail Statistics Report, 2016–2020,1 a report from

The Radicati Group, Inc, it is concluded that the e-mail

usage continues to grow worldwide. During 2016, there

were 2.6 billion active e-mail users, and in 2020 they

expect there to be 3.0 billion e-mail users. The expected

number of business and consumer e-mail sent each day will

increase with an annual rate of 4.6%, from 215.3 billion to

257.5 billion e-mails per day.

Managing the increased number of e-mails is important

for a company and managing them well is even more

important. Bougie, Pieters and Zeelenberg evaluate how

the feeling of anger and dissatisfaction affect the customers

reactions to service failure across the industry [5]. The

intuitive notion that anger or unfulfillment can make the

customer change provider is confirmed. An effective and

accurate e-mail classification is therefore a useful tool for

the overall quality of the customer support.

The severity of the dissatisfaction is also an important

factor. If the customer experiences a minor dissatisfaction,

they are not prone to complain. If they experience mod-

erate levels of dissatisfaction, then it is possible for the

company to win back the customer and turn the dissatis-

faction to a positive experience. If they experience a major

dissatisfaction, they are more prone to complaining even

though actions are taken from the companies side [40].

Coussement and Van den Poel propose an automatic

e-mail classification system that is intended to separate

complaints from non-complaints. They present a boosting

classifier which labels e-mails as either complaints or non-

Fig. 1 Screenshot depicting the interface used by customer support agents implementing the proposed approach. Agents are able to toggle

specific queues, as well as instantly get the topic of an e-mail

1 https://www.radicati.com/wp/wp-content/uploads/2016/01/Email_

Statistics_Report_2016-2020_Executive_Summary.pdf.

Neural Computing and Applications (2021) 33:1881–1902 1883

123

https://www.radicati.com/wp/wp-content/uploads/2016/01/Email_Statistics_Report_2016-2020_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2016/01/Email_Statistics_Report_2016-2020_Executive_Summary.pdf

complaints. The authors also argue that the use of linguistic

features can improve the classification performance [12].

Selecting a corpus to train word vectors that are used by

sequential models is not a trivial task.

The use of domain-specific language is shown by Coden

et al. to improve the NLP model used for part-of-speech

tagging from 87% accuracy to 92%. Even though this is not

the same task as training word embeddings, it can give an

indication that including domain-specific language in the

corpus can improve the model [10]. The word embeddings

are supposed to model the language but finding a large

enough corpus that represent the domain in which they are

used is difficult.

Word vectors trained on huge corpora, such as Google

News which is trained on about 100 billion words, are

available to the public, but they are only trained on Eng-

lish. Fallgren, Segeblad and Kuhlmann have evaluated the

three most used word2vec models, Bag of Words (BoW),

skipgram and global vectors (GloVe), on a Swedish corpus.

They evaluate their word vectors on the Swedish Associ-

ation Lexicon. They show that Continuous Bag-of-Words

(CBoW) perform best with a dimension of 300 and 40

iterations [16].

Nowak et al. show that LSTM and bi-directional LSTM

perform significantly better when detecting spam and

classifying Amazon book reviews compared to the non-

sequential approach with adaptive boosting (ADA) and

BoW [35].

Yan et al. describe a method of multi-label document

classification by using word2vec together with LSTM and

Connectionist Temporal Classification (CTC). Their model

is evaluated on different datasets including e-mails and

produce promising results compared to other versions of

both sequential deep learning models such as RNN and

non-sequential algorithms such as support vector machines

(SVM). Their research tries to solve the problems with

multi-label classification by first representing the document

with a LSTM network, then training another LSTM net-

work to represent the ranked label stream. Finally, they

apply CTC to predict multiple labels [48].

Gabrilovich and Markovitch compare SVM with the

C4.5, a decision tree (DT) algorithm on text categorization.

The C4.5 algorithm outperforms SVM by a large margin on

datasets with many redundant features. They show that the

SVM can achieve better results than the C4.5 algorithm by

removing the redundant features using aggressive feature

selection [19].

3.1 Research gap

The research gap of the present study is twofold. First,

although there exists research on several of the topics

required to successfully classify e-mails [48], i.e., models

that interpret natural language [9, 33, 34, 37] and classifiers

that utilize the relations of words in a time series [44].

Little research exists that investigates how the choice of

NLP model, corpora, aggregation of classification labels,

LSTM network size and depth affect the classification

performance. Thus, this is the primary research gap that

motivates the present study.

Secondly, there exists much research on various

machine learning approach targeting document classifica-

tion. However, considerably less research exists on e-mails

specifically even though e-mails constitutes a distinct

group of documents, since they are informal, enables a

leveled playing field in terms of social hierarchy, encour-

ages personal enclosure and can become emotional [2].

These distinctions may have to be accounted for when

creating the machine learning model.

Additionally, a majority of the recent research has been

studied on the English language, and only a few studies has

been conducted on the Swedish language.

Taken together this motivates a study that investigates

factors affecting NLP classification of Swedish e-mails

using LSTM networks, which are compared to other state-

of-the-art machine learning candidates as well as a manu-

ally managed rule-based classifier.

4 Background

This background covers central concepts that this study

rests on, e.g., NLP approaches, text representations and

preprocessing methods. The models and algorithms are

explained as well as the underlying theory that defines

them.

4.1 Natural language processing

A computer that takes any form of natural language and

processes it in any way is using NLP [7, 25]. The number

of applications is vast, ranging for instance optical char-

acter recognition (OCR) that is used by both banks to scan

checks as well as post offices for scanning addresses of

mails. Another example is voice commands in various

settings such as smartphones, which allows the end-user to

search the Internet or create notes without touching the

device [8].

With the use of natural languages, we can communicate

effectively across many domains and situations. However,

because natural languages are mostly ambiguous it makes a

difficult barrier for computers. Take the phrase ‘‘The tro-

phy did not fit in the bag, it was too big’’ for example, what

does ‘‘it’’ refer to, the bag or the trophy? This may seem

like a trivial question for a human because we know that

big things do not fit into smaller things. A word, e.g., ‘‘it’’

1884 Neural Computing and Applications (2021) 33:1881–1902

123

in this case, can have several different meanings depending

on the context. If we change the phrase into ‘‘The trophy

did not fit in the bag, it was too small’’ the ‘‘it’’ now refers

to the bag instead.

4.2 Text representation

Using machine learning classification requires the text to

be represented in a manner that that the classification

algorithms can process. Transforming the data into the

correct format is dependent on the type of data [24].

However, a general requirement is that the projection have

to be of fixed output length, i.e., if you want to project a

document you have to make sure that the result is of the

same dimension regardless of the document length.

In order for a text document to be projected into a n-

dimensional space, we need to consider the fact that doc-

uments contain sentences of variable length. The sentences

themselves also consists of words of variable length. In

order to manage the words, it is common to build a dic-

tionary of fixed length. The words can then be represented

as a one-hot-vector. Depending on the NLP model, these

vectors are managed differently. There are three common

categories of NLP models when it comes to text process-

ing, count based, prediction based and sequential [17].

Count-based methods are based on the word frequencies

with the assumption that common words in a document

have significant meaning to the class. Prediction-based

methods models the probabilistic relations between words.

Sequential models are based on the assumption that a

sequence, or stream, of words are significant to the docu-

ments semantic meaning. Sequential models are often

combined with prediction-based models to better capture

the linear relations together with the sequential order of the

words.

4.2.1 Preprocessing

In the preprocessing step, the documents are transformed

from the raw document to a structured document that is

intended to contain as much information as possible

without discrepancies that can affect the prediction

result [17]. A common method to increase the information

density of a document is to remove the words that are very

common and rarely has any significance, often referred to

as stop words [7]. These are word such as ‘‘the’’, ‘‘are’’,

‘‘of’’, which are insignificant in a larger context. In BoW,

these are a list of predetermined words, but word2vec take

a probabilistic approach, called subsampling, which avoid

overfitting on the most frequent words.

In a corpus of millions of words, there will be some

outliers, e.g., random sequences of numbers, noise, mis-

spellings, etc. As these words are very uncommon and

often does not appear more than a couple of times, it is

common to enforce a minimum count before adding words

to the dictionary.

4.2.2 Bag of words

A commonly used method to model the meaning of a

document is BoW which outputs a fixed-length vector

based on the number of occurrences of terms. A frequently

used term would indicate that the document has to do more

with that term and should therefore be valued higher than

the rest of the terms within the document. This is achieved

by calculating the occurrences of each term in the docu-

ment, i.e., a term frequency (TF) [24]. The TF models the

document in a vector space based on the occurrence of each

term within the document. Downsides of this simple model

is that it does not contain information about the semantic of

each term, and it does not contain information about the

context of the terms either. Further, all terms have the same

weights and are therefore seen as equally important when

modeling the document, even this is not the case [9].

To capture the context of words in a BoW model, it is

common to combine the terms in a document in a model

called bag of n-grams. These n-grams are combinations of

tokens found in the documents. A Bag of Words Bi-gram

(BoWBi) model includes all combinations of adjacent

words, i.e., bi-grams.

Inverse document frequency (IDF) weighting scheme is

introduced to solve the problem of equally weighted terms.

The document frequency dft, is defined by the number of

documents that contain a term t. If a term t has a low

frequency and appears in a document d, then we would like

to give the term a higher weight, i.e., increase the impor-

tance of the term t in the document. The IDF weight is

therefore defined as shown in Eq. (1) where N is the total

number of documents [9].

idft ¼ log
N

dft
ð1Þ

4.2.3 Word2Vec

The Word2Vec model is based on the assumption that

words with similar semantics appear in the same context.

This can be modeled by placing a word in a high dimen-

sional vector space and then moving words closer based on

their probabilities to appear in the same context. There are

mainly three different methods to calculate these vectors,

CBoW [33], skipgram [34], and GloVe [37]. A relatively

large corpus is required for these models to converge and

achieve good results with word vectors, normally around

one billion words or more.

Neural Computing and Applications (2021) 33:1881–1902 1885

123

CBoW The CBoW method is based on the principle of

predicting a centre word given a specific context. The

context is in this case the n-history and n-future words from

the centre word, where n is determined by the window size.

The structure of CBoW is somewhat familiar to auto-en-

coders; the model is based on a neural network structure

with a projection layer that encodes the probabilities of a

word given the context. The goal is to maximize the log

probabilities which makes CBoW a predictive model. The

projection layer and its weights is what later becomes the

word vectors. However, in order to feed the network with

words you first have to encode the words into one-hot-

vectors which is defined by a dictionary. This dictionary

can be over a million words while the projection layer

typically range from anywhere between 50 and 1000 nodes

[31, 33].

Skipgram The skipgram model is similar to the CBoW

model but instead of predicting the centre word given the

context, Skipgram predicts the context given the centre

word. This allows the Skipgram model to generate a lot

more training data which makes it more suitable for small

datasets; however, it is also several magnitudes slower than

CBoW [34].

Skipgram n-gram The Skipgram n-gram model is based

on Skipgram. but instead of using a dictionary with com-

plete words it uses variable lengths n-grams. Other models

rely on the dictionary to build and query vectors. However,

if the word is not in the dictionary the model is unable to

create a vector. The Skipgram n-gram model can construct

word vectors for any words based on the n-grams that

construct the word. The model has slightly lower overall

accuracy but with the benefit of not being limited to the

dictionary.

GloVe The GloVe model does not use neural networks

to model the word probabilities, but instead relies on word

co-occurrence matrices. These matrices are built from the

global co-occurrence counts between two words. GloVe

then performs dimensionality reduction on said matrix in

order to produce the word vectors. Let X be the co-oc-

currence matrix where Xij is the number of times word j

occurs in the context of word i. Let Xi ¼
P

k Xik be the

number of times any word appears in the context of i. The

probability that word j appears in the context of i can now

be calculated as following

Pij ¼ PðjjiÞ ¼ Xij

Xi
ð2Þ

This makes GloVe a hybrid method as it models proba-

bilities based on frequencies [37].

4.2.3.1 Average word vector Average word vector

(AvgWV) is a document representation in which a docu-

ment is represented by a vector constructed from the

average of the word vectors of each word in the document.

The word vectors are averaged to create a vector of the

same dimension as the word vectors. Equation (3)

describes how the AvgWV is calculated. n is the numbers

of words in the document and wi is the corresponding word

vector of a word. The method of aggregating the word

vectors is well known and is a simple way to incorporate

the semantic meaning of the words [13].

1

n

Xn

i¼0

wi ð3Þ

4.2.4 NLP evaluation

The relations between words in the vector space reveal

some interesting connections. Consider the words ‘‘big’’

and ‘‘bigger’’. These two words have a distance between

them in the vector space denoted A. Now consider the

words ‘‘fun’’ and ‘‘funnier’’, which have another distance

between them denoted B. The word big relates to bigger

the same way as fun relates to funnier, and it turns out that

this relation is encoded in the vectors. With well-trained

word vectors, distance A will be almost the same as B. It is

also possible to ask the question ‘‘Which word relates to

fun, in the same way that big relates to bigger?’’ and pre-

dict that word using simple vector operations.

Vbig � Vbigger þ Vfun � Vfunnier ð4Þ

These analogies can be formulated as either syntactic or

semantic questions. Syntactic analysis focuses on assessing

the correct meaning of a sentence while a semantic analysis

focuses on assessing grammatically correct sentences. An

example of a syntactic question could be ‘‘run is to running

as walk is to ...?’’, and a semantic question could be

‘‘Stockholm is to Sweden as Berlin is to ...?’’. By pre-

dicting the missing word, it is possible to calculate the

accuracy of the word vectors and how well they model the

semantic and syntactic structure of the words [33, 37].

4.3 Classification

Single-label text categorization (classification) is defined as

the task of assigning a category to a document given a

predefined set of categories [41]. The objective is to

approximate the document representation such that it

coincides with the actual category of the document. If a

document can consist of several categories, we need to

adapt our algorithm to output multiple categories, which is

called multilabel classification. The task is then to assign

an appropriate number of labels that correspond with the

actual labels of the document [41].

1886 Neural Computing and Applications (2021) 33:1881–1902

123

A fundamental goal of classification is to categorize

documents that have the same context in the same set, and

documents that do not have the same context in separate

sets. This can be done with different approaches that

involve machine learning algorithms, which learn to gen-

eralize categories from previously seen documents to pre-

viously unseen documents. Typically, machine learning

algorithms are divided into three different groups. Namely,

geometrical, probabilistic and logic-based models [17].

The different groups of classifiers achieve the same goal

but using different methods. These classifiers are hereafter

referred to as non-sequential classifiers since they do not

handle the words in the e-mails in a sequence. A sequential

classifier, such as LSTM, handles each word in the e-mail

sequential, which allows it to capture relations between

words better and therefore possibly utilize the content of

the e-mail better than a non-sequential classifier.

4.3.1 Machine learning classifiers

The machine learning models included in this study are

selected based on their group, diversity and acceptance in

the machine learning community. Support vector machine

(SVM), Naı̈ve Bayes (Naive Bayes (NB)) and decision

trees (DT) are from three different groups of classifiers,

each using its own learning paradigm. ADA is used to test a

boosting classifier and artificial neural network (ANN) is

used to compare a non-sequential neural network against a

sequential neural network, such as LSTM.

Support vector machine

SVM are based on the assumption that the input data can

be linearly separable in a geometric space [11]. This is

often not the case when working with real word data. To

solve this problem, SVM map the input to a high dimension

feature space, i.e., hyperplane, where a linear decision

boundary is constructed in such a manner that the boundary

maximizes the margin between two classes [11]. SVM is

introduced as a binary classifier intended to separate two

classes when obtaining the optimal hyperplane and deci-

sion boundary.

Decision tree

A DT classifier is modeled as a tree where rules are

learned from the data in a if-else form. Each rule is a node

in the tree and each leaf is a class that will be assigned to

the instance that fulfill all the above nodes conditions. For

each leaf, a decision chain can be created that often is easy

to interpret. The interpretability is one of the strengths of

the DT since it increases the understanding of why the

classifier decided, which can be difficult to achieve with

other classifiers.

Naı̈ve Bayes NB is a probabilistic classifier which is

build on Bayes’ theorem,

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ ð5Þ

where A is the class and B is the feature vector [14, 29, 50].

The probabilities of P(B|A), P(A) and P(B) are estimated

from previously known instances, i.e., training data

[14, 29]. The classification errors are minimized by

selecting the class that maximizes the probability

P(A|B) for every instance [29].

The NB classifier is considered to perform optimal when

the features are independent of each other and close to

optimal when the features are slightly dependent [14].

Real-world data does often not meet this criterion, but

researchers have shown that NB still perform better or

similar to C4.5, a decision tree algorithm in some settings

[14].

AdaBoost ADA is built upon the premise that multiple

weak learners that perform somewhat good can be com-

bined using boosting to achieve better result [18]. This

algorithm performs two important steps when training and

combining the weak classifiers; first it decided which

training instances each weak classifier should be trained on,

and then, it decides the weight in the vote each classifier

should have.

Each weak classifier is given a subset of the training

data which each instance in the training data is given a

probability that is decided by the previous weak classifier’s

performance on that instance. If the previous weak classi-

fiers have failed to classify the instance correct, it will have

a higher probability to be included in the following training

data set.

The weight used in the voting is decided by each clas-

sifiers ability to correctly classify instances. A weak clas-

sifier that performs well is given more influence than a

classifier that perform bad.

4.3.2 Deep learning classifiers

Artificial neural network The artificial neural network is

based on several layers of perceptrons, also known as

neurons, connected to each other [17]. A perceptron is a

linear binary classifier consisting of weights and a

bias [17]. Connecting several perceptrons in layers allows

accurate estimations of complex functions in multi-di-

mensional space. Equation (6) describes the output of a

single perceptron where W is the weights, X is the input

vector, b is the bias and a is the activation function.2

aðW � X þ bÞ ð6Þ

2 Normally Softmax or Rectified Linear Unit (ReLU) is used as

activation functions but several others exists.

Neural Computing and Applications (2021) 33:1881–1902 1887

123

The weights and biases in ANN have to be tweaked in

order to produce the expected outcome. This is done when

training the network which usually is done using back-

propagation. The backpropagation algorithm is based on

calculating the gradients given a loss function and then edit

the weights accordingly given a optimization function.

Normally, ANN is designed with a input layer matching the

size of the input data, a number of hidden layers and finally

a output layer matching the size of the output data.

Recurrent neural net RNNs are based on ANN; how-

ever, it not only considers the current input but also the

previous input. It does this by connecting the hidden layer

to itself. A recurrent network contains a state which is

updated after each time step; this allows recurrent networks

to model arbitrary lengths of sequential or streamed data,

e.g., video, voice and text. The network starts with a zero

state which then is updated based on the weights, biases

and the fixed length input after each time step. Equation (7)

describes the hidden layer h at time t from the RNN net-

work. Equation (8) describes the output layer of the RNN

network [20].

ht ¼ HðWxhxt þWhhht�1 þ bhÞ ð7Þ

yt ¼ Whyht þ by ð8Þ

Training the RNN is normally done by estimating the

next probable output in the sequence and then alter the

weights accordingly. However, consider a stream of data

for which a prediction is done at each time step, each

prediction will be based on the current input and all pre-

vious inputs. This makes it very hard to accurately train the

network as the gradients will gradually vanish or explode

the longer the sequences are [44].

Long short-term memory The LSTM network was

developed in order to avoid the gradient problems intro-

duced in RNN [21, 23, 35, 44]. LSTM introduces a forget

gate and an input gate which both acts as filters. The forget

gate determines what to disregard or forget from the cur-

rent cell state. The input gate determines what to add from

the input to the current cell state. The input gate together

with a tanh layer is what produces the new cell state after

the forget gate has been applied. In this way, the LSTM

network models a more accurate state after each time step

as the new gates gives it a ‘‘focus span’’ for which

redundant information eventually gets filtered out. This

also reduces the effects of exploding and vanishing gradi-

ents. There are several variants of the LSTM network with

peepholes and other features which further expands the

networks capabilities [35].

Cross-entropy loss The cross-entropy loss, also known

as Kullback–Leibler divergence, is a logarithmic mea-

surement of how wrong the model is predicting the output

compared to the ground truth. Being logarithmic, it will

punish estimations that are far from the ground truth. As

the predictions become better, they are receiving a sub-

stantial decrease in loss. The cross-entropy loss is used in

training of the LSTM to reduce the discrepancy between

the predicted value and the ground truth. Minimizing the

cross-entropy loss will lead to predictions that are closer to

the ground truth.

HðpÞ ¼ �
Xn

i¼1

pi � logbpi ð9Þ

Hðp; qÞ ¼ �
Xn

i¼1

pi � logbqi ð10Þ

Cross-entropy is based on the Shannon entropy function

that is calculated according to Eq. (9), where pi represents

the probability for some event i [42]. The cross-entropy is

the difference between two probability distributions, e.g.,

where p and q represent a model and the ground truth,

respectively. The outcome is the number of extra bits that

are needed to represent the latter using the model, see

Eq. (10).

Gradient descent optimiser The gradient descent algo-

rithm is an optimiser which minimizes a cost function C

with the objective to reduce the training error Etrain. The

cost function is defined as the discrepancy between the

output O(Z, W), where Z is the input and W is the weights

used, and the desired output D. Normally, a mean square

error or cross-entropy loss is used as a measure of dis-

crepancy [4]. Mean square error is shown in Eq. (11),

while cross-entropy loss was described previously.

C ¼ 1

2
ðD� OðZ;WÞÞ2 ð11Þ

4.3.3 Overfitting

A desired trait in machine learning models is its ability to

generalize over many datasets. Generalization in machine

learning means that the model has low error on examples it

has not seen before [38]. Two common measures that

usually are used to indicate how well the model fits the data

are bias and variance. The bias is a measure of how much

the model differ from the desired output over all possible

datasets. The variance is a measure of how much the model

differ between datasets.

In the beginning of the training, a model’s bias will be

high as it is far from the desired output. However, the

variance will be low as the data has had little influence over

the model. Late in the training, the bias will be low as the

model has learned the underlying function. However, if

trained too long the model will start to learn the noise from

the data, which is refereed to as overfitting. In the case of

overfitting, the model will have low bias as it fits the data

1888 Neural Computing and Applications (2021) 33:1881–1902

123

well and high variance as the model follows the data too

well and don’t generalize over datasets [4]. The F1-score

measures the harmonic mean between the bias and the

variance; usually it is preferred to have a good balance

between the bias and the variance.

There exist methods to avoid overfitting. Early stopping

is one of them and involves stopping the training of the

model due to some stopping criterion, e.g., human inter-

action or low change in loss [38]. Another method is

dropout which only trains a random set of neurons when

updating the weights. The idea is that when only a subset of

the neurons are updated at the same time, they each learn to

recognize different patterns and therefore reduce the

overall overfitting of the network [43].

5 Methods

This section describes the experiments design, the evalu-

ation metrics and procedures, data collection, preprocess-

ing and word representation.

5.1 Experiment design

Two branches of experiments will be conducted with focus

on sequential and non-sequential models. As stated earlier,

there are three common categories of NLP models when it

comes to text processing, count based, prediction based

and sequential [17]. Consequently, two sets of experiments

are conducted: sequential and non-sequential experiments.

This will allow and indication of which approach are more

appropriate for this problem setting. While there are dif-

ferences in how the experiments are conducted that make

direct comparisons difficult, the results still indicate the

performance of the algorithms in this problem setting.

The experiments on the sequential models depend on

three major variables, the dataset, the word vectors and the

LSTM hyperparameters. The experiments on the non-se-

quential models depend on two variables, the document

representation and the classifier. Some of the document

representation in the non-sequential experiments build on

the results of the experiments on the sequential models.

This is conducted through four experiments, detailed in

Sect. 5.8. Evaluating all the combinations of corpora, NLP

models and classifiers is not feasible due to the increased

complexity. The experiments are therefore designed such

that the best performing models are selected to be used as

the go-to model when evaluating the corpus, the NLP

model and the classifiers.

5.1.1 Non-sequential classifier experiments

The non-sequential models are tested with 10-times 10-fold

cross-validation. These models will be measured by the F1-

score and the Jaccard index described in Sect. 5.6. Fried-

man test is used to test if there is a significant difference in

the performance. If the Friedman test shows a significant

difference, a Nemenyi test is performed to show which

algorithms that perform different. The classifiers will be

trained on a subset of 10,000 e-mails chosen randomly

because of the drastic increase in training time when

increasing the number of e-mails.

5.1.2 Sequential classifier experiments

The experiments on the sequential models will evaluate

which combination of corpus, text representation and

LSTM hyperparameters that shows highest classification

performance using the chosen evaluation metrics.

The LSTM network was built using the TensorFlow

Python module which contains a predefined LSTM cell

class. The cells used were ‘‘tf.contrib.rnn.LSTMCell’’ with

a orthogonal initializer. For multiclass training, the softmax

cross-entropy loss were used together with a stochastic

gradient descent (SGD) optimiser. The hyperparameters

used for the LSTM network are described in Table 1.

Limiting the e-mails to 100 words was a trade-off between

batch size and run-time, since each batch consist of a

matrix which had to fit in the graphic card’s memory of

11 GB. Increasing the word limit above 100 words did not

seem to increase the performance of the classifier during

initial studies, but rather increasing the training time

significantly.

Orthogonal initialization is a way of reducing the

problem with exploding or vanishing gradients which

hinder long term dependencies in a neural network [47].

The rest of the settings was set to values which achieved

Table 1 LSTM network hyperparameters

Parameter Value

Word limit (sequence length) 100

Hidden layers 128

Depth layers 2

Batch size 128

Learning rate 0.1

Maximum epochs 200

Dropout 0.5

Forget bias 1.0

Use peepholes False

Early stopping True

Neural Computing and Applications (2021) 33:1881–1902 1889

123

the best results, although a systematic hyperparameter

tuning may lead to increased performance. Initial experi-

ments were conducted into the number of cells (128, 512,

1024 cells) and the depth layers (1 or 2 layers).

However, the differences were negligible between the

different sizes and layers, e.g., the network with 1024 cells

and two layers only resulted in about 1% higher Jaccard

index measurements compared to the smallest network

size. However, the training time was several factors longer

for the bigger network, which was infeasible for this study.

Consequently, Experiment 5.8.3 and 5.8.4 were based on

128 cells in two layers due to this trade-off between per-

formance and execution time.

The data used in the experiment using LSTM differs

from the non-sequential experiments in two ways. First,

neural networks often require larger amounts of data (de-

pending on variations in the data, number of layers, drop-

out rate, etc.3) compared to non-sequential models. As

such, the data used by the sequential model is not sub-

sampled. Secondly, the sequential model is not validated

with a 10-times 10-fold cross-validation setup due to time

constraints. Instead, a static 90/10 train/test split was used,

i.e., the test set consisted of a random 10% sample while

the remaining 90% of the data was used for training the

model. The sets are randomly chosen from a uniform dis-

tribution without class balancing. These experiments are

measured using accuracy, precision, recall, F1-score and

the Jaccard index. As such, it should be noted that the

sequential and non-sequential experiments are done using

different data. While a direct comparison between the two

sets of experiments are not possible, the results still indi-

cate the performance of the algorithms in this problem

setting.

While, Friedman test and the Nemenyi post hoc test will

be performed when investigating the non-sequential mod-

els, the sequential models could not be analyzed using

statistical tests since there only were one measurement for

those models.

5.2 E-mail dataset

The e-mail dataset used during the experiments consists of

105,195 e-mails from support environment of a large

telecom corporation. The e-mails contain support errands

regarding for instance invoices, technical issues, number

management, admin rights, etc. They are classified with

one or more labels, and there are in total 33 distinct labels

with varying frequency, as shown in Fig. 2. The label

‘‘DoNotUnderstand’’ is an artifact from the manually

constructed rule-based system where an e-mail did not

match any rule, and there exist 31,700 e-mails with the

label ‘‘DoNotUnderstand’’. This results in a classification

rate of 69.9% by the currently implemented manual rule-

based system. Figure 2 also shows a major class imbal-

ance; however, no effort were made to balance this since

those are the relative frequencies that will be found in the

operative environment. The ‘‘DoNotUnderstand’’ label was

filtered out and was not used during training or testing of

models in this study.

The e-mail labels can be aggregated into queue labels

which is an abstraction of the 33 labels into eight queue

labels. The merger is performed by fusing e-mails from the

same e-mail queue, which is a construction used by the

telecommunication company, into a single queue label. The

labels that are fused together are often closely related to each

other, which effectively will reduce the amount of conflicts

between the e-mail labels and their contents. If an e-mail

contains two or more labels, it is disregarded since it might

introduce conflicting data which is unwanted when training

the classifier. Without ‘‘DoNoUnderstand’’ and the multil-

abel e-mails there are a total of 58,934 e-mails in the dataset.

Each e-mail contains a subject and body which is

valuable information for the classifier. The e-mails may

also contain Hypertext Markup Language (HTML) tags

and meta data which are artifacts from the infrastructure.

The length of each e-mail varies; however, the average is

62 characters. Figure 3 shows the length distribution where

e-mails under 100 characters is the most common.

5.3 Data preprocessing

An e-mail goes through several preprocessing steps before

classification which removes redundant data and increases

the overall quality of the information found in the e-mail.

First, HTML tags and metadata are removed since it does

not contribute to the understanding of the e-mail. Then the

e-mail is converted to lower case, and the e-mail subject

and body are extracted. Only the latest body is extracted

from the e-mail, and no previous parts of the conversation

is considered. Next the e-mails are cleaned, and extra

newlines, tabs, punctuation, commas, and whitespace are

removed. Numbers are replaced with a number token.

Further, undesired characters are also removed.

5.4 Data collection for word corpus

When collecting data for word vectors, there are several

points to consider. First, the data needs to be extensive, i.e.,

the more the better as a general rule. To accomplish this the

Swedish Wikipedia [32] were used which can be down-

loaded online,4 the 2000–2015 collection of Web crawling
3 https://www.researchgate.net/post/What_is_the_minimum_sam

ple_size_required_to_train_a_Deep_Learning_model-CNN. 4 https://dumps.wikimedia.org/svwiki/latest/.

1890 Neural Computing and Applications (2021) 33:1881–1902

123

https://www.researchgate.net/post/What_is_the_minimum_sample_size_required_to_train_a_Deep_Learning_model-CNN
https://www.researchgate.net/post/What_is_the_minimum_sample_size_required_to_train_a_Deep_Learning_model-CNN
https://dumps.wikimedia.org/svwiki/latest/

from Swedish forums and blogs made available by

Språkbanken [15] and lastly the e-mails themselves for

increased domain knowledge.

The Wikipedia dataset contains about 380 million words

and can be accessed online. It is formatted in HTML and

XML which were converted to plain-text JSON before

processing it further. The corpus from Språkbanken is

bundled with scripts that converts the pages to plain text.

The Språkbanken corpus contains roughly 600 million

words. The e-mails are formatted in HTML which also

were converted into plain text. Only the subject and the

body were kept from the e-mail headers. Finally, the

datasets were merged into one corpus with special char-

acters removed. The end product is a plain text file with

one page per file with a stream of words separated by a

single white space.

Secondly, the data needs to be representative, i.e., the

words used in the prediction needs to exist in the corpus as

well. The reason for this is simple, when the word vectors

are created they are made according to a dictionary. The

dictionary is based on the words in the corpus, if the word

is not in the corpus there will not be a vector to represent

the word which leads to the word being ignored later in the

training and prediction stage. For this reason, it is a good

idea to base the corpus on the targeted domain; in our case,

it is the support e-mails and then fill the corpus with data

from other sources to make it more extensive.

5.5 Word representation

The models are trained on the largest corpus based on

Wikipedia, Språkbanken and e-mails. This is due to skip-

gram and GloVe being shown to perform better on a larger

corpus and that domain-specific language can improve a

NLP model [10, 28]. As a comparison, GloVe will be

trained on a smaller corpus based solely on the e-mails.

Skipgram and CBoW word vectors are implemented

using the Gensim Python package.5 The GloVe word

vectors are generated using the source code.6 published by

the GloVe authors [37]. Skipgram-ng word vectors are

generated by the framework released by Facebook on

Github.7

All word vector models are trained with the hyperpa-

rameters shown in Table 2. These are the settings that

achieved the best results, although a more systematic tun-

ing of hyperparameters may lead to even better

performance.

BoW and BoWBi is implemented using Scikit-learn. To

reduce the number of features and improve the quality

some filtering feature is done by two hyperparameters:

Minimum document frequency of 0.001, and Maximum

document frequency of 0.01. The rest of the settings were

default. The hyperparameters increased the performance

compared to the default values. BoW consist of 2374

features and BoWBi consist of 7533 when trained on the

e-mails.

5.6 Evaluation metrics

For classification problems, it is common to use a confu-

sion matrix to determine the performance [36]. The con-

fusion matrix for a two-class classification is build from

four terms, true positive (TP), true negative (TN), false

positive (FP) and false negative (FN). Table 3 shows how

said positives and negatives are defined and used in this

paper.

There exists several metrics that utilize the confusion

matrix. However, there are pitfalls that must be considered

when using the metrics. Accuracy is defined as the true

predictions divided by the total, shown in Eq. (12). In a

multi-class problem, in our case it is e-mail labeling with

Fig. 2 Label frequencies

Fig. 3 Length of each e-mail rounded to nearest 100 characters

5 https://pypi.python.org/pypi/gensim.
6 https://nlp.stanford.edu/projects/glove/.
7 https://github.com/facebookresearch/fastText.

Neural Computing and Applications (2021) 33:1881–1902 1891

123

https://pypi.python.org/pypi/gensim
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText

33 classes, the average probability that a document belongs

to a single class is 1
33
� 0:0303, i.e., 3.03%. A dumb

algorithm that rejects all documents to belong to any class

would have a error rate of 3% and an accuracy of 97% [49].

To gain better insight, we also measure the Jaccard index

seen in Eq. (13). The Jaccard index disregard the TN and

only focus on the TP which makes the results easier to

interpret. Equation (14), precision, measure how many TP

there are among the predicted labels, while Eq. (15), recall,

measure how many labels that are correctly selected

amongst all labels. A classifier that predicts all available

labels would have a low precision since it would have

many FP but the recall would be high because there would

not be any FN. The F1-score is the harmonic mean between

precision and recall [17]. A good F1-score is only achieved

if there both the precision and recall are high. The F1-score

make an implicit assumption that the TN4 are unimportant

in the operative context, which they are in this context.

Olson and Delen defines the following metrics for

evaluating predictive models [36] as described in

Eqs. (12), (13), (14), (15) and (16). These measurements

are used to give insights in the classifier’s performance on

previously unseen e-mails.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

JaccardIndex ¼ TP

TPþ FPþ FN
ð13Þ

Precision ¼ TP

TPþ FP
ð14Þ

Recall ¼ TP

TPþ FN
ð15Þ

F1-score ¼
2TP

2TPþ FPþ FN
ð16Þ

5.7 Statistical tests

The statistical tests below are used to draw correct con-

clusions from the results that are generated. The tests are

applied to the metrics described above where possible.

Friedman test The Friedman test is a statistical signifi-

cance test that measures a number of algorithms over dif-

ferent measurements and compare them against each other

[17]. The test is nonparametric, based on ranking, and does

therefore disregard the distribution of the measurements.

Significance levels that are common and will be used in the

experiments are 0.01 and 0.05, which correspond to a

probability of 1% and 5%.

Nemenyi test The Friedman test does only measure if

there is a significant difference in the performance of the

algorithms that are compared, since it does not do any

pairwise measurement [17]. The Nemenyi test is a post hoc

test that perform pairwise comparisons based on the aver-

age rank of each algorithm to decide which algorithms that

perform significantly better than others. The null hypoth-

esis that the two algorithms perform equal can be rejected

with a certainty decided by the significance level if the

p value is less than the significance level.

5.8 Experiments

In this section, the different experiments are detailed. The

results are presented corresponding in subsections in

Sect. 6. The experiments were conducted on a computer

equipped with 64 GB DDR4 non-ECC memory, Nvidia

GTX 1080Ti graphics card and an Intel Core i7-7820X

3.6 GHz processor. For the development environment,

Jupyter Notebook were used with a Python3 kernel. Ten-

sorFlow [1] v1.3, Scikit-learn [6] v0.19 and Gensim [39]

v2.3 were used for defining the classifiers and word vec-

tors. Where applicable, the algorithms were accelerated

with the Nvidia GPU using CUDA v8.0 and CuDNN v6.0.

5.8.1 Experiment 1: NLP semantic and syntactic analysis

The objective of this experiment is to decide which

Word2Vec model that perform best on the corpus which is

based on Språkbanken, Wikipedia and e-mails, by using an

analogy dataset. Further, GloVe will also be trained on a

smaller corpus based only on the e-mails for comparison.

To evaluate the different models, the analogy test will

Table 2 Word vector hyperparameters

Parameter Value

Vector size 600

Window size 10

Minimum word occurrences 5

Iterations 10

Table 3 Positives and negatives definition

Metric Definition

TP Label is present, label is predicted

TN Label is not present, label is not predicted

FP Label is not present, label is predicted

FN Label is present, label is not predicted

The metrics are defined per label

1892 Neural Computing and Applications (2021) 33:1881–1902

123

show which NLP algorithm that can model the Swedish

language best.

1920 analogy questions were used to evaluate CBoW,

Skipgram, Skipgram n-gram and GloVe. The dataset

includes semantic and syntactic questions about capitals-

countries, nationalities, opposites, genus, tenses, plural

nouns and superlatives. These models are then ranked in

order of how well they perform against each other. All

word vector models are trained with the same hyperpa-

rameters which are listed in Table 2.

5.8.2 Experiment 2: NLP evaluated in classification task

This experiment will show which of the NLP models that

perform best when tested with a LSTM network on labeled

e-mails with 33 classes. Experiment 1 does not test the

NLP models in a classification task, which is the motiva-

tion for this experiment. The aim of this experiment is to

add knowledge of the NLP models’ performance upon

which a decision is made about which NLP model that will

be used in the following experiments.

The NLP models are trained on Språkbanken, Wikipedia

and e-mails, and it is evaluated on a LSTM network using

the hyperparameters in Table 1, except for the hidden

layers where 256 cells were used. The NLP models are

trained with the hyperparameters shown in Table 2.

In this experiment F1-score, Jaccard index, precision

and recall were used as evaluation metrics. The result from

this experiment will highlight which NLP model that per-

form best given a LSTM network.

5.8.3 Experiment 3: NLP corpus and LSTM classifier

This experiment will show which combination of corpus

and classifier that perform best. Two different corpora will

be trained with the best performing NLP model from

experiment 2. The network size was set to 128 cells and

two layers, which were decided through a pre-study as

described in Sect. 5.1.2. In this experiment, we also per-

formed one reboot once the network triggers early stopping

or the maximum epochs. These classifiers will be tested on

both the 33 e-mail labels and the aggregated eight queue

labels.

5.8.4 Experiment 4: Non-sequential models performance

This experiment will be used as a baseline for comparison

against the LSTM network.

The models ADA, ANN, DT, NB, and SVM are trained

using Scikit-learn implementations with default settings.8

For the ANN, we use Scikit-learns MLPClassifier with 500

max iterations and an adaptive learning rate, the rest of the

settings are kept at default values. The SVM model is

based on the LinearSVC classifier. DT is based on an

optimized version of CART. The ADA classifier is using

the Scikit-learns DT classifier as its weak classifiers.

Finally, NB is based on the Gaussian distribution. These

classifiers will be tested on both the 33 e-mail labels and

the aggregated eight queue labels.

6 Result and analysis

In this section, we present the results of the four experi-

ments described in Sect. 5. The performance metrics is

presented together with analysis and statistical tests to

verify significant differences where applicable. The per-

formance of the word vectors, non-sequential algorithms

and the sequential model with both labels and queues are

presented.

6.1 Experiment 1: NLP semantic and syntactic
analysis

Figure 4 shows the per category accuracy of the semantic

and syntactic questions used for evaluating the investigated

Word vector models, as well as the total accuracy per

model. The different models performed similar; however,

CBoW achieved the highest total accuracy of 66.7%.

Skipgram-ng achieved the lowest total accuracy, but with

the added benefit of being able to construct vectors for

words not in the original dictionary.

Due to the similarity of the different models, it is not

possible to recommend any specific approach. It should be

noted that GloVe trained on the smaller corpus solely based

on the e-mails achieve a total accuracy of 2.1%, which is

64.6% units less than the best model. It can therefore be

concluded that the e-mail dataset does not provide enough

information to build acceptable word vector models on its

own.

While all models struggled with opposite-related ques-

tions, which are semantic questions, they excel at capi-

tal/country questions that also are semantic.

6.2 Experiment 2: NLP evaluated in classification
task

In this section, the result of four different NLP word vector

algorithms are presented in which they were evaluated on a

classification task. Together with the results presented in

Sect. 6.1 these results will help in understanding the impact

of the different NLP models. The results from Table 4

show that the word vectors are very similar to each other;

8 The default values are described in the documentation http://scikit-

learn.org/stable/modules/classes.html.

Neural Computing and Applications (2021) 33:1881–1902 1893

123

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html

the word vector generated by GloVe perform slightly better

that the others with regards to Jaccard, Recall, and F1-

score. However, the differences between the models are

small and drawing any general conclusions is therefore

difficult. However, the word vectors trained by GloVe

showed best performance that model will be used in the

following experiments.

6.3 Experiment 3: NLP corpus and LSTM
classifier

6.3.1 LSTM classification with eight queue labels

The results from Table 5 show that the full corpus of

Språkbanken, Wikipedia and e-mails perform better than

the corpus only based on the e-mails. The Jaccard index

and F1-score are 6% and 3% units higher, respectively,

when LSTM is trained on the larger corpus. However, it is

interesting that LSTM still achieve acceptable performance

with word vectors based on a the significantly smaller

corpus even though it scored terrible in the semantic and

syntactic analysis as seen in Fig. 4.

6.3.2 LSTM classification with 33 e-mail labels

Table 6 shows the results when LSTM is trained on two

different GloVe word vectors on different corpora. Train-

ing LSTM on the larger corpus increases the Jaccard index

by 6% points and F1-score with 4% points. The relative

performance is about the same as the results from

Sect. 6.3.1 trained on queues. The decrease in F1-score

may suggest that the corpus based on the e-mails may

struggle when the number of classes grows.

6.4 Experiment 4: Non-sequential models
performance

6.4.1 Non-sequential classification with eight queue labels

Table 7(a) and (b) shows the different preprocessing

algorithms performance when used with different learning

algorithms. From Table 7(a), the results show that BoWBi

performs best when compared to BoW and AvgWV. Even

though BoWBi seem to perform better on average, there

are two outliers in which AvgWV perform about 10% units

higher, which also is the best result obtained.

A Friedman test confirms that there is a significant dif-

ference in the performance when measuring the Jaccard

index at an significance level of 0.05, v2ð2Þ ¼ 7:600, p

value = 0.022. But the test does not confirm a significant

difference at significance level 0.01 for the F1-score mea-

surements, v2ð2Þ ¼ 3:600, p value = 0.166.

A Nemenyi post hoc test evaluates the difference

between the preprocessing algorithms on Jaccard index.

The results from Table 8 show a significant difference

between BoW and BoWBi. Even though AvgWV gain the

best result, it is not a significant difference because it

performs worse for the rest of the learning algorithms.

When investigating if there was any significant differ-

ence in the classification algorithms performance,

Table 7(a) and (b) are transformed, by swapping rows and

columns. The transformation is done because of the

Friedman test, which measures the difference on a column

basis.

Given the results in Table 7, ANN and SVM show best

performance when trained on AvgWV. The average rank

from the transposed Table 7(a) and (b) shows that SVM

perform best in all cases and that NB perform worst in all

cases. ADA, ANN and DT seem to perform equal except

for the good result obtained by ANN when trained on

AvgWV. Another Friedman test for the non-sequential

algorithms on the Jaccard index results in Table 7(a) shows

that there exists significant differences between the candi-

dates at significance level 0.05, v2ð2Þ ¼ 10:667, p

value = 0.031. The F1-score results show the same pattern,

Fig. 4 Top figure shows word vector total semantic and syntactic

accuracy. Bottom figure shows Word vector semantic and syntactic

accuracy per category

1894 Neural Computing and Applications (2021) 33:1881–1902

123

v2ð2Þ ¼ 10:237, p value = 0.037, which also rejects the

null hypothesis at significance level 0.05, i.e., that all

candidates perform equal.

Table 9(a) and (b) shows the results from two Nemenyi

post hoc test. These results indicate that there are no sig-

nificant differences between the candidate algorithms,

except for the difference between SVM and NB that is

significant at significance level 0.05. Together with the

results from Table 7(a) and (b) it is clear that SVM is the

best performing candidate.

The box plot in Fig. 5 shows the classification perfor-

mance over 10 folds for a combination of the best per-

forming preprocessing algorithm and classification

algorithm. The variance is low for all algorithms which is a

good indication that the model does not overfit and can

generalize well for previously unseen e-mails.

Table 4 Performance metrics

for each word vector algorithm

used in LSTM classification

model

Algorithm Accuracy Jaccard Recall Precision F1-score

Skipgram 0.99 0.82 0.90 0.91 0.90

CBoW 0.99 0.82 0.90 0.91 0.90

GloVe 0.99 0.83 0.91 0.91 0.91

Skipgram n-gram 0.99 0.82 0.90 0.91 0.90

Table 5 Comparing the same

LSTM network trained on

different corpora and eight

queue labels

Corpus Accuracy Jaccard Recall Precision F1-score

Språkbanken, wiki, e-mails 0.98 0.87 0.93 0.93 0.93

Only e-mails 0.97 0.81 0.90 0.90 0.90

Table 6 Comparing the LSTM

network trained on different

corpora and 33 e-mail labels

Corpus Accuracy Jaccard Recall Precision F1-score

Språkbanken, wiki, e-mails 0.99 0.83 0.91 0.91 0.91

Only e-mails 0.99 0.77 0.87 0.88 0.87

Table 7 Jaccard index and F1-score on queue labels with non-se-

quential algorithms and different preprocessing algorithms

Algorithm BoW BoWBi AvgWV

(a) Jaccard index

ADA 0.577 0.737 0.588

ANN 0.577 0.766 0.866

DT 0.579 0.733 0.594

NB 0.407 0.622 0.426

SVM 0.624 0.784 0.872

(b) F1-score

ADA 0.562 0.730 0.480

ANN 0.535 0.702 0.818

DT 0.570 0.730 0.485

NB 0.345 0.498 0.420

SVM 0.599 0.759 0.831

Bold denotes the highest performance

Table 8 Nemenyi post hoc test on Jaccard index based on Table 7(a)

Algorithm BoW BoWBi AvgWV

BoW 0.031 0.069

BoWBi * 0.946

AvgWV

* Significant at p\0:05

** Significant at p\0:01

Table 9 Nemenyi post hoc test on non-sequential algorithms Jaccard

index

Algorithm ADA ANN DT NB SVM

(a) Jaccard index

ADA 0.840 0.986 0.840 0.235

ANN 0.986 0.235 0.840

DT 0.530 0.530

NB 0.017

SVM *

(b) F1-score

ADA 1.000 0.938 0.697 0.369

ANN 0.938 0.697 0.369

DT 0.235 0.840

NB 0.017

SVM *

* Significant at p\0:05

** Significant at p\0:01

Neural Computing and Applications (2021) 33:1881–1902 1895

123

6.4.2 Non-sequential classification with 33 e-mail labels

The results in this section indicate how well different NLP

models, in combination with non-sequential learning

algorithms, perform in classifying e-mail topics. This

together with previously shown results allows a compar-

ison of the sequential LSTM network against the non-se-

quential classifiers, and how the aggregation of the 33

labels into queues affect the classification performance.

Table 10(a) and (b) shows the results when the prepro-

cessing algorithms are tried on the 33 distinct e-mail labels.

A Friedman tests on the Jaccard index, v2ð2Þ ¼ 3:600, p

value = 0.165, and F1-score, v2ð2Þ ¼ 2:800,

p value = 0.247, does not show any significant difference

at significance level of 0.05. SVM and ANN does perform

about 10% units higher when trained on AvgWV compared

to the other preprocessing algorithms and classification

algorithms.

When compared to the results for eight queues (instead

of the 33 labels), as shown in Table 7(a) and (b), the per-

formance decreases. This is also expected due to the

increased difficulty of more classes and because some of

the classes may be closely related to each other. Closely

related labels further may be hard to separate for the

classifiers, which could explain the drop in performance of

e-mail labels compared to the queue labels.

Similarly to the experiment in Sect. 6.4.1, Table 10(a)

and (b) are transformed, and evaluated using Friedman test.

A Friedman test applied to the classification algorithms

does show a significant difference for the Jaccard index,

v2ð2Þ ¼ 10:667, p value = 0.031, at significance level of

0.05, but not on the F1-score, v2ð2Þ ¼ 7:200,

p value = 0.126. From the results in Table 10, it is clear

that SVM performs best using all preprocessing algorithms

whereas NB performs worst in all cases.

One significant difference was found between SVM and

NB as seen in Table 11 at a significance level of 0.05.

There are however differences between the other algo-

rithms although not significant.

Figure 6 shows visually, though a box plot, how the

performance differentiate between the classifiers. The plot

is drawn from the text representation that yield the maxi-

mum accuracy per classifier. SVM has the highest average

accuracy with low variance and low difference between the

lowest and highest values.

6.5 LSTM certainty values

Figure 7 shows the certainty values for each label by the

proposed LSTM model. The data are collected by classi-

fying all instances in the test dataset, which contains 5893

e-mails unseen during training. When predicting a label

each instance also get a certainty value of said label. The

average certainty is shown by the yellow line for each

Fig. 5 Jaccard index per algorithm, for the best performing combi-

nation of preprocessing method and learning algorithm, on the

aggregated e-mail queues

Table 10 Jaccard index and F1-score on distinct e-mail labels with

non-sequential algorithms

Algorithm BoW BoWBi AvgWV

(a) Jaccard index

ADA 0.483 0.691 0.469

ANN 0.479 0.689 0.802

DT 0.481 0.677 0.468

NB 0.308 0.488 0.334

SVM 0.524 0.718 0.816

(b) F1-score

ADA 0.366 0.570 0.225

ANN 0.383 0.550 0.571

DT 0.387 0.559 0.218

NB 0.168 0.254 0.257

SVM 0.423 0.594 0.597

Bold denotes the highest performance

Table 11 Nemenyi post hoc test on non-sequential algorithms per-

formance with e-mail labels

Algorithm ADA ANN DT NB SVM

ADA 0.986 0.840 0.235 0.840

ANN 0.986 0.530 0.530

DT 0.840 0.235

NB 0.017

SVM *

* Significant at p\0:05

** Significant at p\0:01

1896 Neural Computing and Applications (2021) 33:1881–1902

123

label. The circles indicate outliers, i.e., points diverging at

least 1.5 times the inter-quartile range.

The ideal box is positioned near 1.0 with low height as

this indicate a high average certainty and low variance

between instances. In the plot, this is shown by the label

‘‘numbermove’’ while the label ‘‘servicerequest’’ shows

fewer promising results and may need further

improvements.

7 Discussion

During training of the LSTM model, a consistent bump in

performance were observed if the training were restarted

after early stopping had triggered. An increase of approx-

imately 2–3% units in F1-score were common. Warm

restart of model training and resetting the learning rate has

been shown to increase the convergence when using SGD

[30]. The authors decided to include the warm restart

method as it gave a consistent increase in both training and

validation performance. However, the reboot was only used

once and not continuously during training as suggested by

Loshchilov and Hutter. However, this effect is not exten-

sively covered by other research and may be observed due

to other unknown effects of the training.

In order to determine which word vector model to use,

each model was evaluated using a set of Swedish semantic

and syntactic questions. The models performed approxi-

mately the same with the exception of GloVe which per-

formed overall about 1% unit better than the other models.

However, when the word vectors were used in training of

the LSTM model, they showed little or no difference in

performance. The cause may be due to the LSTM network

being able to learn the same patterns in the dataset even

with differences between the word vectors. When choosing

the best word vector model for a classifier, it is therefore

important to evaluate them in a classification task, since the

performance of the semantic and syntactic questions did

not correlate with the performance of the word vectors in a

classification task. The semantic and syntactic analysis

show how well the word vectors model the language in

general, which may not be relevant for domain specific

classification. The LSTM network is shown to be able to

adapt to word vectors that do not achieve good semantic

and syntactic results. It is possible that the word vectors

based on the e-mails does model the domain language

which may be what the LSTM network utilize. Incorpo-

rating domain language in a corpus is therefore recom-

mended because it may add valuable relations between

words that have a different semantic and syntactic meaning

in the domain.

As extensive computation is used to solve problems, we

have to consider the efficiency of the algorithm that is used.

The energy usage can differ severely between different

algorithms depending on several factors. Execution time is

one of these factors. Table 12 presents the execution time

of the algorithms trained on 10,000 e-mails. The wall time

is measured from the start to the finish of the training.

There is a big difference in the training time where NB

is the fastest to train with less than 1 s. SVM is the slowest

of the non-sequential algorithms with a training time of

39 s. LSTM does train in several epochs in which it trains

on the same samples several times to adjust its weights; the

process is time-consuming which is shown by the execu-

tion time. The training time of the LSTM network is

strongly correlated with how many epochs the network

needs before convergence. In this measurement, the LSTM

network needed 94 epochs to converge.

The execution times in Table 12 show that the LSTM

network has about 513 times longer execution than SVM,

which is the slowest of the non-sequential algorithms.

LSTM does execute both on the CPU and the GPU which

neither of the non-sequential algorithms do. Improving the

LSTM hyperparameters may lead to a reduced execution

time. Techniques as warm reboot could also increase the

convergence rate [30]. If execution time or energy con-

sumption is a concern and the extra performance increase

given by LSTM is redundant, it is recommended to use

Ann with AvgWV.

The different classifiers are well suited for NLP tasks.

LSTM does perform better than the other classifiers, but it

does require more data. If NLP tasks are to be solved in

other domains that do not generate enough data for a

LSTM to work properly it would be advisable to train a

SVM using AvgWV. LSTM is more adaptable but knowing

how to optimize the network does require domain knowl-

edge and experience with gradient-decent classifiers.

Fig. 6 Jaccard index per algorithm, for the best performing combi-

nation of algorithm and preprocessing method, on the distinct e-mails

topics

Neural Computing and Applications (2021) 33:1881–1902 1897

123

A machine learning-based classifier could help a com-

pany to reduce work hours that are spent on e-mail support.

The classifier could be trained to forward incoming e-mails

to personnel or groups that handle different types of

errands. If the company does use a manually created rule-

based classifier, it would be possible to replace it with a

machine learning-based model which would reduce a

substantial amount of work hours spent on tuning the rules.

The machine learning model is also more consistent and

less prone to failure due to human error. A framework was

implemented that is adaptable to support further features

such as semantic analysis which would add additional

business value. The framework can replace or co-exist with

the current rule-based system in the company without any

larger infrastructure changes.

While the rule-based system requires tuning in which

rules are adapted to support new templates, campaigns or

temporary changes in the label structure. A machine

learning model does not, but it is instead dependent of

tuning. It is challenging to control that outcome since the

classification is somewhat of a black box. However, it is

Fig. 7 Certainty values per label using the proposed LSTM model based on the test dataset, illustrated with a box plot

Table 12 Execution time in

seconds when trained on 10,000

e-mails

Algorithm Time (s)

LSTM 20,068.00

SVM 39.13

ANN 9.37

DT 6.63

ADA 6.26

NB 0.03

1898 Neural Computing and Applications (2021) 33:1881–1902

123

possible to adapt the labels of the training data to achieve

these goals, but it might be difficult to gain full control of

the classifier. Creating high-quality data to train the clas-

sifier is therefore crucial for improvement of the frame-

work. A solution would be to integrate data generation in

the system in which new labeled data could be produced by

the support team. Temporary labels such as campaigns

where good labeled data is hard to generate could be

handled by a rule-based classifier incorporated in the

framework but keeping the rules minimal and maintainable

is crucial.

The classification rate of the current rule-based system is

approximately 70% as described in Sect. 5.2. One of the

objectives for this study were to improve the classification

rate. The proposed LSTM model does always produce a

class for a given e-mail which can be interpreted as a

classification rate of 100%. However, if the proposed

model does not understand the e-mail it will still assign the

e-mail a label, but with low certainty. The certainty of a

classification can be used to determine if the model

understands the e-mail or not; however, at what level of

certainty this can be determined is not obvious. As shown

in Fig. 7, the average certainty values of most of the labels

are quite high. If 80% certainty is considered as the mod-

el’s threshold for ‘‘understanding’’ an e-mail, then 92% of

the e-mails are above said threshold. However, further

research has to be done in order to determine if this is a

realistic threshold.

Instead of using queues for each category of support

errand that the employees grab e-mails from, the network

may assign an e-mail to an employee directly. It might be

possible to extend the network with one or more neural

networks that specializes in learning which employees that

prefer which e-mails. This can further improve the practi-

cal usefulness by reducing the response time further. The

network may be able to learn the preferences of each

employee directly and assign them e-mails based on cur-

rent load, expertise, satisfaction rate etc.

Classifying e-mails wrong may affect the customer who

sends the e-mail. If a company specialize their support

personnel, they might receive e-mails that they are not

trained to answer. In those cases, it is important to have a

strict policy that requires all personnel to forward the

e-mail to another colleague that can handle the errand

better. Wrongly classifying e-mails that contain sensitive

information could lead to information disclosure if per-

sonnel that do not have the correct security clearance

receive the information.

Finally, there are a number of potential validity threats

related to this study, which are discussed in the following

paragraphs. Even though the LSTM model achieved high

performance when predicting the full set of 33 labels, the

number of labels are relatively low compared to other

machine learning networks,9 however more classes

increase the difficulty of the prediction task. With this

reasoning the model should achieve a better performance

when predicting queues instead of labels. Due to both the

reduced number of labels, eight instead of 33, and the

increased divergence between the labels, an increase in

performance were expected. As shown in the results, there

were indeed an increase in performance, but not as large as

expected. The downside of aggregating the labels are the

reduced flexibility and granularity as the system now has

less freedom when sorting e-mails into queues based on

their labels. There could exist labels that are more related

to other queues than the queue they are placed in. The

queues are not constructed to optimize classification but

rather to group labels that the teams with special training

can handle efficient.

The dataset used during training of the LSTM model

lacked conviction in terms of label accuracy. The labels

were set by the rule-based model and not fully confirmed

by a human expert. This led to some inconsistencies in the

dataset which may have affected the performance of the

classifiers. The dataset should be expanded to make sure

there is enough examples for each label and all e-mail

labels should be verified to make sure that they are correct

to avoid noise in the data.

When evaluating the word vectors a set of Swedish,

semantic and syntactic questions were used. These ques-

tions were defined by the authors and considered extensive.

However, as the authors are not linguistic experts there

may have been both discrepancies and faults in the dataset.

Verifying the integrity of the dataset and also expand the

set with more questions is important if it should be used to

evaluate the word vectors performance. Evaluation of the

word vectors using QVEC, as proposed by Tsvetkov et al.,

may be a better evaluation method and lead to a better

understanding of the word vectors performance in a clas-

sification task [46].

8 Conclusion

Of the six different classifiers that are evaluated LSTM

performs best on both the individual 33 labels as well as for

the aggregated eight queues. The LSTM network achieves

almost as good results when using the 33 labels as when

using the queue labels. Aggregating the labels does

increase the performance, but only nominal. It should be

noted that the NLP model used does not significantly affect

the classification performance as LSTM seem to compen-

sate for the difference between them.

9 Google’s Inception network [45] consists of 1000 classes.

Neural Computing and Applications (2021) 33:1881–1902 1899

123

Of the non-sequential classifiers, ANN and SVM,

achieved best results on both the queue and the 33 labels

when trained on AvgWV. The use of AvgWV improved

the performance substantially compared to both BoW and

BoWBi if used with a suitable classifier.

When comparing LSTM with the non-sequential algo-

rithms, LSTM perform about 1.5% units better on Jaccard

index and 31% units better on F1-score compared on the 33

labels. It should be noted that, the training time of LSTM is

several factors longer than that of the non-sequential

models, if power consumption and training time is

important, select a non-sequential model such as SVM with

AvgWV.

A framework was implemented based on the results of

the experiments. The framework is intended to generate

business value for a company by reducing the work hours

spent on tuning rule-based systems. Changing to a machine

learning-based framework does also allows for faster and

easier development for features such as sentiment analysis

which will add further business value to a company. LSTM

is chosen as the main classifier because of its classification

performance and the features it supports, e.g., the possible

to receive a probability value indicating the certainty of the

prediction. The probability can be of much use for a data

analyst when improving the model by knowing its strengths

and weaknesses.

9 Future work

Extending the classification to identify emotions in the

e-mail can help the support team deal with angry or dis-

satisfied customers [5]. Doing so will improve the customer

service since the support personnel can cope with the

emotions of the customer. This will increase the customer

satisfaction and decrease the number of customers that

change provider.

Given that the model only classifies the latest response

in an e-mail conversation, but often keeps the subject of the

original e-mail there may be conflicts that causes confusion

for the LSTM network. There may be a performance

increase by separating the subject from the body and use

two LSTM networks to classify each part separately. The

two networks may then be interlaced by a fully connected

neural network.

Currently, the e-mails are processed before entering the

classifier. In the early stages of preprocessing, all other

bodies than the first are stripped. The other bodies contain

previous conversations and may be helpful during classi-

fication. However, the effect of stripping other bodies

versus including two or more is unknown and future work

may compare the effect of including several bodies during

classification.

Currently, the network is trained once and does not

change its predictions in production even if they were to be

wrong. If the network is to improve over time it has to be

periodically retrained. This procedure is both time and

computationally costly. It also introduces a delay between

the correction and the actual adapting of the model. An

approach that would allow the network to adapt continu-

ously to changes in the e-mail environment is of beneficial.

As such either online learning or reinforcement learning

could be useful approaches. Future work may look closer at

the benefits and usefulness of online learning and rein-

forcement learning in this context.

Finally, the problem of distribution drift also needs to be

addressed [26]. Given the problem setting, it is safe to

assume that the class prevalence, i.e., the size of each class,

change over time. For example something might affect

hardware causing a larger amount of technical support

messages for a certain week. Two approaches for investi-

gating are of interest to the authors; conformal prediction

as an indicator of when the model is certain of its predic-

tions [3], and as a quantification problem to calculate how

well the distribution of the predicted classes fit the distri-

bution of the training classes [26].

Acknowledgements Open access funding provided by Blekinge

Institute of Technology.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,

Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Good-

fellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser

L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray

D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar

K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O,

Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015)

TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from tensorflow.org

2. Baron NS (1998) Letters by phone or speech by other means: the

linguistics of email. Lang Commun 18(2):133–170

3. Borg A, Boldt M, Svensson J (2019) Using conformal prediction

for multi-label document classification in e-mail support systems.

In: International conference on industrial, engineering and other

applications of applied intelligent systems. Springer, pp 308–322

1900 Neural Computing and Applications (2021) 33:1881–1902

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

4. Bottou L (2012) Stochastic gradient descent tricks. In: Neural

networks: tricks of the trade, 2nd edn. Springer, Berlin,

pp 421–436

5. Bougie R, Pieters R, Zeelenberg M (2003) Angry customers don’t

come back, they get back: the experience and behavioral impli-

cations of anger and dissatisfaction in services. J Acad Mark Sci

31(4):377–393

6. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A,

Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J,

Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API

design for machine learning software: experiences from the sci-

kit-learn project. In: ECML PKDD workshop: languages for data

mining and machine learning, pp 108–122

7. Cambria E, White B (2014) Jumping NLP curves: a review of

natural language processing research. IEEE Comput Intell Mag

9:48–57

8. Chowdhury GG (2003) Natural language processing. Annu Rev

Inf Sci Technol 37(1):51–89. https://doi.org/10.1002/aris.

1440370103

9. Christopher DM, Prabhakar R, Hinrich S (2008) Introduction to

information retrieval. Introd Inform Retriev 151:177

10. Coden AR, Pakhomov SV, Ando RK, Duffy PH, Chute CG

(2005) Domain-specific language models and lexicons for tag-

ging. J Biomed Inform 38(6):422–430

11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

12. Coussement K, den Poel DV (2008) Improving customer com-

plaint management by automatic email classification using lin-

guistic style features as predictors. Decis Support Syst

44(4):870–882

13. De Boom C, Van Canneyt S, Demeester T, Dhoedt B (2016)

Representation learning for very short texts using weighted word

embedding aggregation. Pattern Recogn Lett 80:150–156

14. Domingos P, Pazzani M (1996) Beyond independence: conditions

for the optimality of the simple bayesian classifer. In: Proceed-

ings of 13th international conference machine learning,

pp 105–112

15. Eide SR, Tahmasebi N, Borin L (2016) The Swedish culturomics

gigaword corpus: a one billion word Swedish reference dataset

for NLP

16. Fallgren P, Segeblad J, Kuhlmann M (2016) Towards a standard

dataset of Swedish word vectors. In: Sixth Swedish Language

Technology Conference (SLTC)

17. Flach P (2012) Machine learning: the art and science of algo-

rithms that make sense of data. Cambridge University Press,

Cambridge

18. Freund Y, Schapire RE (1995) A desicion-theoretic generaliza-

tion of on-line learning and an application to boosting. In:

European conference on computational learning theory. Springer,

pp 23–37

19. Gabrilovich E, Markovitch S (2004) Text categorization with

many redundant features: using aggressive feature selection to

make SVMS competitive with c4. 5. In: Proceedings of the

twenty-first international conference on Machine learning. ACM,

p 41

20. Graves A, Mohamed A, Hinton G (2013) Speech recognition with

deep recurrent neural networks. In: 2013 IEEE International

conference on acoustics, speech and signal processing,

pp 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947

21. Graves A, Schmidhuber J (2005) Framewise phoneme classifi-

cation with bidirectional lSTM and other neural network archi-

tectures. Neural Netw 18(5):602–610 IJCNN 2005

22. Halpin N (2016) The customer service report: Why great cus-

tomer service matters even more in the age of e-commerce and

the channels that perform best. http://www.businessinsider.com/

customer-service-experiences-are-more-important-than-ever-in-

the-age-of-e-commerce-2016-3?r=US&IR=T&IR=T

23. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.

1997.9.8.1735

24. Witten IH, Frank E, Hall M (2011) Data mining—practical

machine learning tools and techniques, 3rd edn. Elsevier,

Amsterdam

25. Ingersoll GS, Morton TSM, Farris D (2013) Taming text: how to

find, organize, and manipulate it, 1st edn. Manning Publications,

Shelter Island

26. Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016) Online

optimization methods for the quantification problem,

pp 1625–1634. https://doi.org/10.1145/2939672.2939832

27. Kusner M, Sun Y, Kolkin N, Weinberger K (2015) From word

embeddings to document distances. In: International conference

on machine learning, pp 957–966

28. Levy O, Goldberg Y, Dagan I (2015) Improving distributional

similarity with lessons learned from word embeddings. Trans

Assoc Comput Linguist 3:211–225

29. Lewis DD (1998) Naive (bayes) at forty: the independence

assumption in information retrieval. In: European conference on

machine learning. Springer, pp 4–15

30. Loshchilov I, Hutter F (2016) SQDR: stochastic gradient descent

with restarts. arXiv preprint arXiv:1608.03983

31. McCormick C (2017) Word2vec tutorial—the skip-gram model.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-

gram-model/

32. Meta: Data dumps — meta, discussion about wikimedia projects

(2017) https://meta.wikimedia.org/w/index.php?title=Data_dump

s&oldid=17422082. Online; Accessed 18 December 2017

33. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-

mation of word representations in vector space. arXiv preprint

arXiv:1301.3781

34. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. Adv Neural Inform Process Syst 26:3111–3119

35. Nowak J, Taspinar A, Scherer R (2017) LSTM recurrent neural

networks for short text and sentiment classification. Springer,

Cham, pp 553–562

36. Olson DL, Delen D (2008) Advanced data mining techniques.

Springer, Berlin

37. Pennington J, Socher R, Manning C (2014) Glove: global vectors

for word representation. In: Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP),

pp 1532–1543

38. Prechelt L (1998) Automatic early stopping using cross valida-

tion: quantifying the criteria. Neural Netw 11(4):761–767

39. Řehůřek R, Sojka P (2010) Software framework for topic mod-

elling with large corpora. In: Proceedings of the LREC 2010

workshop on new challenges for NLP frameworks, pp 45–50.

ELRA, Valletta, Malta. http://is.muni.cz/publication/884893/en

40. Richins ML (1983) Negative word-of-mouth by dissatisfied

consumers: a pilot study. J Mark 47(1):68–78

41. Sebastiani F (2002) Machine learning in automated text catego-

rization. ACM Comput Surv (CSUR) 34(1):1–47

42. Shannon CE (2001) A mathematical theory of communication.

ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55

43. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

44. Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural net-

works for language modeling. In: Thirteenth annual conference of

the international speech communication association

45. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

Neural Computing and Applications (2021) 33:1881–1902 1901

123

https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1109/ICASSP.2013.6638947
http://www.businessinsider.com/customer-service-experiences-are-more-important-than-ever-in-the-age-of-e-commerce-2016-3?r=US&IR=T&IR=T
http://www.businessinsider.com/customer-service-experiences-are-more-important-than-ever-in-the-age-of-e-commerce-2016-3?r=US&IR=T&IR=T
http://www.businessinsider.com/customer-service-experiences-are-more-important-than-ever-in-the-age-of-e-commerce-2016-3?r=US&IR=T&IR=T
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2939672.2939832
http://arxiv.org/abs/1608.03983
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://meta.wikimedia.org/w/index.php?title=Data_dumps&oldid=17422082
https://meta.wikimedia.org/w/index.php?title=Data_dumps&oldid=17422082
http://arxiv.org/abs/1301.3781
http://is.muni.cz/publication/884893/en

convolutions. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp 1–9

46. Tsvetkov Y, Faruqui M, Dyer C (2016) Correlation-based

intrinsic evaluation of word vector representations. arXiv preprint

arXiv:1606.06710

47. Vorontsov E, Trabelsi C, Kadoury S, Pal C (2017) On orthogo-

nality and learning recurrent networks with long term depen-

dencies. arXiv preprint arXiv:1702.00071

48. Yan Y, Wang Y, Gao WC, Zhang BW, Yang C, Yin XC (2017)

Lstm2: multi-label ranking for document classification. Neural

Process Lett. https://doi.org/10.1007/s11063-017-9636-0

49. Yang Y (1999) An evaluation of statistical approaches to text

categorization. Inform Retriev 1(1):69–90

50. Zhang H (2004) The optimality of Naive Bayes. Assoc Adv Artif

Intell 1(2):3

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1902 Neural Computing and Applications (2021) 33:1881–1902

123

http://arxiv.org/abs/1606.06710
http://arxiv.org/abs/1702.00071
https://doi.org/10.1007/s11063-017-9636-0

	E-mail classification with machine learning and word embeddings for improved customer support
	Abstract
	Introduction
	Outline
	Aims and objectives

	Case setting
	Related work
	Research gap

	Background
	Natural language processing
	Text representation
	Preprocessing
	Bag of words
	Word2Vec
	Average word vector

	NLP evaluation

	Classification
	Machine learning classifiers
	Deep learning classifiers
	Overfitting

	Methods
	Experiment design
	Non-sequential classifier experiments
	Sequential classifier experiments

	E-mail dataset
	Data preprocessing
	Data collection for word corpus
	Word representation
	Evaluation metrics
	Statistical tests
	Experiments
	Experiment 1: NLP semantic and syntactic analysis
	Experiment 2: NLP evaluated in classification task
	Experiment 3: NLP corpus and LSTM classifier
	Experiment 4: Non-sequential models performance

	Result and analysis
	Experiment 1: NLP semantic and syntactic analysis
	Experiment 2: NLP evaluated in classification task
	Experiment 3: NLP corpus and LSTM classifier
	LSTM classification with eight queue labels
	LSTM classification with 33 e-mail labels

	Experiment 4: Non-sequential models performance
	Non-sequential classification with eight queue labels
	Non-sequential classification with 33 e-mail labels

	LSTM certainty values

	Discussion
	Conclusion
	Future work
	Acknowledgements
	References

