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Abstract
With growing demand on resources situated at the cloud datacenters, the need for customers’ resource selection techniques

becomes paramount in dealing with the concerns of resource inefficiency. Techniques such as metaheuristics are promising

than the heuristics, most especially when handling large scheduling request. However, addressing certain limitations

attributed to the metaheuristic such as slow convergence speed and imbalance between its local and global search could

enable it become even more promising for customers service selection. In this work, we propose a cloud customers service

selection scheme called Dynamic Multi-Objective Orthogonal Taguchi-Cat (DMOOTC). In the proposed scheme,

avoidance of local entrapment is achieved by not only increasing its convergence speed, but balancing between its local

and global search through the incorporation of Taguchi orthogonal approach. To enable the scheme to meet customers’

expectations, Pareto dominant strategy is incorporated providing better options for customers in selecting their service

preferences. The implementation of our proposed scheme with that of the benchmarked schemes is carried out on

CloudSim simulator tool. With two scheduling scenarios under consideration, simulation results show for the first scenario,

our proposed DMOOTC scheme provides better service choices with minimum total execution time and cost (with up to

42.87%, 35.47%, 25.49% and 38.62%, 35.32%, 25.56% reduction) and achieves 21.64%, 18.97% and 13.19% improve-

ment for the second scenario in terms of execution time compared to that of the benchmarked schemes. Similarly,

statistical results based on 95% confidence interval for the whole scheduling scheme also show that our proposed

scheme can be much more reliable than the benchmarked scheme. This is an indication that the proposed DMOOTC can

meet customers’ expectations while providing guaranteed performance of the whole cloud computing environment.
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1 Introduction

Cloud computing is a platform of choice providing dis-

tributed resources (e.g., virtual machine, storage and

bandwidth) to meet increasing demand of customers. The

environment provides cost-effective solution for running

business applications through virtualized technologies

[1–4]. Services that are made available by cloud environ-

ment are affordable using the concept of pay-per-use (PPU)

pricing models. Three types of service model are associated

with the cloud computing environment: Software as a

Service (SaaS), Platform as a Service (PaaS) and Infras-

tructure as a Service (IaaS) [5]. The cloud customers usu-

ally interact remotely with the SaaS layer to run their

applications (e.g., datacenter) [5]. The SaaS layer thus

functions with the support of PaaS layer. The PaaS layer

provides interactive mechanisms between cloud customers

and service providers. The PaaS thus allows cost-efficient

development and deployment of applications [7, 8]. With

the provision of numerous advantages (e.g., deployment of

PPU pricing model, maintaining application having the

same integrated environment) by the PaaS layer, the cloud

customers can now have the means of using same inte-

grated software application development environment

[9, 10]. On the other hand, the IaaS layer is responsible for

providing services to the cloud customers in terms of the

infrastructures. The cloud customers have no control over

managing the infrastructures; rather, they only utilize the

available resources situated at the IaaS layer through ser-

vice request [6]. In another development, the IaaS provides

pool of resources of varied types which are leased

according to customers’ request. This paper provides cus-

tomers with techniques for optimal mapping of their choice

of resources at the IaaS layer to meet their computation

need [7, 11, 12].

At the IaaS layer, virtual machines are heterogeneous.

Some requests are said to have a very high demand for

virtual machines, while others require more storage

[13, 14]. In most instances, the customers demand resour-

ces that have minimum costs of execution. Virtual

machines with high processing speed usually incur high

processing cost [15–18]. In Amazon EC2 for instance, a

cloud customer has the privilege of accessing and con-

trolling set of virtual machines that run inside the data-

center of the service provider, while being charged for a

specific time the virtual machine has been allocated. At this

instance, the customer satisfaction is measured based on

the Quality of Service (QoS) (e.g., execution time, cost and

storage) he/or she experiences [19, 20]. To provide cus-

tomers of cloud computing resources with better options of

selecting their resource preferences, there is need for an

optimal resource scheme [15, 16, 21, 22]. In recent

development, high-level research conducted in cloud

computing task and resource scheduling focuses on time

and cost models. These models capture customers’ QoS

experience, where techniques of metaheuristic are exploi-

ted in their evaluations. Although the metaheuristic tech-

niques are attributed with certain limitations (e.g., local and

global imbalance, local optimality) [14, 23], they have

been proven to be more efficient in reducing the com-

plexity of a task scheduling problem when finding an

optimum or near-optimal solution [14, 24, 25]. Several

researchers [26–31] also focus on investigating relationship

between local optimality and slow convergence and prof-

fered solutions to addressing these concerns.

The conventional cat swarm optimization (CSO) is a

metaheuristic optimization technique put forward by Chu

and Tsai in 2007. This technique mimics the behavior of

natural cat and has relatively proven better in terms of

convergence speed than the particle swarm optimization

(PSO) [32]. It has both the global and local search (also

known as the seeking and tracing mode) and a control

variable called the mixed ratio (MR) that determine whe-

ther the current position at which the cat is standing is in

either seeking or tracing mode. As attributed to most

metaheuristic techniques, the CSO suffers slow conver-

gence speed that can lead to its entrapment at the local

optima, and global and local imbalance causing instability

of the solution. Orthogonal Taguchi approach is a greedy-

based technique that when applied can increase the con-

vergence speed of the CSO to avoid being trapped at the

local optima [13, 20]. In this paper, we proposed Dynamic

Multi-Objective Orthogonal Taguchi-Cat (DMOOTC)

scheme. In the proposed scheme, we exploit advantages of

the orthogonal Taguchi approach to avoid the DMOOTC

from being entrapped at the local optima. To provide

customers with choices of service preferences, we incor-

porated the Pareto dominance strategy in the proposed

DMOOTC scheme. The simulation results show that our

proposed DMOOTC scheme can provide customers with

better service choices compared to the benchmarked

schemes.

The contribution of this paper is as follows:

• Development of a multi-objective task scheduling

model for cost and computation time.

• An improvement is proposed to the CSO algorithm

using the orthogonal Taguchi approach and Pareto

dominance.

• Development of a DMOOTC scheme to solve the multi-

objective task scheduling model.

The rest of this article is organized as follows: Review

on related work is discussed in Sect. 2. Section 3 discusses

the CSO technique. Orthogonal Taguchi approach is dis-

cussed in Sect. 4. Section 5 provides discussion on Pareto
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dominance strategy. The proposed models are discussed in

Sect. 6. Section 7 discusses the proposed DMOOTC

scheme. Discussion on simulation results is provided in

Sect. 8. Section 9 discusses the performance metrics used

in the evaluation of the schemes. Discussion on the simu-

lation results is provided in Sect. 10. Section 11 provides

discussion on the statistical results, and finally, Sect. 12

concludes the paper.

2 Related works

Task scheduling is one of the most research areas in cloud

computing. Researchers have shown that scheduling

strategies such as heuristic and metaheuristic can be

promising when applied to deal with scheduling problems

in cloud datacenters. Metaheuristics such as particle swarm

optimization (PSO), genetic algorithm (GA), ant colony

optimization (ACO) and cat swarm optimization (CSO) are

few examples of metaheuristic techniques that can handle

large scheduling problems. Their improvement with tra-

jectory-based (e.g., simulated annealing (SA)) and greedy-

based techniques such as the orthogonal Taguchi approa-

ches can further improve their performances toward pro-

viding more efficient solutions [33–35]. Few among

researchers that exploit these advantages are discussed in

the following:

In Wei et al. [36], a Compounded Local Mobile Cloud

Architecture (LMCpri) with dynamic priority queue is

proposed to solve a multi-objective scheduling problem. In

their proposed approach, a priority-based positioning

technique based on auction processing is incorporated to

store jobs upon arrival from the cloud customers. Then, a

Non-Static Genetic Algorithm II (NSGA-II) is introduced

for scheduling tasks on resources to achieve minimum

processing time and decrease the request cost. According to

the researchers, simulation results show their proposed

algorithm can provide better performance than PSO and

sequential scheduling algorithms in terms of minimum

total execution time and cost. However, improvement in

their proposed method is still possible since mutation

process exhibited by the GA can lead to local trapping due

to slow convergence speed. In another development, Liu

et al. [37] proposed a Single Site Virtual Machine Provi-

sioning (SSVP) approach and ActGreedy to minimize task

execution time and monetary cost. In their proposed

approach, a single-site initialization module is used to

ensure virtual machine provisioning and multisite data

transfer. At the instance of task execution, a virtual

machine is not allowed to restart for the execution of any

continuous activities on the site due to the fact that they are

grouped and scheduled as a fragment. According to the

researchers, simulation results show their developed SSVP

can generate better VM-provisioning plan for customers to

achieve minimum task execution time and monetary cost

compared to the benchmarked techniques.

In Zuo et al. [14], a Multi-Objective Ant Colony Opti-

mization (MOACO) algorithm is proposed. Their objective

is to minimize the makespan time and budgetary cost. A

cost model that reflects the relationship between cus-

tomers’ resource and budgetary cost is introduced in

evaluating the efficiency of their proposed algorithms.

According to the researchers, simulation results show their

proposed algorithm has achieved minimum execution cost

compared to that of the benchmarked algorithms. However,

the updating process of pheromone exhibited by the ants

along the path can lead to local trapping. Duan et al. [38] in

their part proposed a communication and storage-aware

multi-objective task scheduling algorithm, which is based

on sequential cooperative game. Their goal is to optimize

the execution time and economic cost. In their proposed

approach, the individual players are considered behaving

selfishly. The global knowledge of all players is computed

by ordering each customer’s task in decreasing order. The

simulation results show their proposed algorithm can

achieve better solution in terms of makespan, cost, system-

level efficiency and fairness in less execution time com-

pared to Grid-Min–Min, Grid-Max–Min and Grid-

Suffrage.

In Verma and Kaushal [39], a Hybrid Particle Swarm

Optimization (HPSO) algorithm is proposed. Their objec-

tive is to provide resources that can guarantee customers

with minimum execution time and processing cost under

deadline and budget constraint. In their studies, trade-off

values are adopted to provide customers with the choices of

selecting their service preferences. According to the

researchers, simulation results shows their proposed HPSO

scheduling approach can reduce execution time and exe-

cution cost as compared to the Non-Static Genetic Algo-

rithm II (NSGA-II), Multi-Objective Particle Swarm

Optimization (MOPSO) and e-Fuzzy Dominance sort-

based Discrete Particle Swarm Optimization (e-FDPSO)

scheduling algorithm. However, the global optimization

process exhibited by the PSO may not always guarantee the

required optimum solution. Panda and Jana [34] in their

part proposed a Multi-Objective Task Scheduling (MOTS)

optimization algorithm for heterogeneous multi-cloud

environment. Their goal is to minimize both makespan

time and total execution cost. In their method, two phases

of task scheduling processes were adopted. The first phase

goes through normalization process to scale values

between 0 and 1. In the second phase, the normalization

process is performed by dividing the Expected Time to

Compute (ETC) matrix and cost matrix element into their

corresponding maximum values. As put forward by the

researchers, simulation results show their proposed method
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has outperformed the two benchmarked algorithms in

achieving minimum execution time, minimum total cost of

execution and improves the average cloud utilization.

Ramezani et al. [15] introduced a Multi-Objective Particle

Swarm Optimization (MOPSO) algorithm to provide cus-

tomers with better service choices to deal with the chal-

lenges of high computation time and cloud performance.

As stated by the researchers, their simulation results show

they can achieve an optimal solution in a reasonable

amount of time. However, incorporating a novel technique

can further improve their solution in terms of generating

trade-offs for consumers’ service preferences during task

scheduling.

Gabi et al. [33] put forward an Orthogonal Taguchi-

Based Cat Swarm Optimization (OTB-CSO) algorithm to

improve the performance of cloud environment. The

researchers exploited the advantages of Taguchi method to

achieve task mapping on appropriate virtual machines. The

simulation results according to the researchers show their

proposed algorithm can reduce makespan compared to

Min–Max, Hybrid Particle Swarm Optimization with

Simulated Annealing (HPSO-SA) and Particle Swarm

Optimization with Linear Descending Inertia Weight

(PSO-LDIW). However, the improvement in their OTB-

CSO to handle a multi-objective optimization problem is

required to meet customers’ expectation. Liu et al. [40]

dwelt on Improved Min–Min algorithm for cloud com-

puting environment. Their objective is to achieve QoS,

dynamic priority model and minimum cost of service

delivery to customers. In their scheduling process, static

priority rule and dynamic changing factors are used for

providing the scheduling of higher priority tasks first. The

results of their simulation as indicated by the researchers

show their proposed algorithm can increase resource uti-

lization, ensure longer task is executed at reasonable time

and meet customers’ QoS requirement compared to the

benchmarked algorithm. In another development, Beegom

and Rajasree [41] in their part put forward a new variant of

continuous Particle Swarm Optimization (PSO) algorithm

called the Integer-PSO. The Integer-PSO adopts Pareto

optimality using a weighted sum approach. Their goal is to

minimize the makespan and execution cost. In their

scheduling process, a model as a constraint biobjective

optimization for the makespan and cost is developed. The

efficiency of their proposed algorithm is tested using the

developed model. Simulation results as shown by the

researchers indicate that their proposed Integer-PSO has

outperformed the Smallest Position Value (SPV) rule-

based PSO technique in terms of achieving minimum

makespan and execution cost.

To ensure effective scheduling on heterogeneous virtual

machines and reduce task execution time, Akbari and

Rashidi [42] proposed a Multi-Objective Scheduling

Cuckoo Optimization Algorithm (MOSCOA). In their

proposed approach, each cuckoo is used as a scheduling

solution. As tasks are placed in order of their arrivals, the

cuckoo technique in turn does the mapping to the most

appropriate virtual machines as it enables the movement of

tasks toward the global optima region using a target

immigration operator. The technique was later evaluated

using large number of random graphs and real-world

application. The simulation results show their proposed

MOSCOA algorithm is much more superior in terms of

performance compared to their previously proposed task

scheduling algorithm. Voicu et al. [43] introduced Multi-

Objective and Multi-Constrained (MOMC) task scheduling

algorithm for scheduling tasks in Hadoop system. Their

objective is to minimize deadline and budget. The simu-

lation results according to the researchers show their pro-

posed MOMC method can provide better performance in

Hadoop system.

In Bilgaiyan et al. [44], a Multi-Objective Cat Swarm

Optimization (MOCSO) algorithm is proposed. Their goal

is to improve the performance of cloud environment in

terms of minimum execution cost, makespan and CPU idle

time. In their task scheduling process using the proposed

MOCSO, a control variable known as the mixed ratio is

used to decide the best virtual machines to assign tasks.

The experimental results according to the researchers show

their proposed MOCSO algorithm can achieve minimum

execution cost, makespan time and CPU idle time than

Multi-Objective Particle Swarm Optimization. On the other

hand, Xu et al. [45] in their part proposed a Multi-Objec-

tive Genetic Optimization Algorithm (MOGA). Their goal

is to minimize the average completion time, total com-

pletion time and ensure load balancing on virtual machines.

In their scheduling process, large tasks are divided into

multiple sub-tasks using the chromosomes encoding. Each

chromosome length signifies length of the sub-tasks with

smaller tasks mapped on virtual machines. To determine

the performance of their proposed MOGA, three different

fitness functions models were designed to evaluate the

fitness of each chromosome according to their objectives.

The simulation results presented by the researchers show

their proposed MOGA can achieve the minimized average

completion time, total completion time and ensure load

balancing on virtual machines with faster convergence than

the benchmarked single-objective genetic algorithms. In

their part, Milani and Navin [46] proposed a multi-objec-

tive scheduling algorithm based on PSO technique. Their

objective is to minimize the total execution time, average

waiting time and number of missed tasks. The researchers

exploit the PSO technique to propose a scheduling

approach that can allocate tasks on the best virtual

machines. To investigate how efficient is their solution, a

fitness function model is developed. The experimental
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results as put forward by the researchers show their pro-

posed algorithm can achieve minimum execution time,

waiting time and missed tasks compared to First Come

First Served (FCFS), Shortest Process Next (SPN) and

Highest Response Ratio Next (HRRN).

Jena [47] proposed a multi-objective Two-State PSO

(TSPSO) algorithm. Their aim is to reduce the energy

consumption and makespan at the cloud datacenters. In

their scheduling method, selection of best virtual machine

is introduced using the nondominance strategies. As the

tasks are scheduled across virtual machines, the two-stage

PSO generates two fitness functions and are compared to

determine the solution that is nondominant. The nondom-

inant solution is then chosen to represent the optimum

solution of the task scheduling process. According to the

researchers, the simulation results show their proposed

TSPSO algorithm can minimize the energy and makespan

compared to Best Resource Selection (BRS) and Random

Scheduling Algorithm (RSA). In Khajehvand et al. [48],

the researchers introduced a hybrid First-Fit Cost-Time

Trade-Off (FCTT) and Workflow Planning Cost-Based

(WPC) model to minimize the runtime and execution cost

of scheduled tasks on virtual machines. In their scheduling

process, large task is divided into sub-tasks which are

sorted in nonincreasing manner. In their proposed algo-

rithms, a bottom-up traversal technique is later incorpo-

rated to assign each sub-task a rank. The child sub-tasks are

first allocated virtual machines for their execution. The

parent tasks are later executed only when the child tasks

completed their execution on the virtual machines.

According to the researchers, their simulation results show

the proposed FCTT can reduce task runtime and execution

cost compared to MOGA and Best Effort (BE) algorithms.

However, task updates method exhibited by their proposed

WPC technique can lead to longer execution time since the

performance of the algorithm depends on its update

process.

Form the literature reviewed so far, high complexity,

slow convergence and imbalance between global and local

search are some of the drawbacks of the metaheuristic

techniques. Although the metaheuristics are promising than

the heuristic techniques, their improvements using a tra-

jectory-based technique like the simulated annealing as

well as the greedy-based techniques like the orthogonal

Taguchi approach can enable the metaheuristics to become

a potential solution in solving a multi-objective task

scheduling problem in cloud computing environment.

Therefore, this paper addresses the concern of customers

service selection strategy using an improved metaheuristic

algorithm to meet customers’ QoS expectations with a

focus on multi-objective task scheduling.

3 Cat swarm optimization

Chu and Tsai [32] proposed the CSO technique. The

technique mimics the common behavior of natural cat. The

CSO technique has two modes of operation: resting

(seeking) and chasing (tracing) mode. The two modes are

also referred to as the global and local search. A control

factor within CSO known as the mixed ratio (MR) is used

to determine the current position of the cat. The cat posi-

tion also signifies solution (fitness) set. The velocity of the

cat is associated with a dimension and a fitness value. As

the cat progresses closer to the solution (fitness), it updates

itself each time with better results at the memory until all

the cats achieve the best solution (fitness) [20, 32, 49]. The

following sections explain the seeking and tracing modes

[20, 49, 50].

3.1 Seeking mode

The seeking mode is known as the global search process of

the CSO technique [50]. Algorithm 1 shows the pseu-

docode for the seeking mode [49, 50].

3.2 Tracing mode

The tracing mode corresponds to the local search process

of the CSO. The pseudocode for the tracing mode is shown

in Algorithm 2 [20, 49, 50].
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3.3 The need for cat swarm optimization
improvement

To provide efficient scheduling in cloud datacenters with

the goal of meeting customers’ expectations, the CSO then

needs to be improved. However, global search of the CSO

does not always assure superior solutions when the search

space increases. The number of cats that always move into

the global search mode of the CSO always exceeds that of

the local search. Thus, its convergence toward a stable so-

lution becomes difficult, leading to its entrapment at the

local optima [32]. On the other hand, for each iteration, the

global and local search modes exhibited by the CSO are

independently carried out. These also cause its velocity and

position update to perform similar process. This can lead to

high computation time during task scheduling on cloud

computing environment. In another concern, the CSO can

only handle a single-objective optimization problem.

Imbalance between global and local search of the CSO

becomes another challenge. Hence, there is a need for

improving CSO to make it efficient for service provision-

ing in cloud computing [33].

4 Taguchi orthogonal array

Taguchi method is a greedy approach put forward by

Genichi Taguchi [51]. The Taguchi method uses an

orthogonal array (OA) matrix representation for its exper-

iment. It involves the study of a large number of design

variables to achieve efficient results using few numbers of

simulation runs [52]. According to Taguchi, for any two-

level orthogonal array (2OA) with Z factors where Z rep-

resents the number of designed factors, each factor will be

based on two levels. Taguchi formulated a general symbol

shown in Eq. (3) for the establishment of an OA with n

levels of Z factors [53, 54]:

Ln 2n�1
� �

; ð3Þ

where n� 1 represents the number of columns in two-level

orthogonal array; n = 2k is the number of experiments

corresponding to the n rows and columns; 2 represents the

number of levels required for each factor Z; and k is a

positive integer k[ 1ð Þ: The matrix in Table 1 shows the

values in the column are mutually orthogonal. According to

Taguchi, for any pair of columns, the combinations of all

factors at each level occur at an equal number of times. As

described in [45], to allocate six factors each with two

levels ‘‘L8 26
� �

,’’ only six columns are needed for the run of

the experiment. Hence, L8 27ð Þ orthogonal seems sufficient,

since there are seven columns. The L8 is an indication that

eight experimental runs will be conducted by studying

seven variables at two levels. The value ‘‘7’’ represents the

dimension of the problem. The main objective of adopting

the Taguchi approach is to find an optimal solution in a

reasonable amount of time [51, 55]. Detail about the

Taguchi method can be found in [33].

Here, the value 1 at each column represents the first set

of factors to be considered for the experiment, while the

value 2 represents the second set of experiments.

Table 1 L8 27ð Þ OA [27]

Experiment number Factors

A B C D E F G

Column numbers

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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4.1 The Taguchi optimization algorithm

The Taguchi method can serve as a better approach in

reducing the execution time of a task when used for solving

task scheduling problem in cloud computing. In cloud task

scheduling, the total cost of execution is mostly influenced

by amount of time tasks are executed on a virtual machine.

Hence, incorporation of Taguchi optimization algorithm

into a conventional CSO can be a potential solution to

achieve the desired results. The pseudocode for the Tagu-

chi optimization algorithm is shown in Algorithm 3

[54, 55].

5 Pareto dominance strategy

For any task scheduling, the chances of locating an optimal

solution that can meet customers’ expectations in terms of

minimum execution time and cost are becoming harder in a

large search space like the cloud computing environment

[56]. Due to multi-criteria requirements associated with

customers’ request, the concept of optimality needs to be

achieved. Multi-objective optimization approach is a

potential solution to solving this kind of problem. It is

characterized with trade-off factors, where each trade-off

solution corresponds to a specific order of importance of

the objectives [18]. Currently, the Pareto optimization

strategy is the most widely adopted strategy for solving

several multi-objective problems. Individual objectives can

be combined using Pareto dominance strategy to achieve

their Pareto front [50]. The Pareto optimal solution that

represented best possible among these objectives without

worsening another objective is chosen as the best candidate

solution [24, 39, 53].

Task scheduling to meet the expectation of customers

involves dealing with multi-objective problems. The Pareto

optimization approach can be adopted to provide customers

as many nondominant solutions as possible by allowing a

set of trade-offs in terms of execution time and execution

cost [37, 57]. Although study shows that the actual cus-

tomers’ service preferences are quite difficult to predict,

the cloud customers’ attention can be drawn to the trade-off

points P* known as the Pareto front, where customers are

allowed to select their service preferences in terms of vir-

tual machines that can provide them with the minimum

execution time and cost [48, 58]. At this instance, the

customers are left to optimize their service preferences by

selecting the best trade-offs [57, 58]. The main goal of this

research is to make sure that the Pareto optimal set is

discovered in a minimum amount of time for all the tasks

scheduled on virtual machines using our proposed tech-

nique. This study is based on the following definitions in

solving the multi-objective task scheduling problem.

Definition 1.1 Multi-objective Optimization problem.

A typical multi-objective optimization problem can be

expressed as a minimization of a K components of a vector

function fi in the form [15, 49]:

Min f
!

x!
� �

¼ f1 x!
� �

; f2 x!
� �

; f3 x!
� �

; . . .; fk x!
� �� �

; ð4Þ

where x!8 x!¼ x1; . . .;f g represents the vector of decision

variable such that fi : R
n ! R; i ¼ 1; 2; . . .; kf g are the

objective functions in a universe U. f
!

x!
� �

is the multi-

objective function.

Definition 1.2 Pareto Dominance

In Pareto dominance, two different participants can be

judged on how good they are in terms of their perfor-

mances. Given two candidate solutions x1
! and x2

! from U;

vector x1
! is said to dominate vector x2

! (denoted as

x1Þ
�!

� ðx2

�!� �
Þ if and only if:

fið x1Þ
�!

� fi x2
!� �

; 8i 2 1; . . .; kf g ð5Þ

fið x1Þ
�!

\fi x2
!� �

; 9i 2 1; . . .; kf g ð6Þ

Equation (5) shows that x1
! dominates x2

! in all objec-

tives, while Eq. (6) shows x1
! dominates for at least one of

the objectives [7].

Definition 1.3 Pareto Optimal

Neural Computing and Applications (2020) 32:14817–14838 14823

123



If for all means x1
! is not dominated by any other

solution, x1
! is then considered to be the nondominant

(Pareto optimal) solution.

Definition 1.4 Pareto Optimal set

Set of all solutions x1
!2 U correspond to the Pareto

optimal.

Definition 1.5 Pareto Front (P*)

The fitness value of the solution is called trade-off or P*

if and only if Eq. (7) holds. This is the optimal solution of a

multi-objective optimization problem that is comprised of a

set of solutions:

f ð x1Þ
�!

� f x2
!� �

;:9x1
!2 U ð7Þ

where : is true if x1
!2 U; 9 means there exist x1

!2 U; 2
represents an element of U; and U is the universal set.

The framework that describes the scheduling process

using the developed scheme is discussed in the following.

6 The system scheme

Cloud computing consists of several datacenters that are

usually managed by the cloud service providers. For any

cloud, virtual machines are dynamically created and

deployed in datacenters based on task availabilities. These

virtual machines are heterogeneous in nature, having dif-

ferent characteristics in terms of memory and sizes. Our

assumption is that one datacenter is not sufficiently enough

to handle our task scheduling problem. Therefore, two dat-

acenters each with 20 virtual machines are sufficiently

enough for our task scheduling problem. Our proposed

system scheme is illustrated in Fig. 1. The scheme integrates

Pareto optimization strategy for generating a set of trade-

offs in finding the best schedule that can minimize the

execution time and cost. Three modules (customers, Pareto

generator and scheduler) are defined in the proposed

scheme, where each of the modules consists of sub-modules

that carry out the scheduling process. The proposed

scheduling scheme adopts the DMOOTC algorithm to make

the scheduling decisions. The global and local resource

managers within the scheme work together with the sched-

uler to achieve near-optimal solution. In the scheduling

process, customers submit their request based on certain

resource requirements. The task manager is responsible for

estimating the amount of resources to execute the cus-

tomer’s requests. On the other hand, the local resource

manager is responsible for monitoring and managing local

virtual nodes and to obtain information about processing

elements and memory information and bandwidth which are

later submitted to the global manager for subsequent

forwarding to the scheduler. The Pareto generator then

generates a set of trade-offs according to the customer’s

requirement which are presented to the customer to select

his/or her choice. The customer opts for his/or her choice of

service preference (i.e., the best virtual machine), and the

process continues with the scheduler. The DMOOTC task

scheduling algorithm then judges whether available

resource has met requirement of the task in terms of time and

cost. Then, the proposed DMOOTC algorithm dispatches

the customer’s task on the chosen virtual resources. The

main contribution of this work lies in that the proposed

DMOOTC task scheduling algorithm can address uncer-

tainties by allowing customers to realize better performance

to cost and time ratio in cloud computing environment.

6.1 Problem description

The problem is first represented by using a set of inde-

pendent tasks waiting to be scheduled on sequence of

heterogeneous virtual machines. V ¼ vkm� k� 1f g is a set

of virtual machines, where m is the number of virtual

machines. T ¼ tin� i� 1f g represents the tasks’ groups,

and n is the overall number of tasks [37]. Our goal is to

dynamically assign each task ti8i ¼ 1; 2; . . .; nf g as cus-

tomers’ requests on appropriate virtual machines vk8k ¼
1; 2; . . .;mf g in order to determine the timing and execu-

tion cost of the tasks. We assume the following in our

scheduling problem: (1) Two datacenters are used for the

tasks scheduling; (2) the datacenters are said to belong to

the same service provider; (3) tasks are assigned to virtual

machines dynamically where the total number of all pos-

sible schedules is n!ð Þm for the problem with n number of

tasks and m number of virtual machines; (4) preemptive

scheduling allocation is not allowed; and (5) the cost of

using a virtual machine for a time quantum varies from one

to the other. By adopting the Expected Time to Compute

(ETCÞ matrix as shown in Eq. (8), our goal is to dynami-

cally assign each virtual machine vk with the right com-

puting capacity to appropriate customers’ request in order

to find the optimum value of the total execution time and

the total execution cost [34, 53]:

ETC ¼

t1v1 t1v2 : : : t1vk
t2v1 : : : : :
: : : : : :
: : : : : :

tnv1 : : : : tnvk

2

6666666

3

7777777

ð8Þ

6.2 The proposed multi-objective task
scheduling model

Our proposed multi-objective time and cost model is for-

mulated from the problem description. The model reflects
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the relationship between time and cost [14]. A combined

method put forward in [14, 15, 25] was used in the for-

mulation of the multi-objective time–cost model. In our

assumption for the formulation of the time and cost model,

all virtual machines are said to belong to the same service

provider, ignoring the cost of data transfer [39].

6.2.1 Execution time model

Let T ¼ tin� i� 1f g denote the set of tasks and V ¼
vkm� k� 1f g the set of heterogeneous virtual machines.

Assuming ti8i ¼ 1; 2; . . .; nf g is to be scheduled on

vk8k ¼ 1; 2; . . .;mf g, the execution time execk of all tasks

Fig. 1 System model
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processed on a virtual machine is computed using Eq. (9)

[15, 25]. The total execution timeTexek of all tasks ti processed

on all virtual machines vk is computed using Eq. 10 [25]:

execk ¼
Xn

i¼1

xik �
tivk

npek � vkmips
; ð9Þ

Texeck ¼
Xm

k¼1

Xn

i¼1

xik �
tivk

npek � vkmips
ð10Þ

where execk is the execution time of running tasks on one

virtual machine; xik is equal to 1 if task ti is assigned to a

virtual machine, otherwise xik ¼ 0; ti is the task whose

length is given in million instructions (MIs); vkmips is the

virtual machine speed whose unit is given in million

instructions per second (MIPS); and npek is the number of

processing elements of a virtual machine.

6.2.2 Execution cost model

The proposed cost model is a multi-objective task

scheduling model that captures the customers’ QoS

requirement. The model permits charging a customer based

on the amount of time the virtual machine spent executing

his/or her request [35]. The time quantum [37] of a virtual

machine is the smallest discrete unit use by the service

providers to define the cost of a virtual machine in either per

second or on hourly basis. In this study, we assume the cost

of memory and central processing unit (CPU) are all

included in the monetary cost of a virtual machine [25]. For

instance, assume for every one-minute N of using a virtual

machine, the price specified by the service provider is given

as 0.5 dollars per hour. For time quantum in minutes of

using a virtual machine, the execution cost can be computed

as N�0:5
60

dollars [37]. Assuming the cost vkcost of executing

tasks on a virtual machine per hour (/h) is known, Eq. (11)

holds for the execution cost execostk of tasks ti on a virtual

machine per time quantum in second [25, 37]:

execostk ¼
1

3600
� vkcost �

Xn

i¼1

xik �
tivk

npek � Vmipsk

ð11Þ

where vkcost is the monetary cost of a virtual machine per

time quantum in US dollar per hour:

xik ¼
1; if ti is assign on a virtual machine:
0; otherwise

	
ð12Þ

When more than one vk8k ¼ f1; 2; . . .;m } is used by a

service provider to execute many tasks, the total tasks

execution cost TTexecostk by all virtual machine in a data-

center in a datacenter can be computed using Eq. (13):

TTexecostk ¼
1

3600
� vkcost �

Xm

k¼1

Xn

i¼1

xik �
tivk

npek � Vmipsk

ð13Þ

The multi-objective task scheduling mathematical

model can be expressed as follows:

Min F Xð Þ ¼ Texeck Xð Þ; TTexecos tk Xð Þ½ � ð14Þ

subject to
X

k¼1

xik ¼ 1; 8i ¼ 1; 2; . . .; n; xik 2 0; 1f g; 8i; k

Equation (14) is the proposed multi-objective opti-

mization time–cost model that captured customers’ QoS

requirement.

7 The multi-objective scheduling method
based on the proposed DMOOTC scheme

The proposed DMOOTC scheme consists of two phases

(global and local search) that are combined to solve the

multi-objective task scheduling optimization problem. The

following attributes were considered to arrive at an optimal

solution: the tasks number, the number of virtual machines

and other relevant parameters such as count dimension to

change (CDC). Each cat symbolizes the choice of virtual

machine used for the task schedule. This is encoded in

[1 9 n] vector, with n belonging to a number of tasks. We

also assume that each virtual machine in a datacenter has

different cost per time quantum.

Based on expected time to compute (ETC), when tasks

are scheduled on a virtual machine by our proposed

DMOOTC algorithm, it uses two-level orthogonal array

Ln 2n�1ð Þ8n�N þ 1; where N represents task number.

Each task is assigned to a cat (also known as the virtual

machine). Each of the cats has a dimension D, and the models

associated with each cats are based on two objective func-

tions: the total execution time Texeck Xð Þð Þ and total execution

cost ðTTexecostk XÞð Þ. When a cat traverses all tasks, it formed

a feasible solution. Each cat has both position and the velocity

vector. The position of the cat symbolizes the solution attained

by the cat. A mixed ratio (MR) is a control factor that is used to

specify two groups of cats. The cats are moved into either

seeking or tracing mode at random using the value of the MR.

When the cat reaches its desired targets, its fitness value is

computed based on the defined objective function (Texeck and

TTexecostkÞ. This process of assigning tasks to virtual machine

mimics the process of the orthogonal approach. As the

velocity of cat points the cat toward achieving near-optimal

solution, two sets of candidate velocity vectors V~set1k;d
tð Þ and

V~set2k;d
tð Þ are generated as follows:

V~set1k;d
tð Þ ¼ w1 � V~k;d t � 1ð Þ þ ðc1r1 � X~gbsetd t � 1ð Þ�X~k;d t � 1ð Þ

� �

V~set2k;d
tð Þ ¼ w2 � V~k;d t � 1ð Þ þ ðc1r1 � X~ibsetd t � 1ð Þ�X~k;d t � 1ð Þ

� �

(

ð15Þ
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such that:

Vo
�!

k;d tð Þ ¼
V~set1k;d

t � 1ð Þ; if orthogonal array element is ‘‘1’’

V~set2k;d
t � 1ð Þ; otherwise

(

ð16Þ

where Vo
�!

k;d tð Þ represents two candidate velocity sets; d is

dimension of the solution space; X~gbsetd represents the

global best position attained by the cat; X~lbsetd represents

the local best position of the cat; w1;w2 are the controlled

factors; r1 represents uniform random number in the range

of [0, 1]; c1 represents a constant value of the acceleration;

X~k;d represents the position of the cat; and t; is the number

of iterations. To update the velocity, the velocity among

the two velocity sets with the best optimum solution is

selected using the condition in Eq. (17):

V~k;d tð Þ max v; if V~k;d t � 1ð Þ þ Vo
�!

k;d t � 1ð Þ
h i

[maximum velocity;

V~k;d t � 1ð Þ þ Vo
�!

k;d t � 1ð Þ otherwise

(

ð17Þ

where maxv is the maximum velocity attained by the cat;

V~k;d represents the velocity attained by the cat; and

Vo
�!

k;d tð Þ represents the two candidate solutions. A domi-

nant strategy is used to compare the optimum solution and

Fig. 2 Flowchart of the DMOOTC scheduling algorithm
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is stored at the archive where the final velocity that should

formulate the latest velocity is selected. This velocity

returns optimal solution which is used to compute the new

position of the cat as indicated in Eq. (18):

X~k;d tð Þ ¼ X~k;d t � 1ð Þ þ V~k;d t � 1ð Þ: ð18Þ

The quality of solution is evaluated using a fitness

function. Every cat is assessed based on the value of the

fitness function QoS X~
� �

in Eq. (19):

QoS X~
� �

¼
Xm

j¼1

Wjfj Xi
!� �

; 8Xi
!
�Archieve

n o
ð19Þ

where m is the number of objective functions and Wj is the

preference weight for every objective function ðfj Xi
!� �

Þ.
Algorithm 4 provides the pseudocode for the developed

DMOOTC task scheduling algorithm, while Fig. 2 illus-

trates the flowchart of the scheduling algorithm.
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8 Simulation environment

Table 2 shows specifications of the computer system and

utility software that we used in the simulation of our pro-

posed DMOOTC scheme. The proposed DMOOTC

scheme is benchmarked against Multi-Objective Particle

Swarm Optimization (MOPSO) [15], Multi-Objective Ant

Colony Optimization (MOACO) [24] and Min–Min [40]

task scheduling schemes. The selection of properties for the

datacenter host, task and virtual machines is used as in

[2, 15, 40]. The estimated cost of a unit virtual machine

over a time quantum is adopted as used in [24]. This

estimated cost comprises both the computing cost and

memory cost and varies from one to the other depending on

the capacity. The values for the inertia weight and coeffi-

cient factors ðc1c2Þ for MOACO, MOPSO and DMOOTC

were specified as used in [59]. Table 3 shows properties of

the datacenters, tasks and virtual machines, while Table 4

indicates the parameter settings for the scheduling

algorithms.

9 Performance metrics

This study considers four performance metrics to evaluate

the efficiency of the developed scheme which are discussed

in the following:

9.1 Execution time

The time a task spent executing on a computing resource

(i.e., virtual machine) is significant to cloud customers. To

measure the performance of our proposed DMOOTC

scheme, the model in Eq. (10) is used.

Table 2 Computer and utility

software specifications
Windows specifications Software

Intel� CoreTM i5-5200U CPU @ 3.60 GHz 3.60 GHz Eclipse-java-luna-SR2-win32-x86-64

Window 10 (64-bit), x64-based processor CloudSim 3.0.3 [41, 54, 55]

4 GB DDR3L RAM

1000 GB(1 TB) SATA-3G HDD

Intel� CoreTM i5-5200U CPU @ 3.60 GHz 3.60 GHz

Table 3 Configured properties

for the cloud datacenter
Parameter Values

Datacenter No. of datacenters 2

No. of hosts in a datacenter 1

Host RAM 2 GB

Storage ITB

Bandwidths 10 GB/s

Accumulated host processing power 1,000,000 MIPS

Tasks No. of tasks [20–100]

Lengths [100, 1000] Mis

File size [200, 400] MB

Output size [300]

Number of CPUs [1–4]

Virtual machine Virtual machine ID [1–20]

Virtual machines monitor Xen

Accumulated RAM 0.5 GB

Accumulated storage 10 GB

Bandwidth 1 GB/s

Virtual machine processing power 1000–10000 MIPS

Number of processing elements 1 to 4

Virtual machine policy Time-shared

Cost per unit of virtual machine 0.17$ - 1.25$/hour

Cost of using memory 0.05$/hour
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9.2 Execution cost

The cost of a service is that a customer paid for the cloud

services he/she has consumed [14, 40]. This is derived

from the execution cost. In our study, all virtual machines

adopted are heterogeneous with varying cost specification

per time quantum. Therefore, virtual machines with high

speed are said to return high execution cost. Our aim is to

provide customers with better choice of virtual machines

that will minimize the execution cost using the model

developed in Eq. (13).

9.3 Performance improvement rate

The performance improvement rate (PIR) is computed in

percentage using Eq. (20). It helps to investigate the effi-

ciency of our proposed DMOOTC scheme toward

achieving better performance compared to the bench-

marked schemes [2, 22]:

PIR %ð Þ

¼ Execution time other schemeð Þ � Execution tim DMOOTCð ÞÞ
Execution time other schemeð Þ


 �
� 100

ð20Þ

9.4 Quality of Service

The Quality of Service (QoS) represents the fitness of the

proposed DMOOTC scheduling scheme based on any

combined objective factors. It is used to reveal the quality

of standard provided to the customers. The developed

algorithm is designed to achieve better QoS [40]. When the

execution time and execution cost values are small, QoS

value must be higher. In this study, Eq. (19) is adopted in

the evaluation of the QoS of the four scheduling schemes

[15, 60].

10 Simulation results and discussion

Two task scheduling scenarios are considered in our

experiments. The simulation results are elaborated in these

sections. For the first scenario, task instances from 20 to

100 were used with 20 heterogeneous virtual machines,

while for the second scenario, High Performance Com-

puting (HPC2N) Net log [61] containing 527, 371 task

instances was used. The properties for the datacenters, host

and virtual machine settings are similar in configuration to

those of the first scenario but vary in terms of the task sizes.

10.1 First scenario

For the first scenario, ten independent simulation runs were

conducted in revealing the efficiency of our proposed

DMOOTC scheme. Tables 5, 6 and 7 show the average

value of the simulation runs obtained in terms of execution

time and execution cost. Table 5 shows that the Min–Min

scheduling scheme was able to achieve better results in the

task scheduling interval from 20 to 50. As the scheduling

intervals increase over time (see 70 to 100 tasks), perfor-

mance of the Min–Min decreases to an unprecedented

level. On the other hand, the MOACO scheme thus per-

forms better in the task scheduling interval from 20 to 40.

Its performances also degrades with an increase in task

sizes above 40. Weakness in performance recorded by the

MOACO scheme is probably caused by the traversing

process of the ant colony approach, which usually leads to

its entrapment at the local optimal region during the search

process. An improvement over MOACO scheme is seen in

MOPSO task scheduling scheme. The MOPSO achieves

better performance in terms of both the execution time and

execution cost under the scheduling interval of 50 to 100

compared to MOACO and Min–Min scheduling schemes.

The performance shown by our proposed DMOOTC

scheduling scheme is quite remarkable compared to Min–

Min, MOACO and MOPSO schemes. Quality-of-Service

expectations of customers are paramount to a service

Table 4 Parameter settings for the scheduling schemes

Algorithm Parameter Value

MOPSO Particle size 100

Self-recognition coefficients ðc1c2Þ 2.0

Uniform random number ðR1Þ [0,1]

Maximum iteration 1000

Inertia weight Wð Þ 90–40%

Mixed ratio 2%

Cat size 100

DMOOTC Count dimension to change 5%

Cat size 100

Self-recognition coefficients ðc1Þ 2.0

Uniform random number R1ð Þ [0,1]

Maximum iteration 1000

Inertia weight Wð Þ 90–40%

Mixed ratio 2%

MOACO Pheromone persistence a 0.3

Importance of pheromone (c) 1

Importance of resource innate attribute (b) 1

Pheromone evaporation value (q) 0.3

Iteration number 1000

Number of ant m 100
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provider for continuous demand of its services. A service

provider is expected to meet each customer’s expectations

within the service-level agreement. In Tables 6 and 7,

results of the QoS based on the four scheduling schemes

are shown. The weighted factors - 0.5 and - 0.9 are

introduced to serve as a control parameter for customers’

service selection in terms of virtual machine types to

guarantee minimum execution time and execution cost.

Upon successful simulation runs, the total QoS by Min–

Min, MOACO, MOPSO, and that of the proposed

DMOOTC schemes are - 2792.41, - 2497.66, - 2076.19

and - 1586.55. Comparisons show that the proposed

DMOOTC scheme has returned the highest QoS value of

-1586.55 in contrast to those obtained by the Min–Min,

MOACO and MOPSO scheduling schemes. In Table 8

precisely, the total values for the execution time, execution

cost and QoS obtained are reported to provide insight on

the performance of the proposed schemes. We further show

how significant our proposed DMOOTC scheme in terms

of percentage improvement rate as indicated in Table 9. In

the overall performance, the proposed DMOOTC

scheduling scheme is able to achieve minimum execution

time with 42.87%, 35.47% and 25.49% improvement

compared to that of the Min–Min, MOACO and MOPSO

task scheduling schemes. In a similar development,

DMOOTC scheme is also able achieve 38.62%, 35.32%

and 25.56% improvement compared to the benchmarked

schemes. Figures 3 and 4 show the trend of the perfor-

mances of the scheduling schemes. From the trend

Table 5 Results of the execution time and cost for the scheduling schemes

Task Improved Min–Min MOACO MOPSO DMOOTC

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

20 21.46 4.72 27.54 6.05 26.86 5.90 25.40 5.47

30 39.16 8.61 56.32 12.39 70.29 15.45 53.58 11.78

40 60.44 13.29 87.56 19.26 92.29 20.59 53.92 11.86

50 66.62 14.65 163.49 35.96 147.28 32.40 129.19 28.42

60 209.82 46.15 243.89 53.65 206.50 45.43 162.77 35.80

70 318.81 70.13 312.78 68.10 287.21 63.18 240.12 52.82

80 505.02 111.10 407.54 89.65 334.99 73.69 312.28 68.70

90 768.78 169.13 674.89 148.47 538.09 118.37 331.62 72.94

100 1096.40 241.21 754.90 166.07 663.34 145.93 454.52 99.98

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-Objective

Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective Orthogonal Taguchi-Cat Algorithm, hr hour

Table 6 Comparison of estimated QoS with cost–time weighted

factor = -0.5

Task Improved Min–Min MOACO MOPSO DMOOTC

20 - 10.72 - 13.79 - 13.43 - 12.52

30 - 19.57 - 28.25 - 35.14 - 26.78

40 - 30.22 - 44.01 - 46.80 - 26.96

50 - 33.31 - 82.56 - 73.64 - 64.59

60 - 104.91 - 123.76 - 103.25 - 81.39

70 - 159.53 - 159.34 - 143.61 - 120.06

80 - 252.52 - 208.84 - 269.09 - 156.13

90 - 468.95 - 351.34 - 347.71 - 162.82

100 - 548.25 - 394.86 - 331.68 - 212.10

Improved Min–Min Improved Minimum Job First Algorithm,

MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-

Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-

Objective Orthogonal Taguchi-Cat Algorithm

Table 7 Comparison of estimated QoS with time–cost weighted

factors = -0.5 and - 0.9

Task Improved Min–Min MOACO MOPSO DMOOTC

20 - 19.31 - 24.80 - 24.17 - 22.54

30 - 35.24 - 50.78 - 63.26 - 48.22

40 - 54.40 - 79.03 - 84.25 - 48.53

50 - 59.96 - 147.95 - 132.55 - 116.27

60 - 188.85 - 220.71 - 185.86 - 146.27

70 - 286.94 - 284.40 - 258.49 - 216.11

80 - 450.93 - 371.86 - 246.30 - 281.06

90 - 709.96 - 621.31 - 484.29 - 298.47

100 - 986.82 - 696.82 - 597.02 - 409.08

Improved Min–Min Improved Minimum Job First Algorithm,

MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-

Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-

Objective Orthogonal Taguchi-Cat Algorithm
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illustrated in these figures, it has shown that our proposed

DMOOTC scheme has the ability to provide customers

with the best services in terms of virtual machines that can

guarantee them with the minimum execution time and

execution cost compared to the benchmarked schemes.

The achievements displayed by our customers service

selection scheme are as a result of the incorporation of

orthogonal Taguchi at its local search procedure which

helps the scheme in traversing all cats (virtual machines),

and the use of Pareto dominance strategy provides the best

optimum solutions of the multi-objective in terms of exe-

cution time and execution cost.

10.2 Second scenario

In this scenario, we used large-workload-containing

HPC2N dataset to determine the performances of the four

scheduling schemes. The Parallel Workload Archive—

HPC2N is made available by the High-Performance

Computing Center North (HPC2N). It is a setlog with

Fig. 3 Total execution time
Fig. 4 Total execution cost

Table 8 Total QoS obtained by the scheduling schemes

Improved Min–Min MOACO MOPSO DMOOTC

Total execution time 3086.51 2732.94 2366.85 1763.40

Total execution cost 631.84 599.60 520.94 387.77

Total estimated QoS based on cost and time weights = -0.5 - 1627.98 - 1406.75 - 1364.35 - 863.35

Total estimated QoS based on cost and time weights = - 0.5 and - 0.9 - 2792.41 - 2497.66 - 2076.19 - 1586.55

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-Objective

Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective Orthogonal Taguchi-Cat Algorithm

Table 9 Improvement in

percentage
Improved Min–Min MOACO MOPSO DMOOTC

Total execution time 3086.51 2732.94 2366.85 1763.40

PIR (%) over Improved Min–Min 11.455 23.31 42.87

PIR (%) over MOACO 13.39 35.47

PIR (%) over MOPSO 25.49

Total execution cost 631.84 599.60 520.94 387.77

PIR (%) over Improved Min–Min 5.10 17.55 38.62

PIR (%) over MOACO 13.11 35.32

PIR (%) over MOPSO 25.56

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony

Optimization, MOPSO Multi-Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective

Orthogonal Taguchi-Cat Algorithm, PIR(%) Performance Improvement Rate (in percentage)
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Table 10 Results of the execution time and cost for the scheduling schemes

Task Improved Min–Min MOACO MOPSO DMOOTC

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

Execution

time (s)

Execution cost

($)/h

100 486.68 107.07 967.56 212.86 1193.18 262.50 1134.25 249.53

200 1452.91 319.64 1786.67 393.06 2893.53 632.57 2564.98 564.29

300 3857.67 848.68 7865.24 1730.35 6975.66 1534.64 4587.67 1009.28

400 6231.47 1370.92 9078.56 1997.28 10411.32 2290.49 5089.76 1119.74

500 9918.75 2182.12 11436.78 2516.09 11458.76 2520.92 8986.08 1976.93

600 13810.89 3038.39 15451.23 3399.27 12764.87 2808.27 10679.87 2349.57

700 18380.38 4043.68 16895.87 3717.09 14023.48 3085.16 13867.32 3050.81

800 22984.71 5056.63 19417.56 4271.86 18513.75 4073.02 16894.90 3716.87

900 29688.63 6531.48 24980.23 5495.65 23278.90 5121.35 21856.23 4808.37

1000 35424.75 7793.44 29672.78 6528.01 26867.23 5910.79 25785.45 5672.79

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-Objective

Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective Orthogonal Taguchi-Cat Algorithm, hr hour

Table 11 Estimated QoS with

time–cost weight factor = - 0.5
Task Improved Min–Min MOACO MOPSO DMOOTC

100 - 243.35 - 483.80 - 596.62 - 567.15

200 - 726.50 - 893.38 - 1446.85 - 1282.56

300 - 1928.95 - 3932.86 - 3488.04 - 2293.97

400 - 3115.92 - 4539.55 - 5205.97 - 2545.03

500 - 4959.67 - 5718.73 - 5729.73 - 4493.31

600 - 6905.86 - 7726.08 - 6382.82 - 5340.26

700 - 9190.75 - 8448.45 - 7012.16 - 6934.08

800 - 11493.05 - 9709.37 - 10183.12 - 8447.96

900 - 14845.22 - 12490.87 - 11640.16 - 10928.78

1000 - 17713.45 - 14837.29 - 13434.43 - 12893.51

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony

Optimization, MOPSO Multi-Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective

Orthogonal Taguchi-Cat Algorithm

Table 12 Estimated QoS with

time–cost weight

factors = -0.5 & - 0.9

Task Improved Min–Min MOACO MOPSO DMOOTC

100 - 438.03 - 870.83 - 1073.90 - 1020.85

200 - 1307.66 - 1608.05 - 2604.27 - 2308.56

300 - 3472.02 - 7078.95 - 6278.31 - 4129.04

400 - 5608.51 - 8170.98 - 9370.50 - 4580.93

500 - 8927.17 - 10293.45 - 10313.23 - 8087.74

600 - 12930.22 - 13906.57 - 11488.77 - 9612.20

700 - 16542.90 - 15206.79 - 12621.56 - 12481.01

800 - 20686.94 - 17476.39 - 16662.94 - 15205.92

900 - 26720.67 - 22482.97 - 20951.72 - 19671.27

1000 - 31883.35 - 26706.40 - 24181.32 - 23207.69

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony

Optimization, MOPSO Multi-Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective

Orthogonal Taguchi-Cat Algorithm
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information on about 527, 371 tasks. The HPC2N workload

log was freely provided by Ake Sandgren, who also helped

with background information and interpretation, while

Michael Jack assisted in making sure the log is hosted into

the archive for general usage [2]. We stored the workload

in a sac folder at the CloudSim. The datacenter broker

within the CloudSim is configured to make use of the

scheduling schemes as the main scheduler instead of using

the default scheduler. Tasks are pooled from the sac folder

containing the HPC2N dataset for each run of the simula-

tion based on assigned scheduling intervals (100–1000)

using each of the scheme sets for the simulation.

The results after simulations are indicated in Tables 10,

11, 12, 13 and 14. These results attest to the fact that our

proposed DMOOTC scheme can provide minimum exe-

cution time and execution cost compared to improved

Min–Min, MOACO and MOPSO schemes. More precisely,

Table 13 summarizes the whole results in terms of total

execution time and cost. The proposed DMOOTC

scheduling scheme is able to achieve - 48792.35 QoS

value when a customer selects - 0.5 weight factor for his/

or her cloud service and also achieves - 1000305.31 for

time and cost weight factors of - 0.5 and - 0.9. Table 14

reports a significant improvement gained by our proposed

DMOOTC scheme over improved Min–Min, MOACO and

MOPSO scheduling schemes in terms of execution time

and execution cost. The proposed DMOOTC scheme has

achieved 21.64%, 18.97% and 13.17% improvement

compared to improved Min–Min, MOACO and MOPSO

algorithms. The continuous display of performance by our

proposed DMOOTC scheduling scheme is attributed to the

incorporation of orthogonal Taguchi approach and the use

of Pareto dominance strategy to provide customers with the

choices of virtual machines that help in retuning an opti-

mum solution of the multi-objective problem. Likewise,

figures are used to further show the trend in performance of

the scheduling scheme under different scheduling intervals

as shown in Figs. 5 and 6.

Fig. 5 Total execution time

Table 13 Total QoS obtained by the scheduling schemes

Improved Min–Min MOACO MOPSO DMOOTC

Total execution time 142,236.84 137,552.48 128,380.68 111,446.51

Total execution cost 31,292.05 30,261.52 28,239.71 24,518.18

Total estimated QoS based on cost and time weights = -0.5 - 71,122.72 - 68,780.38 - 65,119.90 - 48,792.35

Total estimated QoS based on cost and time weights = -0.5 and - 0.9 - 128,517.47 - 123,801.38 - 115,546.52 - 100,305.31

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony Optimization, MOPSO Multi-Objective

Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective Orthogonal Taguchi-Cat Algorithm

Table 14 Improvement in

percentage
Improved Min–Min MOACO MOPSO DMOOTC

Total execution time 142,236.84 137,552.48 128,380.68 111,446.51

PIR (%) over Improved Min–Min 3.29 9.74 21.64

PIR (%) over MOACO 6.66 18.97

PIR (%) over MOPSO 13.19

Total execution cost 31,292.05 30,261.52 28,239.71 24,518.18

PIR (%) over Improved Min–Min 3.29 9.75 21.64

PIR (%) over MOACO 6.66 18.97

PIR (%) over MOPSO 13.19

Improved Min–Min Improved Minimum Job First Algorithm, MOACO Multi-Objective Ant Colony

Optimization, MOPSO Multi-Objective Particle Swarm Optimization, DMOOTC Dynamic Multi-Objective

Orthogonal Taguchi-Cat Algorithm, PIR(%) Performance Improvement Rate (in percentage)
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11 Statistical analysis on 95% confidential
interval

A statistical analysis based on 95% confidence interval is

provided to show how significant our obtained results for

both scenarios compared to those of the benchmarked

schemes. Tables 15 and 16 present the computed 95%

confidence intervals for both scenarios according to

Eq. (21) [62]:

Confidential Interval CIð Þ ¼ �x	 t
s
ffiffiffi
n

p ð21Þ

where �x represents the mean; t represents t-distribution that

is derived from the t-distribution table; s represents the

standard deviation of the sample data and n represents the

number of samples. The smaller the value of the confidence

interval, the more precise our estimate. For results shown

in Tables 15 and 16, the 95% confidence intervals obtained

by our proposed DMOOTC scheduling scheme are less

compared to those obtained by the benchmarked schemes.

This means that there is a significant difference in the

results obtained by our proposed DMOOTC scheduling

schemes compared to the benchmarked schemes. It can be

concluded that our proposed DMOOTC scheduling

scheme can provide cloud customers with better services

that will meet their expectations and adapt the elasticity of

cloud computing environment than the benchmarked

scheduling schemes.

Fig. 6 Total execution cost

Table 15 Computed 95%

confidence interval for the first

scenario

Improved Min–Min MOACO MOPSO DMOOTC

Degree of freedom 9 9 9 9

Confidence level 0.025 0.025 0.025 0.025

t-distribution 2.262 2.267 2.267 2.262

Mean 342.94 303.21 262.98 195.93

Standard deviation 378.38 264.49 218.04 148.25

Lower bound 72.28 114.02 107.01 90.04

Upper bound 613.60 492.40 418.95 254.14

95% confidential interval (72.28, 613.60) (114.02, 492.40) (107.01, 418.95) (90.04, 254.14)

Table 16 Computed 95% confidence interval for the second scenario

Improved Min–Min MOACO MOPSO DMOOTC

Degree of freedom 9 9 9 9

Confidence level 0.025 0.025 0.025 0.025

t-distribution 2.262 2.267 2.267 2.262

Mean 11,868.01 11986.63 11279.27 9517.90

Standard deviation 10,155.57 7995.00 7048.25 6979.87

Lower bound 3378.74 3412.51 3211.13 2709.68

Upper bound 20,357.28 20,560.75 19,347.41 16,326.12

95% confidential interval (3378.74, 20,357.28) (3412.51, 20,560.75) (3211.13, 19,347.41) (2709.68, 16,326.12)
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12 Conclusion

Scheduling of cloud service for the purpose of meeting the

expectations of each customer in cloud computing is a non-

deterministic polynomial times (NP-hard) hard problem.

Solutions required to facilitate the provisioning of better

cloud service are rather too complex to develop. In this paper,

we proposed a cloud customers service selection

scheme known as Dynamic Multi-Objective Orthogonal

Taguchi-Cat (DMOOTC) that served as an ideal solution. The

proposed DMOOTC scheduling scheme not only considers

meeting customers’ QoS expectations, but also facilitates the

provisioning of several service choices for customers to select

their service preference. Two computing scenarios were

adopted in evaluation of the efficiency of our proposed

DMOOTC scheduling scheme via simulation. The simulation

results obtained in both scenarios show our proposed

DMOOTC scheduling scheme had returned minimum exe-

cution time and cost for all scheduled tasks and also provided

better QoS compared to the benchmarked schemes. We fur-

ther revealed the significance of our proposed DMOOTC

scheduling scheme using statistical analysis based on 95%

confidence interval. The statistical results obtained by our

proposed DMOOTC scheduling scheme are quite significant

than those obtained by the benchmarked schemes. The overall

performances displayed by our proposed DMOOTC

scheme is as a result of the incorporation of an orthogonal

Taguchi strategy at its local search, which facilitates better

task mapping on virtual machines and the use of Pareto

dominance strategy that provides customers with several

service choices to select their preference. Further studies are

therefore necessary to investigate the scalability of the pro-

posed DMOOTC scheduling scheme using large workloads.
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