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Abstract
The qualitative analysis of multidimensional data using their visualization allows to observe some characteristics of data in

a way which is the most natural for a human, through the sense of sight. Thanks to such an approach, some characteristics

of the analyzed data are simply visible. This allows to avoid using often complex algorithms allowing to examine specific

data properties. Visualization of multidimensional data consists in using the representation transforming a multidimen-

sional space into a two-dimensional space representing a computer screen. The important information which can be

obtained in this way is the possibility to separate points belonging to different classes in the multidimensional space. Such

information can be directly obtained if images of points belonging to different classes occupy other areas of the picture

presenting these data. The paper presents the effectiveness of the qualitative analysis of multidimensional data conducted

in this way through their visualization with the application of Kohonen maps and autoassociative neural networks. The

obtained results were compared with results obtained using the perspective-based observational tunnels method, PCA,

multidimensional scaling and relevance maps. Effectiveness tests of the above methods were performed using real seven-

dimensional data describing coal samples in terms of their susceptibility to fluidal gasification. The methods’ effectiveness

was compared using the criterion for the readability of the multidimensional visualization results, introduced in earlier

papers.

Keywords Multidimensional visualization �Multidimensional data analysis � Data mining � Self-organized neural network �
Autoassociative neural network � Kohonen maps

1 Introduction

Methods utilizing neural networks for analyzing multidi-

mensional data through their visualization are widely used

in practice [1–5]. Visualization of multidimensional data

consists in using the representation transforming a multi-

dimensional space into a two-dimensional space repre-

senting a computer screen. This representation should

preserve properties of these data crucial for the conducted

analysis. Neural networks are well suited for different

kinds of representations [6–9], so they can also be used for

this type of representation. The important information

which can be obtained in this way is the possibility to

separate points belonging to different classes in the mul-

tidimensional space. Such information can be directly

obtained if images of points belonging to different classes

occupy other areas of the picture presenting these data. The

paper presents the effectiveness of the qualitative analysis

of multidimensional data conducted in this way through

their visualization with the application of Kohonen maps

and autoassociative neural networks. The obtained results

were compared with results obtained using the perspective-

based observational tunnels method, PCA, multidimen-

sional scaling and relevance maps. The comparison of the
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above methods was performed using real seven-dimen-

sional data describing coal samples in terms of their sus-

ceptibility to fluidal gasification. The qualitative analysis of

the presented data using each of the methods was con-

ducted for this purpose. The purpose of the analysis was to

state whether coal samples with different susceptibility to

gasification occupy separate subareas of the multidimen-

sional space of characteristics. This in turn allows to state

whether selected characteristics are sufficient for the cor-

rect differentiation of samples well and poorly susceptible

to fluidal gasification. The methods’ effectiveness was

compared using the criterion for the readability of the

multidimensional visualization results introduced in earlier

papers [1, 10]. This paper constitutes the experimental

study of the effectiveness of Kohonen maps and autoas-

sociative neural networks in the qualitative analysis of

multidimensional data by the example of real data

describing coal susceptibility to fluidal gasification. Real

seven-dimensional data describing coal samples in terms of

their susceptibility to fluidal gasification was used for the

first time in the paper for the analysis of the effectiveness

of methods utilizing neural networks. However, they were

already utilized for the evaluation of other visualization

methods’ effectiveness [11–14]. Methods analyzed in the

paper participated in the ranking of various methods of

qualitative analysis of multidimensional data through its

visualization which was developed in previous papers. This

ranking [1] was created as a result of the analysis of

completely different data describing different energy

classes of coal. In practice, apart from neural networks,

also other methods are used for the qualitative analysis of

multidimensional data through their visualization. The

perspective-based observational tunnels method

[10, 13, 15] which constitutes the parallel projection with

local orthogonal projection utilizing perspective is used.

The PCA method [11, 16–20] constitutes a projection onto

two eigenvectors corresponding to two eigenvalues of the

dataset covariance matrix largest in terms of module.

Multidimensional scaling [12, 21–23] constitutes such a

representation that distance between each two images of

points in the two-dimensional output space representing the

screen is as close as possible to the distance between points

in the input space corresponding to them. In the method of

relevance maps [14, 24, 25], special points representing

axes of the coordinate system are additionally used. These

points and points representing vectors belonging to the

analyzed set are distributed on the plane in such a way that

the distance of each point representing a data vector to a

point representing a given axis of the coordinate system is

as close as possible to the value of this coordinate of a

given data vector. The method of parallel coordinates

[26–29] is also used to visualize multidimensional data. In

this method, n coordinate axes are distributed in parallel

next to each other. Each point is represented by a polyline

going through each of the axes in a point corresponding to

the coordinate value. A similar method is star graphs [30],

in which all axes go radially outward from one point.

2 Visualization using autoassociative neural
networks

The autoassociative neural network used for the visual-

ization of multidimensional data has n inputs, one of the

interlayers used for the visualization consisting of two

neurons and n outputs [3, 4]. The number of network inputs

and outputs is determined as equal to the number of

dimensions of the analyzed data. It is multilayer feedfor-

ward neural network, which is trained by the method of

error back-propagation. Autoassociative neural networks

are indicative of learning criterion they depend on. The

learning criterion of these networks is such that signals

appearing for each data vector at outputs are the same as

those provided at inputs. Thanks to this, the trained net-

work performs the compression of n network inputs into

two outputs of the interlayer used for the visualization and

then decompression to n network outputs. It follows from

this that if such a network is trained, then the whole

information allowing to reconstruct n-dimensional data is

sent by two outputs of the interlayer used for the visual-

ization. Figure 1 presents the operating diagram of such a

network.

Training such a network consists in counting all weights

attributed to all neurons. At first, the input data should be

scaled in such a way that it is within the range defined by

the network outputs. Because a hyperbolic tangent function

was assumed to calculate the value of neuron output, out-

put values are contained within range ð� 1; 1Þ. Coordinates
of dataset vectors were scaled thus to range ð� 0:9; 0:9Þ.
Before the network’s learning starts, drawing all weights of

all neurons should be conducted. Each weight was attrib-

uted a random value from range ð� 0:5; 0:5Þ. Then, points

Fig. 1 A diagram of autoassociative neural network used for the

visualization of multidimensional data. a Presents the diagram of the

network being trained. b Presents a fragment of the previously trained

network used during the visualization
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1–5 are realized for each input data vector (such learning

can be repeated multiple times):

1. For the next wth data vector, we calculate the output

value of all neurons from the first layer:

y1;j ¼ g w1;j;0 þ
Xn

k¼1

w1;j;kxk;w

 !
ð1Þ

where g denotes the assumed nonlinear function (hy-

perbolic tangent was used in the conducted experi-

ments), n is the number of network inputs, yi;j is the

output value of a neuron placed in the ith network layer

at the jth position (for neurons from the first layer i it is

equal to 1), wi;j;k denotes the weight of the kth input of

a neuron placed in the ith network layer at the jth

position (the weight for input number 0 denotes the

additional constant component), xk;w denotes the kth

coordinate of the wth data vector.

For g function, a hyperbolic tangent was used as it is

nonlinear, differentiable, increasing function and its

value for the argument approaching infinity aims to 1

and for the argument approaching negative infinity

aims to � 1. The values are exactly within boundaries

set for the operation of created network ð� 1; 1Þ. What

is more, its derivative, which is used in the network

learning process, is easy to calculate. It is important

that the use of nonlinear g function makes it possible to

increase capabilities of the created neural network to a

large extent.

2. We calculate output values of all neurons located in the

next network layers. The calculation of outputs of a

given layer’s neurons can occur after the calculation of

output values of the previous layer’s neurons:

yi;j ¼ g wi;j;0 þ
Xsizeði�1Þ

k¼1

wi;j;kyi�1;k

 !
ð2Þ

where sizeði� 1Þ denotes the number of neurons in

layer number i� 1, yi;j is the output value of a neuron

placed in the ith network layer at the jth position, wi;j;k

denotes the weight of the kth input of a neuron placed

in the ith network layer at the jth position (the weight

for input number 0 denotes the additional constant

component), g is a nonlinear function, the same as in

formula 1.

3. We count errors of the network outlet that is the

difference between values at the network inputs and

values we obtained at outputs of the last network layer.

We multiply this difference by the derivative of the

assumed function g, that is by the derivative of the

hyperbolic tangent function:

di;j ¼ 1� y2i;j

� �
xj;w � yi;j
� �

ð3Þ

where di;j is the value of the error of the output of a

neuron placed in the ith network layer at the jth posi-

tion (in this formula i denotes the number of the last

network layer), yi;j is the output value of a neuron

placed in the ith network layer at the jth position, xj;w
denotes the jth coordinate of the wth data vector.

4. We calculate errors of outputs of neurons from the

remaining network layers, in the order from the

penultimate layer to the first layer:

di;j ¼ 1� y2i;j

� � Xsizeðiþ1Þ

k¼1

diþ1;kwiþ1;k;j

� �
ð4Þ

where di;j is the value of the calculated error of the

output of a neuron placed in the ith network layer at the

jth position, wiþ1;k;j denotes the weight of the jth input

of the kth neuron from layer iþ 1, sizeðiþ 1Þ denotes
the number of neurons in layer number iþ 1, yi;j is the

output value of a neuron placed in the ith network layer

at the jth position.

5. Based on the previously calculated errors, we modify

weights of all network neurons. We can do this by

applying:

ewi;j;k ¼ wi;j;k þ gdi;jyi�1;k ð5Þ

where wi;j;k denotes the weight of the kth input of the

jth neuron from the ith layer, ewi;j;k denotes the weight

wi;j;k after the change, di;j is the value of the error of the
output of the jth neuron from the ith layer, yi�1;k is the

output value of the kth neuron from layer i� 1, g is the

parameter specifying the learning rate. Parameter g
takes on a fixed value higher than zero.

After the completion of learning, visualization of each wth

input data vector consists in calculating outputs of the next

layers of neurons up to the moment of calculating the value

of two outputs of the interlayer neurons used for the

visualization. Two values obtained in this way constitute

directly two coordinates of the screen specifying the

location in which the image of the wth data vector should

be drawn. In this way, we obtain the image of signals

corresponding to separate multidimensional data vectors.

3 Visualization using Kohonen maps

Kohonen maps are one-layer neural networks with com-

petitive learning principles [2, 5, 31, 32]. In these networks,

the notion of neighborhood is additionally introduced. All

network inputs reach every neuron. The number of network

inputs is determined as equal to the number of dimensions

Neural Computing and Applications (2020) 32:15221–15235 15223

123



of the analyzed data. The network’s learning proceeds in

such a way that weights of the winner neuron, whose

answer to a given set vector is the largest, are modified.

Additionally, weights of neurons adjacent to the winner,

that is neurons which are at some distance from the winner

neuron, are modified. The modification of weights proceeds

in such a way that the answer of the winner neuron and its

neighbors (to a lesser extent) to a given set vector is even

larger. Assuming the two-dimensional neighborhood, it is

possible to arrange neurons within a grid of rows and

columns. Then, the value of neuron output located in the ith

row and jth column can be displayed on the screen as a

point with coordinates (i, j). Figure 2 presents a simple

example of such a network with three inputs, comprising

two rows and three columns of neurons.

Training such a network consists in counting all weights

attributed to all neurons. At first, the input data should be

scaled in such a way that the length of each data vector is 1.

For this purpose, we change each of n values of each wth

input data vector:

exk;w ¼ xk;wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi;w
� �2q ð6Þ

where n is the number of data dimensions, xk;w is the kth

coordinate of the wth input dataset vector, exk;w denotes xk;w
after the change.

Before the network’s learning starts, drawing all weights

of all neurons should be conducted. Each weight was

attributed to a random value from range (0, 0.5). Then,

points 1–3 are realized for each input data vector (such

learning can be repeated multiple times):

1. For the next wth data vector, we calculate the output

value of all neurons:

yi;j ¼
Xn

k¼1

wi;j;kxk;w ð7Þ

where n is the number of network inputs equal to the

number of data dimensions, yi;j is the output value of

neuron number (i, j) that is placed in the ith row and

the jth column of the network, wi;j;k is the weight of the

kth input of neuron number (i, j), xk;w is the kth coor-

dinate of the wth dataset vector.

Based on the obtained results, we determine the

neuron which is the winner, that is, the one at whose

output the largest value appeared.

2. The modification of weights of the winner neuron and

the winner’s neighbors:

ewi;j;k ¼ wi;j;k þ g xk;w � wi;j;k

� �
ð8Þ

where

g ¼
0:01

distþ 1
for dist\MAX DISTANCE

0 else

8
<

:

ð9Þ

where dist is a distance using the Euclidean metrics of

neuron number (i, j) from the winner neuron, MAX_-

DISTANCE is a parameter specifying the maximum

distance of neurons treated as neighbors, wi;j;k is the

weight of the kth input of neuron number (i, j), ewi;j;k

denotes wi;j;k after the change, xk;w is the kth coordinate

of the wth dataset vector.

It follows from the above that weights of neurons at

a distance shorter than MAX_DISTANCE from the

winner neuron are subject to the modification. Addi-

tionally, these modifications decrease hyperbolically

along with an increase in the distance from the winner

neuron. The above-assumed parameter g has been used

before [5].

3. Vectors of weights of all neurons which were subject to

changes are standardized:

ewi;j;k ¼
wi;j;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
p¼1 wi;j;p

� �2q ð10Þ

where wi;j;k is the weight of the kth input of neuron

number (i, j), ewi;j;k denotes wi;j;k after the change.

After the completion of learning, the visualization of

each wth input data vector consists in calculating val-

ues of all neurons’ outputs from Formula 7. Based on

the obtained results, we determine the position of the

neuron which is the winner, that is, the one at whose

output the largest value appeared. If the winner neuron

is in the uth row and vth column, we check whether a

symbol representing a class other than the class of theFig. 2 The example of simple Kohonen maps, comprising two rows

and three columns of neurons. The exemplary network has three

inputs which reach all neurons
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wth vector was earlier drawn in the location on the

screen with coordinates (u, v):

• If yes, this means that the neuron with number

(u, v) is at the same time the winner for vectors

representing different classes. It follows from this

that the network is unable to differentiate at least

two data vectors belonging to different classes. In

turn, it follows from this that the obtained view is

not satisfying. Thus, we train the network again

changing the number of learning repetitions or

other parameters.

• If not, then in the location with coordinates (u, v),

we draw a symbol representing the class to which

the wth vector belongs.

Thanks to proceeding in that way for all data vectors, we

obtain the image of neurons representing separate data

classes on the computer screen.

4 Possibilities of visualizations based
on autoassociative neural networks
and Kohonen maps

Both autoassociative neural networks and Kohonen maps

can create nonlinear mappings. On the one hand, this can

be treated as a disadvantage, because it leads to the dis-

tortion of multidimensional data view. However, in the

case of many types of analyses this is of no relevance—for

example with the analysis conducted in this paper.

Simultaneously, it must be noted that some topological

dependencies are usually preserved in a view distorted in

this manner. Moreover, in the case of many types of data,

nonlinear mapping can have beneficial effect on the pos-

sibility to obtain views enabling to observe some signifi-

cant features. An example of this type of data is situation in

which one dataset surrounds another dataset from all sides

and at the same time we want to obtain information on the

possibility to separate these sets from each other. In order

to present the analyzed situation in detail, artificial seven-

dimensional data were prepared using a random number

generator. These data consist of two subsets, one of which

occupies the area of a seven-dimensional sphere and

another occupies the area of a sphere of some thickness

surrounding the first one. Both subsets contain 1000 points.

Figures 3 and 4 present views of data obtained using

autoassociative neural networks and Kohonen maps pre-

pared in this manner. As seen, both these views allow to

conclude that the possibility to separate subsets of analyzed

data exists. This means that methods using autoassociative

neural networks and Kohonen maps are effective even in

such an extreme case of surrounding one subset from all

sides by another one.

For comparison, Figs. 5, 6, 7 and 8 present views of the

same data obtained using other visualization methods.

Figure 5 presents the view obtained using PCA. As seen,

this view does not allow to obtain information about the

Fig. 3 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using the autoassociative neural network. Signals representing

different subsets are marked with different symbols

Fig. 4 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using Kohonen maps. Neurons representing different subsets are

marked with different symbols
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possibility to separate the analyzed subsets from each

other. In the case of the presented artificially generated

data, this method has a serious problem, because in this

case principal components do not exist. It is caused by the

fact that in the analyzed case, the analyzed data covariance

matrix contains practically the same values on the main

diagonal and values close to zero beyond the main diago-

nal. All eigenvalues are thus close to each other and are

equal to each other for the number of points generated in

the described manner going to infinity—so there is no

possibility to select those which are the largest in terms of

module. It turns out that by selecting any eigenvectors for

the analyzed data we obtain a view close to this in Fig. 5.

This method is the example of a linear method, so it does

not distort views. However, as can be observed, it is not

Fig. 5 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using PCA. Areas occupied by different subsets are marked with

different symbols

Fig. 6 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using multidimensional scaling. Images occupied by different subsets

are marked with different symbols

Fig. 7 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using relevance maps. The view obtained after 20,000 improvement

cycles occurring after random initial values. Images occupied by

different subsets are marked with different symbols

Fig. 8 The view of artificially generated seven-dimensional data in

which one subset surrounds another subset from all sides, obtained

using relevance maps. The view obtained after 20,000 improvement

cycles occurring after specially prepared initial values. Images

occupied by different subsets are marked with different symbols
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effective in the described case. But, its indisputable ad-

vantage is comfort of its use resulting from the fact that

there is no need to select any parameters while using it.

However, both autoassociative neural networks and

Kohonen maps require determining many parameters. In

particular, it is the number of learning repetitions. Some-

times, it is necessary to even change the assumed network

topology. For example, Fig. 3 is obtained by a network in

which all layers, apart from the third one consisting of two

neurons (used for visualization) and the last one consisting

of seven neurons, consist of 100 neurons. When initially

the network in which all layers apart from the third one

consisted of seven neurons was used, obtaining readable

views allowing to determine the possibility to separate the

analyzed subsets was not successful. Effective application

of methods utilizing neural networks requires considerable

experience. Moreover, the lack of obtaining readable views

from the perspective of the conducted analysis does not

have to mean that such views are not possible to obtain

using these methods. It may turn out that readable views

can be obtained assuming such parameters, network

topology and such a number of learning repetitions which

were not assumed in a given analysis.

Figure 6 presents the view obtained using multidimen-

sional scaling which is a nonlinear method. The view

obtained by it presents the possibility to separate the ana-

lyzed subsets from each other in a readable manner. This

method is not so successful in the case of less regular data.

An interesting result was obtained using the relevance

maps method which is also a nonlinear method. Figure 7

presents the view obtained with a standard, random initial

distribution of images of data points and relevance points.

This view does not allow to obtain information about the

possibility to separate the analyzed subsets from each

other. It was not possible to obtain a better view at different

combinations of random initial values. On the other hand, a

readable view allowing to determine the possibility to

separate subsets was obtained only with specially set initial

values, in which relevance points are on a straight line and

points belonging to different subsets are placed on the

opposite sides of this straight line. Figure 8 presents the

stabilized view obtained with such determined initial val-

ues of 20,000 repetitions of improvement cycles each.

As shown above on the artificially generated seven-di-

mensional data, methods utilizing neural networks are

perfect even with the analysis of such data in which some

subsets obscure other ones in a complicated manner. The

remaining mentioned nonlinear methods, that is multidi-

mensional scaling and relevance maps also allowed to

obtain readable results, whereby relevance maps—only

with specially prepared initial values. The mentioned linear

method of PCA did not allow to obtain readable results.

A huge advantage of visualization methods based on

neural networks is their capability to extract topological

ordering from data and mutual relations between data

categories. Topologically similar elements of data are

gathered close to each other in the obtained view, while

different ones are separated in remote clusters. Addition-

ally, these methods can reflect data category density, that

is, less frequently occurring items in data are represented

by smaller clusters and those occurring more frequently—

by larger clusters. Thanks to such an ability to maintain the

topology, visualization methods utilizing neural networks,

and in particular modifications of these methods specially

created for the analysis of this type of data, are perfect also

for visual analysis of sparse datasets [33–38]. Sparse data

are characterized by that although vectors occurring in such

data have very large dimensions, only a small percent of

coordinates of these vectors is nonzero. Data of this type

occur only in very specific areas, e.g., in the WWW anal-

ysis and text datasets and is not related to the subject of this

article.

5 Experiments’ results

To compare the effectiveness of methods presented in the

paper, real seven-dimensional data describing samples of

coal in terms of their susceptibility to fluidal gasification

was used. These data were obtained thanks to the con-

ducted physicochemical processes on 99 samples coming

from two hard coal mines. In this way, seven features

describing a given sample were obtained for each sample:

total sulfur content, hydrogen content, nitrogen content,

chlorine content, total carbon content, heat of combustion

and ash content. Therefore, each sample can be represented

by a vector in the seven-dimensional space of features. The

whole dataset was published earlier [39]. A system written

in the C?? programming language, specially created for

the conducted experiments, was used. It was created based

on theories presented in Sects. 2 and 3. During the

research, the effectiveness of Kohonen maps and autoas-

sociative neural networks in the qualitative analysis of

multidimensional data was verified. The qualitative anal-

ysis of the presented data using each of the methods was

conducted for this purpose. The purpose of the analysis was

to state whether coal samples with different susceptibility

to gasification occupy separate subareas of the multidi-

mensional space of characteristics. This in turn allowed to

state whether selected characteristics are sufficient for the

correct differentiation of samples well and poorly suscep-

tible to fluidal gasification. The criterion for the readability

of the multidimensional visualization results introduced in

earlier papers [1, 10] was used for comparing the effec-

tiveness of methods. It consists in drawing a curve
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separating images of points belonging to different classes

in a figure. The more complicated this curve is, the less

readable the view allowing to indicate the possibility to

separate subsets of points from each other is. It was

assumed that the curve consists of arcs and the more

complicated it is, the more inflection points it has. Inflec-

tion points are points joining arcs turning into different

sides.

During tests, in the case of autoassociative neural net-

works, the most readable views were obtained with the

network consisting of six layers in total. Three layers were

used for the change of seven-dimensional input space into

two outputs ðy3;1; y3;2Þ of the interlayer used for the visu-

alization. Then, three layers were used to change these two

outputs into seven network outputs. Figure 9 presents the

view obtained using the autoassociative neural network. It

is visible in the figure that signals being the response to

data representing samples of coal with different suscepti-

bility to gasification accumulate in aggregations. These

aggregations can easily be separated from each other. We

can conclude from this that samples of coal well and poorly

susceptible to gasification occupy separate subareas of the

multidimensional space of features. This in turn allows to

state that selected features are sufficient for the correct

differentiation in the susceptibility to fluidal gasification.

Areas occupied by signals representing different suscepti-

bility to gasification are separated by a curve in the figure.

This curve does not have any inflection points. This means

that the obtained view constitutes the most readable result

from the perspective of the assumed criterion for the

readability of the visualization results. This view was

obtained with ITER ¼ 340, which means that network

learning was repeated 340 times for each sample. It must

be noted that the autoassociative neural network learning

proceeds without any information on belonging of data

vectors to specific classes. In this connection, the way in

which signals of the interlayer used for the visualization are

grouped depends only on some features of these data

observed by the network.

Figure 10 presents the view obtained using the autoas-

sociative neural network for data describing samples of

coal with a different degree of susceptibility to fluidal

gasification, but with the omission of the chlorine content

effect. Such an approach causes that significantly more

samples are marked as well susceptible to gasification. The

consequence of using such samples for gasification is only

a small increase in the level of contamination. It is also

visible in the figure that signals being the response to data

representing samples of coal with different susceptibility to

gasification accumulate in aggregations. These aggrega-

tions can easily be separated from each other. We can

conclude from this that samples of coal well and poorly

susceptible to gasification occupy separate subareas of the

multidimensional space of features. This in turn allows to

state that selected features are sufficient for the correct

differentiation in susceptibility to fluidal gasification also

Fig. 9 The view obtained using the autoassociative neural network.

Signals representing samples of coal poorly susceptible to gasification

are marked with symbol filled square; signals representing samples of

coal well susceptible to gasification are marked with a circle

Fig. 10 The view obtained using the autoassociative neural network

with the omission of a condition concerning the chlorine content.

Signals representing samples of coal poorly susceptible to gasification

are marked with symbol filled square; signals representing samples of

coal well susceptible to gasification are marked with a circle
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with the omission of the chlorine content effect. Areas

occupied by signals representing different susceptibility to

gasification are separated by a curve. This curve also does

not have any inflection points. This view was obtained with

ITER ¼ 9000, which means that network learning was

repeated 9000 times for each sample. Additionally, random

initial values of weights other than for the previous fig-

ure were generated in order to obtain the above view.

Figures 11, 12, 13 and 14 present the results obtained

using Kohonen maps. During the tests, the most readable

views were obtained with the neural network consisting of

40 rows and 40 columns of neurons, thus of 1600 neurons.

Figure 11 presents the view of a response of the neural

network to one of input data vectors representing a sample

well susceptible to fluidal gasification. The field brightness

level denotes the values of a response of a neuron in a

given position to a given sample. The brighter field denotes

a greater value, and the darker field—a lower value at the

neuron output. The winner neuron, that is, the neuron

which obtained the largest value at the output, is marked

with symbol ‘x’. Figure 12 presents the view of a response

of the neural network to one of input data vectors repre-

senting a sample poorly susceptible to fluidal gasification.

Similarly as in the previous figure, the winner neuron, that

is, the neuron which obtained the largest value at the out-

put, is marked with symbol ‘x’.

Figure 13 was obtained as a result of displaying winner

neurons obtained in Figs. 11 and 12 along with winner

neurons representing each of the remaining data vectors. It

can be seen how neurons divided data representing a dif-

ferent degree of susceptibility to gasification between

themselves. It is visible that neurons representing samples

of coal with the same susceptibility to gasification accu-

mulate in aggregations. These aggregations can easily be

Fig. 11 The view of a response of Kohonen maps to one of input data

vectors representing a sample well susceptible to fluidal gasification.

The brighter field denotes a greater value, and the darker field—a

lower value at the neuron output. The winner neuron is marked with

symbol ‘x’

Fig. 12 The view of a response of Kohonen maps to one of input data

vectors representing a sample poorly susceptible to fluidal gasifica-

tion. The winner neuron is marked with symbol ‘x’

Fig. 13 The view obtained using Kohonen maps. Neurons represent-

ing samples of coal poorly susceptible to gasification are marked with

symbol ?; neurons representing samples of coal well susceptible to

gasification are marked with a circle
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separated from each other. Based on the use of Kohonen

maps, we can conclude that samples of coal well and

poorly susceptible to gasification occupy separate subareas

of the multidimensional space of features. This in turn

allows to state that selected features are sufficient for the

correct differentiation in susceptibility to fluidal gasifica-

tion. Areas occupied by neurons representing different

susceptibility to gasification are separated by a curve in the

figure. This curve does not have any inflection points. This

view was obtained with parameters MAX_DISTANCE = 7

and ITER = 1570. The assumed MAX_DISTANCE

denotes that during the network self-organization, weights

of neurons at the distance of less than 7 from the winner

neuron were changed. The assumed ITER denotes the

number of repetitions of the network self-learning per-

formed for all data vectors. It must be noted that Kohonen

maps self-learning proceeds without any information on

belonging of data vectors to specific classes. In this con-

nection, the way in which neurons are grouped depends

only on some features of these data observed by the

network.

Figure 14 presents the view obtained using Kohonen

maps for data describing samples of coal with a different

degree of susceptibility to fluidal gasification, but with the

omission of the chlorine content effect. It can be seen how

in this case neurons divided data representing a different

degree of susceptibility to gasification between themselves.

Also here, it is visible that neurons representing samples of

coal with the same susceptibility to gasification accumulate

in aggregations. These aggregations can easily be separated

from each other. Based on the use of Kohonen maps, we

can conclude that samples of coal well and poorly sus-

ceptible to gasification occupy separate subareas of the

multidimensional space of features. This in turn allows to

state that selected features are sufficient for the correct

differentiation of susceptibility to fluidal gasification also

with the omission of the chlorine content effect. Areas

occupied by neurons representing different susceptibility to

gasification are separated by a curve in the figure. This

curve also does not have any inflection points. This view

was obtained with parameters MAX_DISTANCE = 4 and

ITER = 820.

6 Discussion

It follows from the analysis presented above that both

autoassociative neural networks and Kohonen maps allowed

to obtain views in which images of samples representing

different susceptibility to fluidal gasification can be sepa-

rated by a curve without inflection points. The equally

readable effect was obtained with the omission of the

chlorine content effect. For comparison, Figs. 15, 16, 17, 18,

19, 20, 21 and 22 present the most readable views which

were obtained during the conducted experiments for the

analyzed seven-dimensional data describing coal samples in

terms of their susceptibility to fluidal gasification using other

visualization methods. Figures 15 and 16 present views

obtained using the perspective-based observational tunnels

method [10, 13, 15]. It can be observed in both figures that

the curve separating areas occupied by samples with dif-

ferent susceptibility to fluidal gasification does not have any

Fig. 14 The view obtained using Kohonen maps with the omission of

a condition concerning the chlorine content. Neurons representing

samples of coal poorly susceptible to gasification are marked with

symbol ?; neurons representing samples of coal well susceptible to

gasification are marked with a circle

Fig. 15 The view obtained using the perspective-based observational

tunnels method. Samples of coal poorly susceptible to gasification are

marked with symbol x; samples of coal well susceptible to

gasification are marked with a circle
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inflection points. It follows that from the perspective of the

assumed criterion, the perspective-based observational

tunnels method provides just as readable views as Kohonen

maps and autoassociative neural networks.

Figures 17 and 18 present views obtained using PCA

[11, 16–20]. In order to obtain these views, the analyzed

data covariance matrix was calculated and eigenvectors of

this matrix (corresponding to two largest eigenvalues in

terms of module) were obtained. The presented views

constitute the orthogonal projection onto these vectors.

Figure 17 shows that the curve separating areas occupied

by samples with different susceptibility to fluidal gasifi-

cation has five inflection points. It follows that from the

Fig. 16 The view obtained using the perspective-based observational

tunnels method with the omission of the chlorine content effect.

Samples of coal poorly susceptible to gasification are marked with

symbol x; samples of coal well susceptible to gasification are marked

with a circle

Fig. 17 The view obtained using the PCA method. Samples of coal

poorly susceptible to gasification are marked with symbol filled

square; samples of coal well susceptible to gasification are marked

with a circle. The curve separating areas has five inflection points

Fig. 18 The view obtained using the PCA method with the omission

of the chlorine content effect. Samples of coal poorly susceptible to

gasification are marked with symbol filled square; samples of coal

well susceptible to gasification are marked with a circle

Fig. 19 The view obtained using multidimensional scaling. Samples

of coal poorly susceptible to gasification are marked with symbol

filled square; samples of coal well susceptible to gasification are

marked with a circle. The curve separating areas has two inflection

points

Fig. 20 The view obtained using multidimensional scaling with the

omission of the chlorine content effect. Samples of coal poorly

susceptible to gasification are marked with symbol filled square;

samples of coal well susceptible to gasification are marked with a

circle
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perspective of the assumed criterion, this view obtained

using PCA is significantly less readable than views

obtained using Kohonen maps and autoassociative neural

networks. However, the curve in Fig. 18 separating areas

with different susceptibility to gasification with the omis-

sion of the chlorine content effect has no inflection points.

That is from the perspective of the assumed criterion, this

view is just as readable as views obtained using Kohonen

maps and autoassociative neural networks.

Figures 19 and 20 present views obtained using multi-

dimensional scaling [12, 21–23]. Figure 19 shows that the

curve separating areas occupied by samples with different

susceptibility to fluidal gasification has two inflection

points. However, the curve in Fig. 20 separating areas with

different susceptibility to gasification with the omission of

the chlorine content effect has no inflection points. It fol-

lows that from the perspective of the assumed criterion, the

first of the views obtained using multidimensional scaling

is significantly less readable and the second one is just as

readable as views obtained using Kohonen maps and

autoassociative neural networks.

Figures 21 and 22 present views obtained using the

relevance maps method [14, 24, 25]. Figure 21 shows that

the curve separating areas occupied by samples with dif-

ferent susceptibility to fluidal gasification has one inflec-

tion point. It follows that from the perspective of the

assumed criterion, this view is less readable than views

obtained using Kohonen maps and autoassociative neural

networks. However, the curve in Fig. 22 separating areas

with different susceptibility to gasification with the omis-

sion of the chlorine content effect has no inflection points.

That is from the perspective of the assumed criterion, this

view is just as readable as views obtained using Kohonen

maps and autoassociative neural networks.

Table 1 presents a summary of the readability of results

of visualization using Kohonen maps and autoassociative

neural networks with methods of PCA, multidimensional

scaling, relevance maps and perspective-based observa-

tional tunnels method. As seen, the smallest sum of

inflection points equal to zero was obtained using Kohonen

maps, autoassociative neural networks and perspective-

based observational tunnels method. It follows that from

the perspective of the assumed criterion these three meth-

ods from the tested methods allowed to obtain the most

readable views, and in this way they simultaneously

occupy the first position. The next were, according to the

readability, relevance maps, multidimensional scaling and

finally PCA. It should be noted that the above comparison

of methods concerns solely the readability of views of real

seven-dimensional data describing coal samples in terms of

their susceptibility to fluidal gasification and the same data

with the omission of the chlorine content effect. On the

basis of the obtained results, it can also be stated that data

with the omission of the chlorine content effect are sig-

nificantly easier to analyze. This results from the fact that

in the case of these data all of the analyzed methods

obtained results in which the curve separating areas with

Fig. 21 The view obtained using relevance maps. Samples of coal

poorly susceptible to gasification are marked with symbol filled

square; samples of coal well susceptible to gasification are marked

with a circle. A digit with value i means a reference point representing

the ith coordinate. The curve separating areas has one inflection point

Fig. 22 The view obtained using relevance maps with the omission of

the chlorine content effect. Samples of coal poorly susceptible to

gasification are marked with symbol filled square; samples of coal

well susceptible to gasification are marked with a circle. A digit with

value i means a reference point representing the ith coordinate
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different susceptibility to gasification has no inflection

points.

7 Conclusions

As a result of the conducted experiments, the qualitative

analysis of seven-dimensional real data describing coal

samples in terms of their susceptibility to fluidal gasifica-

tion allowed to indicate:

1. In the case of autoassociative neural networks, the

most readable views were obtained with the neural

network consisting of six layers in total. Three layers

were used for changing the seven-dimensional input

space into two outputs of the interlayer used for the

visualization. Then, three layers were used to change

these two outputs into seven network outputs.

2. In the case of Kohonen maps, the most readable views

were obtained with the neural network consisting of 40

rows and 40 columns of neurons, thus of 1600 neurons.

During the analysis of data representing samples with

different susceptibility to fluidal gasification, the most

readable view was obtained with parameter MAX_-

DISTANCE = 7. During the analysis of the same data

with the omission of the chlorine content effect, the

most readable view was obtained with parameter

MAX_DISTANCE = 4.

3. The qualitative analysis using autoassociative neural

networks allowed to indicate that signals being the

response to data representing samples of coal with

different susceptibility to gasification accumulate in

aggregations. These aggregations can easily be sepa-

rated from each other. It can be concluded from this

that samples of coal well and poorly susceptible to

gasification occupy separate subareas of the multidi-

mensional space of features. This in turn allows to state

that selected features are sufficient for the correct

differentiation of susceptibility to fluidal gasification.

4. The qualitative analysis using Kohonen maps allowed

to indicate that neurons representing samples of coal

with different susceptibility to gasification accumulate

in aggregations. These aggregations can easily be

separated from each other. It can be concluded from

this that samples of coal well and poorly susceptible to

gasification occupy separate subareas of the multidi-

mensional space of features. This in turn allows to state

that selected features are sufficient for the correct

differentiation of susceptibility to fluidal gasification.

5. Both autoassociative neural networks and Kohonen

maps were allowed to obtain views in which images of

samples representing different susceptibility to fluidal

gasification can be separated by a curve without

inflection points. The equally readable effect was

obtained during the data analysis with the omission of

the chlorine content effect.

6. The smallest sum of inflection points equal to zero was

obtained using Kohonen maps, autoassociative neural

networks and perspective-based observational tunnels

method. It follows that from the perspective of the

assumed criterion these three methods from the tested

methods allowed to obtain together the most readable

views. The next were, according to the readability,

relevance maps, multidimensional scaling and finally

PCA.
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