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Abstract
Fighting games represent a challenging problem for computer-controlled characters. Therefore, they have attracted con-

siderable research interest. This paper investigates novel multi-objective neuroevolutionary approaches for fighting games

focusing on the Fighting Game AI Competition. Considering several objectives shall improve the AI’s generalization

capabilities when confronted with new opponents. To this end, novel combinations of neuroevolution and multi-objective

evolutionary algorithms are explored. Since the variants proposed employ the well-known R2 indicator, we derived a novel

faster algorithm for determining the exact R2 contribution. An experimental comparison of the novel variants to existing

multi-objective neuroevolutionary algorithms demonstrates clear performance benefits on the test case considered. The best

performing algorithm is then used to evolve controllers for the fighting game. Comparing the results with state-of-the-art

AI opponents shows very promising results; the novel bot is able to outperform several competitors.

Keywords Neuroevolution � Evolutionary algorithms � Multi-objective optimization � NEAT � Fighting games

1 Introduction

Modern digital games rely strongly on artificial intelligence

(AI) techniques for creating interesting non-player charac-

ters (NPCs) which challenge or support the human player.

Artificial intelligence for games [1] has therefore gained

considerable interest—in game development as well as in

research. Twomain points come into play: First of all, it is the

goal to create games which gain and retain the player’s

interest for a long time. The main contributing factors are

convincing and appropriately challenging non-player char-

acters. On the other hand, research interest in digital games

arises from the intrinsic nature of these games themselves.

Coming from the algorithmic point of view, they represent

important and often difficult test cases for algorithms aiming

for the control of agents in dynamic and non-deterministic

environments. Non-player characters in digital games have

to cope with human user input and with actions that are

difficult to foresee andmay appear random. Furthermore, the

reaction of theNPCmust be close to real time and be adapted,

if possible, to the skill level of the player.

1.1 Fighting games as testbed for artificial
intelligence

This paper focuses on neuroevolution for fighting games

which are also called ’Beat ’em Up’ games [2]. These

adversarial games typically consist of fights between two

characters, each endowedwith a certain number of life points

[3]. The fight continues until the time limit is reached or until

one of the characters does not have any points left.

Fighting games are of interest because they represent

one of the major areas in commercial games. In addition,

they are a special case of games of synchronized moves

which remain difficult for AI players [4]. In recent years,

there has been increased research interest expressed by

several competitions at the major conferences in compu-

tational and artificial intelligence. Up to now, several

techniques have been applied for fighting games, see

Sect. 4 for more information.
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1.2 Neuroevolution and multi-objective
optimization

This paper focuses on reinforcement learning and evolu-

tionary neural networks or neuroevolution. Both have been

applied successfully to fighting games before [5]. Evolu-

tionary neural networks represent hybrid approaches

combining artificial neural networks and evolutionary

algorithms. Two main areas can be distinguished. In the

case of the first, the evolutionary algorithm substitutes the

weight learning algorithm of traditional neural networks,

see e.g. [6]. In the case of the second, the structure as well

as the weights is adapted with the help of evolution [7,

pp. 8–12]. Here, the Neuroevolution of Augmenting

Topologies (NEAT) [7] represents the major algorithm

class.

When designing a controller for a fighting agent several

objectives need to be taken into account: A simple example

consists of adapting an agent that strives for a strategy that

maximizes the damage to the opponent and minimizes its

own loss. Or on the other hand, one can look for an NPC

which is capable of beating the player while behaving as

human-like as possible. In both cases, it may not be pos-

sible to optimize all criteria simultaneously. Here, multi-

objective approaches come into play. A further point is

made by considering that an agent should be able to cope

with several opponents that employ different strategies.

Here, either a fast online adaptation is required [2] or

general fighting strategies must be developed. In the case

of the latter, the consideration of several criteria may

support the process. The present paper provides a first

investigation concerning this research question. While

multi-objective formulations arise naturally in the area of

fighting games, however, they are seldom considered.

The same holds for the general area of neuroevolution.

So far, only a few multi-objective approaches can be found

in the literature: The modular multi-objective NEAT (MM-

NEAT) [8] which evolves modular ANNs based on NSGA-

II [9] and NEAT. Van Willigen et al. proposed the NEAT-

PS [10] that utilizes the Pareto strength approach of SPEA2

[11] to aggregate a vector of fitness values into a single

scalar and make it applicable in standard NEAT. Further-

more, NEAT-MODS [12] is a multi-objective version of

NEAT that promotes an elitist and diverse population by a

modified selection procedure. Section 2.1 will provide a

more comprehensive description of these algorithms.

1.3 Novel contributions

Recently, we proposed two novel multi-objective variants

of NEAT [13] which use principles of modern multi-ob-

jective algorithms that allow operating with a larger

number of objectives. Details are provided in Sect. 2. This

paper extends the work of [13] by focusing on the impor-

tant selection procedure in EMOAs. To improve the per-

formance of the algorithms, it introduces novel sorting

mechanisms, both based on the R2 indicator. In addition,

this paper also contributes to the multi-objective opti-

mization itself. The determination of the R2 indicator value

requires considerable computational effort which typically

increases with the number of objectives. For this reason,

approximations are often used. This paper introduces a

novel efficient approach of computing the exact R2 con-

tribution of each solution of a l-sized population, which is

faster than the original method by factor l.
Based on the multi-objective NEAT variant nNEAT, a

novel ANN-controlled agent for fighting games is devel-

oped and evaluated in this paper. To this end, it also

introduces a new lightweight simulation framework based

on the FTGAIC, which allows to evolve and especially

evaluate AI controllers much faster than previously possi-

ble. This is essential not only for evolving ANNs efficiently

but also for creating and testing other AI players that

require game simulations.

1.4 Outline of the paper

The paper is structured as follows: Sect. 2 introduces our

multi-objective algorithms mNEAT and nNEAT [13] and

proposes two novel sorting mechanisms for those based on

R2 contribution [14]. In Sect. 3, a benchmark problem for

multi-objective neuroevolution is described and further-

more experiments to assess the quality of the novel sorting

mechanisms are conducted. Additionally, our neuroevolu-

tionary algorithms are compared to NEAT-PS and NEAT-

MODS to investigate whether one of the algorithms per-

forms superior. Section 4 provides details concerning the

FTGAIC. In addition, the modifications to the FTGAIC

software that have been necessary for evolving the corre-

sponding controller are described. Section 5 characterizes

the underlying artificial neural network of the ANNBot,

including its input and output values and controller strat-

egy. Furthermore, the details of the experiments, that is,

how the ANNs are trained and the results of the fitness

evaluation of the ANNBot against other, already estab-

lished, AI opponents in the FTGAIC are provided. Finally,

the paper is concluded with a summary of our experiments’

results in Sect. 6. A conclusion and outlook on future work

is given in Sect. 7. Additionally, the proof of the novel

computing procedure for the R2 contribution is provided in

‘‘Appendix 1’’.
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2 Neuroevolution and multi-objective
optimization

This section provides the methodological background of

our approach. First, a brief overview concerning neu-

roevolution and multi-objective optimization is given.

Afterwards, the two novel algorithms developed are

described. Both can be combined with different sorting

procedures for the selection. Two new sorting mechanisms

for our algorithms are introduced. One of these focuses

mainly on maximizing quality, while the second promotes

diversity as well as quality.

2.1 NEAT for single- and multi-objective
applications

Neuroevolution also referred to as evolutionary neural

networks represents a hybrid approach which combines

evolutionary algorithms with artificial neural networks.

This paper focuses on topology and weight evolving arti-

ficial neural networks (TWEANNs) and more specifically

on the Neuroevolution of Augmenting Topologies

(NEAT). This method has been introduced by [7] and [15]

and has emerged as one of the standard techniques in this

area. It uses a genetic algorithm to adapt the structure as

well as the weights to the task at hand. To achieve this, it

operates with two gene types: node genes which code the

neurons of the network and link genes which represent the

links between the neurons. NEAT considers specially

adapted crossover and mutation operators that work with

the particular network structure. In general, feedforward

and recurrent structures can be evolved. The NEAT

approach is based on three main principles, see e.g. [15],

1. Complexification NEAT starts with simple structures

which grow if necessary during the evolutionary

process.

2. Speciation Whenever a topology change occurs, the

weights of the structure need to be adapted accord-

ingly. Therefore, even optimal structures require time

until they perform well. To protect topology changes

against a premature discarding, NEAT groups net-

works with similar structures into species and mainly

only allows competition inside the groups.

3. Historical marking In order to enable crossover

between nonlinear structures as networks, the degree

of similarity between networks and network parts

needs to be determined. Historical markings record

when a particular change, i.e. a topological mutation

occurred. Therefore, it can be used to determine similar

parts of the networks.

The general version of NEAT considers scalar fitness

functions to assess the quality of a population member. As

stated previously, only a few approaches beside ours have

been developed which account for several potentially

conflicting objectives. The presence of several objectives

necessitates a more general concept to compare candidate

solutions: the Pareto dominance. In short, a population

member dominates another population member if it sur-

passes it in one objective and is at least as good as the other

concerning the remaining ones.

One main point, where evolutionary multi-objective

algorithms differ from their single-objective counterparts,

is the selection procedure. In general, three main classes of

algorithms can be distinguished. One group operates with

decomposition techniques. The next class first sorts the

population with respect to the Pareto dominance into

classes. Then, a secondary selection criterion is applied.

Here, several concepts have been introduced. They range

from density measures which shall result in a higher pop-

ulation diversity to so-called quality indicator functions as

e.g. the Hypervolume indicator also called S-metric or the

R2 indicator. Well-known examples of the class include the

NSGA-II [9], the SPEA2 [11], or the SMS-EMOA [16].

The latter considers the concept of a dominated Hyper-

volume. The third group of algorithms only uses the quality

indicator to compare solutions as for example the IBEA

[17]. Many of the recently introduced variants of multi-

objective evolutionary algorithms utilize quality indicators

at least as the secondary measure.

Neuroevolution and multi-objective optimization have

already been combined. Our literature research resulted in

three main variants: MM-NEAT, NEAT-PS, and NEAT-

MODS which are described in the following.

MM-NEAT Schrum and Miikkulainen [8] introduced the

modular multi-objective NEAT (MM-NEAT) which

evolves modular ANNs using a combination of the

NSGA-II [9], one of the major evolutionary multi-

objective algorithms (EMOAs), and NEAT. Modular

ANNs may consist of multiple modules, each resulting in

different outputs and thereby control strategies, e.g. to

handle different sub-tasks. Along with special module

mutation operators, MM-NEAT employs NEAT’s ANN

representation and variation operators. MM-NEAT is

based on NSGA-II with components borrowed from

NEAT [8].

NEAT-PS Van Willigen et al. [10] proposed the NEAT-

Pareto strength (NEAT-PS) which falls back to another

well-known EMOA, the SPEA2 [11]. Here, the authors

mainly utilize the Pareto strength approach which

aggregates a fitness vector into a scalar fitness value

for each solution in a given set. Using that scalar, any

multi-objective optimization problem can be treated as a

single-objective one in NEAT-PS. Thus, the only
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addition to NEAT is the Pareto strength fitness determi-

nation in NEAT-PS [10].

NEAT-MODS Based on investigations of NEAT-PS that

revealed that the algorithm does not guarantee a uniform

evolution of all objectives due to its focus on elitism

only, Abramovich and Moshaiov proposed the NEAT-

multi-objective diversified species (NEAT-MODS) [12].

NEAT-MODS is built on NEAT and mainly differs in

three components: (1) Population: While NEAT discards

all solutions of the prior generation in favour of the

offspring, NEAT-MODS takes all solutions from the

parental and the offspring generation into account for

survivor selection. (2) Sorting: These solutions are sorted

based on the procedure of NSGA-II, namely combining

non-dominated ranking and crowding distance. Thereby,

a ranking of all solutions is established. (3) Survivor

selection consists of two sub-steps: (3a) Species selec-

tion: The first q ¼ l=K species occurring in the sorted

list of solutions are taken into account for member

selection. Every species is only added once to that list.

(3b) Member selection: Iteration over all selected species

while adding the best member each to the next gener-

ation. In the next iteration, add the second best member

of each species to the next generation. This is continued

until no more slots are available in the next generation. If

a species s does not have enough members, i.e. sj j\n

when the nth member is queried, it is skipped. On the

account of selecting the best members of each species,

NEAT-MODS achieves a worthwhile goal, namely

maintaining a diverse population of elitist solutions [12].

Reference [13] introduced two novel algorithms: mNEAT

and mNEAT-IB. Note that in order to distinguish more

clearly between the two different approaches, this paper

refers to mNEAT-IB as nNEAT, where the ‘‘n’’ stands for a

next variant of a multi-objective NEAT. Both algorithms

combine neuroevolution with multi-objective principles.

However, they differ in the design and the degree of sim-

ilarity by which they are either closer to the original NEAT

procedures or to the respective underlying multi-objective

algorithm. The first, mNEAT, is an extension of the orig-

inal NEAT to evolve ANNs for multi-objective tasks. The

latter, nNEAT, is a novel combination of SMS-EMOA [16]

and NEAT. An overview of the described multi-objective

variants of NEAT, their characteristics, and differences is

given in Table 1.

First experiments in [13] have shown that the variation

of using only the R2 indicator as quality indicator performs

best. However, as experiments in Sect. 3 reveal, further

promising combinations exist. Additionally, the R2 indi-

cator’s performance deteriorates with increasing population

size. The procedure of both algorithms is briefly described

below.

Multi-Objective NEAT The multi-objective NEAT

(mNEAT) augments the original NEAT to cope with a

multi-objective task. Therefore, mainly the quality

assessment and speciation procedure of NEAT have

been adopted, while the remaining features of NEAT

remained unchanged. The current version of mNEAT

does not adjust the speciation threshold automatically in

order to match a user-defined number of species. This

feature can easily be re-enabled by the user finally. The

mNEAT starts with a population P of l minimal random

networks. The algorithm requires that all networks have

already been evaluated at the beginning of each epoch.

The networks in P are sorted depending on their quality

contribution and then speciated, i.e. sorted into species.

If there are already any existing network-to-species

mappings, those are removed in advance. The different

species are stored in a set of species S. Here, a difference

to the initial mNEAT proposed in [13] which affects the

species’ fitness occurs. As mNEAT is capable to deal

with multiple objectives, a more sophisticated approach

is applied. All population members are copied into a

temporary set F. Each solution in F has K þ 1 fitness

values, whereas the first K values are taken from the

original solution and the last fitness value equals the

number of members of the species the solution belongs

to. The last objective, i.e. the species size, is applied as

an additional helper objective here; this approach has,

among others, been proposed in [18, 19]. In the (K þ 1)-

dimensional objective space, the quality contribution of

each solution f 2 F is determined and added to the total

contribution of the containing species. This procedure

penalizes members of large species only in one objec-

tive. In contrast to the previous approach which summed

up the values of all members in each objective, the

remaining objectives are not affected. On the other hand,

large species have an advantage compared to small

species because there exist more members that can

contribute to the species’ contribution. This will only be

the case if a large species s0 contains many well-

performing solutions in the context of F, thereby s0

should be allowed to produce an appropriate amount of

offspring anyway. A disadvantage that naturally occurs

using this approach is that the dimension of the objective

space is increased by one. The number of offspring a

species s is allowed to spawn depends on its quality

contribution in relation to the sum of the quality

contributions of all species. Every epoch all solutions

of P, except the species’ representatives (best member of

a species), are discarded from the population. Thus l�
Sj j new solutions need to be created using the variation

operators of NEAT. To avoid discarding promising

solutions, all non-dominated solutions are stored in an

external archive. The population thereby explores
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promising solutions, while the archives ensure that no

progress gets lost. The whole procedure is repeated until

predefined stopping criteria are fulfilled [13].

nNEAT The nNEAT (called mNEAT-IB in [13]) is a

combination of SMS-EMOA [16] and NEAT. It retains

the genetic encoding of ANNs, the innovation IDs, and

the variation operators (crossover and mutation) from

NEAT and combines these with the framework provided

by the SMS-EMOA. First, an initial population P of l
minimal networks is created and evaluated. The individ-

uals in P are sorted using an arbitrary sorting mecha-

nism, e.g. utilizing a primary and optionally a secondary

sorting criterion. Then, 2k solutions are selected using

stochastic universal sampling from P to create k
offspring by crossover and mutation. The population

has a size of lþ k now; before reduction, the k new

solutions need to be evaluated. After evaluation and

sorting (at the beginning of the next epoch), the

population is reduced by the worst k solutions (steady-

state population model [20, p. 80]). The procedure then

continues with parent selection for the next generation

[13]. Different combinations of sorting criteria are

allowed. [13] conducted an experimental analysis using

non-dominated sorting, the Hypervolume, and the R2

indicator. Our experimental analysis on the three-

dimensional double pole balancing problem has shown

that the nNEAT, especially when using the R2 indicator

for sorting, was very promising compared to other

variations and the previous version of mNEAT. It should

be noted that both algorithms and all investigated

variations of nNEAT were capable of finding promising

ANN controllers for the cart within very few evaluations

[13]. In Sect. 3, multi-objective double pole balancing

problem is investigated once more in order to compare

mNEAT and nNEAT to NEAT-PS and NEAT-MODS.

Note that the experiment is carried out under different

conditions, for example without a bias neuron that was

part of each ANN in the previous experiment. This

helped to reduce the number of necessary evaluations

significantly. See [7, p. 50] for more details on the

removed bias neuron.

2.2 Novel sorting mechanisms

Our experiments in [13] have shown that the performance

of nNEAT strongly depends on the quality assessment of

candidate solutions. As it was revealed, the combination of

different measures may play an important role. As stated, it

is common procedure in EMOAs to combine primary and

secondary selection criteria. In general, these shall promote

the creation of a set of candidate solutions of good quality

together with a high diversity. In this section, two quality

measures for our algorithms, both based on the R2 indi-

cator, are introduced.

Sorting Solutions In order for these quality measures to

work, a structure Sorting-Mechanism (short SM) that

fulfils the following conditions is presupposed. A detailed

textual description and examples are foregone here in order

to keep the description as short as possible. Let there be a

set A � X of at least two solutions, where X is the universe

of all possible solutions, a SM s for which three functions

are defined

q : X� SM ! R

next : SM ! SM

sort : A � SM ! A

where q assigns a scalar utility value to a solution

depending on s, the utility is to be maximized. next returns

the subordinate SM of s or null, if it is not defined. The

function sort takes a list of solutions and returns that list,

sorted by the function q of s and its subordinate next(s).

Furthermore, an SM may be combined from multiple sub-

SMs, which compute the q-values for all solutions of a list

separately that are combined finally, e.g. by multiplication.

The sort-function of the superordinate SM then has to

ensure that the conditions defined in the following are

Table 1 Multi-objective variants of NEAT

Framework Sorting Remarks References

NEAT-PS NEAT PS Original NEAT; PS aggregates fitness vector into scalar [10]

NEAT-MODS NDR ? CD Steady-state population model; two-staged survivor selection [12]

mNEAT Any multi-objective Multi-objective speciation; archive of best solutions [13]

MM-NEAT NSGA-II NDR ? CD Modular ANNs and corresponding variation operators [8]

nNEAT SMS-EMOA Any multi-objective – [13]

PS Pareto Strength, NDR Non-dominated ranking, CD Crowding distance

The column Framework indicates on which algorithm the corresponding algorithm is based. All non-NEAT-based algorithms employ at least

NEAT’s representation and variation operators for neuroevolution. The term Any multi-objective means that an arbitrary combination of multi-

objective quality measures can be applied
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fulfilled in that case, too. The requirements to q are as

follows:

1: 8a 2 A : 0� qða; sÞ� 1

2: 9a; b 2 A : a 6¼ b ^ qða; sÞ ¼ 0 ^ qðb; sÞ ¼ 1
:

Furthermore, if there is a next SM t assigned to s

t ¼ nextðsÞ 6¼ null

and there exist one or multiple subsets of solutions with

equal value c for q:

9B � A ^ c 2 ½0; 1� : 8b 2 B : qðb; sÞ ¼ c:

Then, if 0\c\1 there exist two bounding utility values

qlow and qhigh defined as follows:

9i; j 2 AnB ^ i 6¼ j : qði; sÞ ¼ qlow\qhigh ¼ qðj; sÞ^
6 9i0; j0 2 AnB : qlow\qði0; sÞ� c� qðj0; sÞ\qhigh:

Otherwise, if c ¼ 0 or c ¼ 1, qlow is set to zero, respec-

tively qhigh to one. Furthermore, let there be

qdiff ¼ qhigh � qlow:

and a constant 0\u\ 1
2
. To ensure that sort returns the list

of solutions sorted at most possible extend, the value of q

for all solutions of equal q-value is redefined by t’s q in the

borders of ½qlow; qhigh�, if t is defined:

8b 2 B : qðb; sÞ ¼ qlow þ qdiff u þ qðb; tÞ 1� 2uð Þð Þ:

The constant u maintains a certain distance to qlow and to

qhigh.

An implementation of a SortingMechanism fulfill-

ing these conditions allows combining different sorting

procedures and quality indicators in arbitrary order. Only

the implementation of q has to be done properly for each

different measure. For example the combination of non-

dominated sorting as s and the R2 indicator as next(s) al-

lows first to sort a list of solutions by the means of Pareto

dominance. All solutions belonging to the same front then

will be sorted using their corresponding R2 contribution.

The SortingMechanism has been implemented for our

experiments.

2.2.1 Iterative R2 ranking

Dı́az-Manrı́quez et al. [14] introduced a novel ranking

method using the R2 indicator, which is based on the fol-

lowing idea: Whenever the R2 contribution of all l solu-

tions of a population P is computed

(8i 2 P : R2c
ðiÞ ¼ R2ðPn if gÞ � R2ðPÞ), it is likely that

only a part of P ’s solutions have a positive R2 contribu-

tion. The others remain with a contribution of zero;

however. Dı́az-Manrı́quez et al. created a ranking which is

similar to the approach of non-dominated sorting: First, the

R2 contribution for all i 2 P is computed. Then, all solu-

tions i 2 P : R2c
ðiÞ[ 0 are removed from P, sorted in

decreasing order and added to the sorted population P0.
These solutions represent rank 1. For the remaining solu-

tions PnP0 , this procedure is repeated until Pj j ¼ 0 or

8i 2 P : R2c
ðiÞ ¼ 0. In the latter case, the individuals of

worst rank remain unsorted, because each had a R2 con-

tribution of zero. For further sorting, another quality

measure may be applied. To continue, however, may not be

worth the effort because it only affects the worst solutions

in the population. Now most, instead of only the best,

solutions in P0 are ordered depending on their R2 contri-

bution. In the worst case, this requires l iterations. Because

the computation of the R2 contribution of all solutions of a

l-sized population for K objectives requires time

OðKl2 Kj jÞ, Dı́az-Manrı́quez et al. suggest an efficient way

of computing an approximation of the R2 contribution:

They assume that the R2 contribution of each solution is

the sum of the contribution for all weight vectors, the

solution contributes most [14]. This is a very efficient

approximation, but does not take the contribution of the

rest of the population into account. Therefore, additionally

the second best contributing solution for each weight

vector has to be considered. An approach for computing the

exact R2 contribution for all solutions of a l-sized popu-

lation for K objectives in time OðKl Kj jÞ is described in

‘‘Appendix 1’’.

The runtime of iterative R2 ranking to sort a population,

in combination with our exact method for computing the

R2 contribution of each solution, is bounded between

O Kl Kj jð Þ, if all solutions have a positive R2 contribution

in the first iteration, and O Kl2 Kj jð Þ, if in every iteration

only a single solution has a positive R2 contribution. For

the computation of the R2 contribution of the solutions, a

default amount of Kj j ¼ 100 weight vectors is used

throughout this paper.

2.2.2 Quality and diversity: the QD measure

An important aspect for genetic algorithms is the diversity

of the underlying population which can be defined in var-

ious ways. One meaning of diversity can be summarized

informally as the number of different individuals a popu-

lation consists of. This can be measured in different ways,

for example as the difference in genotypes or phenotypes

or as the difference in behaviour, i.e. fitness values, or

statistical measures such as entropy [20, p. 31]. The spe-

ciation in mNEAT determines the similarity of ANNs by

comparing their genotypes, whereas the approach descri-

bed in this section defines the similarity of two ANNs or,
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more generally spoken, solutions by the means of their

fitness values. This will be referred to as the behavioural

diversity in the context of this paper.

The maintenance of diversity plays also an important

role in popular algorithms like NSGA-II and SMS-EMOA.

While Deb et al. apply the Crowding Distance, which

employs behavioural diversity as secondary sorting crite-

rion in NSGA-II [9], Beume et al. utilize the Hypervolume

indicator for that purpose. The Hypervolume contribution

of a solution is equal to the objective space that is domi-

nated exclusively by that solution; hence, a solution with

greater Hypervolume contribution is located in a less dense

settled area of the objective space than a solution with

lower Hypervolume contribution [16]. Thereby, both

algorithms rely on a quality measure that fosters beha-

vioural diversity as secondary sorting criterion.

Falcón-Cardona et al. [21] recently proposed the CRI-

EMOA which utilizes two different quality indicators

IGDþ [22] and the Riesz s-energy [23]. The CRI-EMOA

combines the strengths of both indicators, the IGD? in

promoting convergence and the Riesz s-energy in fostering

diversity in the population, in order to be applicable effi-

ciently for different multi-objectives problems, indepen-

dent from the shape of the Pareto front. The algorithm

applies non-dominated sorting as primary sorting criterion

and then switches between the two indicators, depending

on the convergence behaviour over the last generations. If

it thereby has been found that the evolutionary progress is

stagnating, the Riesz s-energy is applied in order to

increase the diversity in the population. Otherwise, the

IGDþ is applied [21].

While NSGA-II and SMS-EMOA clearly focus more

strongly on the convergence (non-dominated ranking, first

criterion) than on diversity (Crowding Distance respec-

tively Hypervolume, second criterion), CRI-EMOA selects

the priority of convergence and diversity dynamically

based on the current situation. Therefore, additional effort

has to be put into the analysis of the ‘‘situation’’. For our

mNEAT and nNEAT, another quality measure is suggested

that promotes diversity as well as convergence. In order to

achieve this, always two quality values for each solution in

the population are determined: One value describing the

solution’s quality with respect to convergence and another

value that represents the solution’s behavioural diversity.

These values are normalized over the whole population

between 0 and 1, as previously described. Finally, the total

contribution each solution is the product of its quality and

diversity value. Thereby a solution does only have a good

total contribution if it can achieve considerable values in

both, quality and diversity. Only being a well-performing

solution, among many well-performing solutions will not

be enough in order to compete with other solutions. The

procedure of our approach is very straightforward in order

to promote diversity and quality with equal priority. In

future, more sophisticated variations are possible, for

example, dynamically adjusting the priority of diversity

and quality depending on the current population and pre-

vious generations, similar to [21].

A sample implementation for the QD measure is given

by

• Quality = Non-dominated ranking ? R2 indicator,

• Diversity = Crowding Distance.

The goal is to sort the population as fine-grained as pos-

sible with respect to quality and diversity. The crowding

distance will serve as an appropriate measure for the

behavioural diversity as it is likely to assign unique values

to each solution that then can be sorted in decreasing order.

Our implementation differs to the one applied in NSGA-II

in so far that the solutions with the lowest and highest

values in each objective will get assigned a value of 1

(instead of 1). Please keep in mind that all objective

values are normalized between 0 and 1, and thereby 1 is the

maximal theoretically possible distance per objective. For

sorting the population by quality, the combination of non-

dominated ranking as first, and R2 indicator as secondary

criterion were selected. Of course, this fits exactly into the

application field of the iterative R2 contribution approach

introduced in Sect. 2.2.1. On the other hand, this often

requires a large number of iterations until a population is

sorted completely. Therefore, this paper follows the sorting

scheme proposed by R2-EMOA [24] in order to reduce the

number of iterations for sorting the population depending

on quality. The SortingMechanism introduced earlier

in this section determines and normalizes the quality and

diversity values for all solutions in the population and

determines their final contribution values by multiplying

the respective quality and diversity values with each other.

The runtime of the QD measure depends on the runtime

of the single measures applied for quality and diversity

determination. In our example, implementing the quality

determination has a worst case runtime of

OðKl2 þ Kl Kj jÞ. On the other hand, the runtime of the

crowding distance computation is determined by the sort-

ing of the population, which is necessary for all K objec-

tives and therefore requires OðKl log lÞ [9].

3 Experimental analysis: a multi-objective
double pole balancing problem

Reference [13] introduced a multi-objective version of the

well-known double pole balancing problem, see e.g. [7].

The problem is an extension of the pole balancing problem

[25], which describes the following task: Two poles are
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mounted on a cart using a hinge. The cart is placed at the

centre of a track of limited length. When the experiment

starts, the cart has to be moved along the track in order to

keep the poles balanced. Furthermore, the cart is not

allowed to leave the track. If it does leave the track or at

least one of the poles falls off to the left or right, the

experiment has failed. The double pole balancing problem

has also been applied by Stanley [7] in order to compare

the performance of NEAT to other algorithms. Our multi-

objective version (moDPB) extends the problem, which

initially takes the time in balance (f1) as fitness function, by

two fitness functions: the number of directional changes of

the cart (f2) and the mean distance of the cart from the

centre of the track (f3). By adding two additional fitness

functions, the task now is to find a controller that is not

only able to balance the poles on the cart, but also keeps the

cart at a safe distance from the edges of the track and

consumes only a low amount of energy. The controller for

the cart is represented by an ANN which gets the position

of the cart, the angles of the poles, and the velocities of the

cart and the poles as input.

This section provides a comparison of our novel algo-

rithms to other multi-objective versions of NEAT. For a

comprehensive analysis and comparison of the algorithms’

performance, the following procedure is employed:

The experiment is repeated for 50 times using each

algorithm (or variation of algorithm), and the default

parameter configuration, shown in Table 2, is used. In

addition, all networks use the same activation function, the

sigmoid function1 given by

f ðxÞ ¼ 1

1þ e�4:9x
:

Furthermore, different population sizes l ¼ 50; 200; 500f g
are investigated. The experiment is stopped after a prede-

fined number of evaluations, i.e. created and evaluated

solutions, have been reached. During each experiment,

information about the current population is extracted at

several points of the evolutionary process. In addition,

information about the fitness values of the best solutions

found during each run is stored.

The analysis of the algorithms’ performance is based on

the following measures which are commonly considered in

literature:

Runtime Behaviour The runtime behaviour is determined

from the Hypervolume dominated by a population after a

certain number of evaluations. It gives information about

the convergence behaviour of an algorithm. Is it

converging fast within a small number of evaluations

or does it require a large number of evaluations? To

which Hypervolume level it converges at all?

Effectiveness The effectiveness of an algorithm can be

assessed by evaluating its mean best fitness (MBF). This

comprises the average fitness of the best solutions found

during a series of experiments. Better average values

indicate that an algorithm can find solutions of better

quality than another algorithm with worse values, i.e. it

is more effective. This measure plays an important role

for experiments that might not be repeated for several

times, i.e. being run for a single time and thereby ‘‘have

to’’ find a good solution [20, p.151f].

Efficiency The efficiency of an algorithm can be

determined by investigating the average number of

evaluations to find a solution (AES) of at least satisfying

fitness. The term satisfying fitness describes a minimum

fitness threshold that an ANN x	 has to fulfil. For

moDPB, it is defined as follows:

f1ðx	Þ ¼ 0 ^ f2ðx	Þ� 1
20
^ f3ðx	Þ� 1

5
. These fitness val-

ues were chosen since many controllers exist that easily

can achieve good results in f1 but require a large amount
1 The value for k ¼ 4:9 has been proposed by Stanley [7, p. 146] and

is also applied here.

Table 2 Parameters of mNEAT and nNEAT and their respective

default values

Name Value

Weight mutation range 2.5

Modify weight probability 0.2

Add neuron probability 0.03

Add link probability 0.05

Looped connection probability 0.2

Crossover probability 0.5

Mutation probability 0.5

Gene enabled on crossover probability 0.1

Mate by choosing probability 0.6

Interspecies mating rate 0.001

Survival threshold 0.2

Replacement rate 0.3

Speciation coefficient 0.25

Factor C1 excess 1

Factor C2 disjoint 1

Factor C3 weight difference 0.4

Age bonus malus 0.1

Maximum stagnation 15

Selection pressure 2

Age threshold young 10

Age threshold old 50

The parameters that do also occur in NEAT-PS and NEAT-MODS

will get assigned the specified default values. An explanation of the

parameters can be found in ‘‘Appendix 2’’
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of energy. These values define an arbitrary border of

minimum efficiency that might be shifted by the user.

This will also very likely shift the average number of

evaluations. An algorithm that requires least evaluations

to find a solution x	 than another algorithm is stated to be

more efficient [20, p. 152f].

Success Rate With the values extracted for AES and the

maximum number of evaluations, one can easily define a

measure for the overall success rate (SR) of an

algorithm. In how many experiments of a series can

the algorithm find a solution x	 before the evolutionary

process is terminated? The success rate is a measure for

effectiveness: An algorithm with higher success rate is

stated to be more effective (on the given problem

instance) than one with a lower success rate [20, p. 152].

Diversity The diversity in a population is a crucial

element for exploring new regions of the search space

[20, p. 87]. If the diversity decreases far enough,

evolutionary methods might not produce any purposeful

offspring by the means of exploration any more. In that

case only exploitation, i.e. investigating promising

regions of the search space in detail can be performed.

The evolutionary process should be designed as a trade-

off between exploration and exploitation [20, p. 42].

Therefore, it is worth and necessary to maintain the

diversity in the population at a level as high as possible.

Two different measures for diversity will be investi-

gated: (1) Genotype diversity (Stanley’s ANN distance

measure [7, pp. 38–40]) and (2) behavioural diversity

(Crowding Distance [9] with maximum value 1 per

dimension). In this paper, the diversity of a population

equals the average distance (which depends on the

measure applied) of each pair of solutions in the

population.

In order to assess whether the differences observed are

statistically significant, statistical tests are carried out.

First, a Friedman test [26] is conducted to determine if

there is any significant difference within a set of samples. If

there is a difference, a pairwise Friedman post hoc test [26]

reveals between which samples the significant differ-

ence(s) exist. For the correction of the family-wise error

rate, Shaffer’s algorithm [27] is applied. Since only suc-

cessful runs are taken into account in AES, there may be

data missing. This does not allow to conduct a Friedman

test. Instead, the Skillings-Mack test [28] that is designed

to deal with incomplete data sets will replace the Friedman

test.

In this section, the effect of the novel sorting mecha-

nisms (Sect. 3.1) introduced in Sect. 2.2 will be investi-

gated. Furthermore, our novel neuroevolutionary

algorithms are compared to already existing multi-

objective versions of NEAT (Sect. 3.2). Finally, a sum-

mary of our findings will be given. All tables in the fol-

lowing sections are emphasized, where the italic stands for

the best value(s) and bold represents the worst value(s). All

values in between will remain de-emphasized.

3.1 Influence of the sorting mechanism

This section investigates the influence of the new sorting

mechanisms introduced in Sect. 2.2. The analysis is based

on the nNEAT variant which uses the R2 indicator as the

only sorting criterion. The reason of this choice is based on

experiments previously carried out for the moDPB [13].

The nNEAT or mNEAT-IB has been referred to in [13]

with only the R2 indicator emerged as the most promising

combination. Therefore, it was selected for the present

series of experiments. Please note that several differences

exist between the experimental set-up in [13], and here,

[13] only investigated a small population of l ¼ 50 indi-

viduals, additionally the maximal runtime was set to

25,000 evaluations. Also all ANNs started with an addi-

tional bias neuron which is not part of the ANNs in this

paper’s experiments; this mainly explains the lower num-

ber of evaluations necessary on average.

The following abbreviations are used in the tables and

figures in this section:

• A1 = nNEAT, Sorting: R2 indicator

• A2 = nNEAT, Sorting: iterative R2 indicator

• A3 = nNEAT, Sorting: QD measure (Q: Non-dominated

Ranking ? R2 indicator, D: Crowding Distance)

Table 3 shows the success rate of the different sorting

mechanisms. It is discernible that all sorting mechanisms

result in near perfect success rates for a small population

size (i.e. l ¼ 50). While the A1 variant exhibits some runs

without achieving a successful outcome, the loss appears

negligible. On the other hand, when l ¼ 500 , the success

rate of A1 deteriorates dramatically. This is caused by the

problem in this case that only a small part of the population

is assigned a positive R2 contribution. The majority of the

population will have a contribution of zero and thereby

remain unsorted. Thus, A1 is not capable to select adequate

parents for offspring creation in many cases since it has no

basis to differentiate. The parent selection in nNEAT is

done using Stochastic Universal Sampling, where each

individual has a chance to be selected as parent. The larger

the population size, the more individuals will remain with a

zero contribution and thereby the parent selection will

happen mostly randomly. In contrast, A2 and A3 sort the

population (nearly) completely and thus give better per-

forming individuals and better chance for reproducing

themselves in offspring creation.
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The average number of evaluations to a solution (AES)

of satisfying fitness is shown in Table 4. When l ¼ 50, A3

requires only 1, 200 evaluations with a comparably small

standard deviation of 600 evaluations. It is discernible that

the number of evaluations necessary increases for all

combinations when the population size is increased. This

happens quite naturally as a larger population means that

there is more space for individuals that do not perform as

well (while this holds vice versa, too). Furthermore, the

number of evaluations for A2 and A3 increases only

slightly. Only for A1, the number of evaluations grows

strongly, compared to the other combinations. While A2

requires the least evaluations for l
 200, A3 achieves the

most consistent results as the standard deviation indicates.

Table 5 shows the mean best fitness values obtained

over 50 repetitions. In nearly all instances, A2 achieves

significantly better fitness values than A1 and A3.

The only exceptions are f1 (time in balance) for l
 200,

where no significant difference between A2 and A3 exists.

Furthermore, when l
 200 the fitness values of A3 are

also significantly better than the values achieved by A1.

Only for l ¼ 50, A3 performs worse than A1; this might be

explained by some outliers increasing the mean fitness.

Summarizing, the fitness values achieved by A1–A3 are

acceptable. The only exception is A1 for l ¼ 500, where

the achieved fitness is not able to compete with the other

combinations’ fitness.

The mean best fitness values are underlined by the

runtime behaviour, which are shown in Fig. 1. The fig-

ure shows the average Hypervolume of the population at

the corresponding number of evaluations. First and fore-

most, it is visible that all combinations converge the fastest

with a small population size. The convergence speed slows

down with increasing population size. In particular for A1,

the deterioration is serious: While it can keep pace with A2

and A3 when l ¼ 50, the convergence speed of A1 for

l ¼ 200 is already much slower than the slowest conver-

gence speed of A2, respectively, A3. The situation even

deteriorates when the population size is increased further.

On the other hand, A1 also converges to the same level as

A3; it only requires more evaluations. Since the experiment

was stopped after 15,000 evaluations, a statement whether

it would also reach that Hypervolume level for l ¼ 500 is

not possible. However, looking at the development during

the first 15,000 evaluations, it appears to be likely. For

l� 200, A3 increases the population’s Hypervolume

minimally faster than A2 but achieves a maximum level of

0.97, while A2 converges nearly to 1. For l ¼ 500, A2

approaches its maximum Hypervolume level minimally

faster than A3, and the final level is also higher than the

one attained by A3. The runtime behaviour shows that A2

and A3 converge similarly fast but A2 always converges to

a higher level than A3 does. A1 converges slower than the

other combinations, and the difference becomes even more

clear when the population size is increased. The difference

of the maximum Hypervolume level achieved by A2 and

A3 may exist since A3 sorts a population not only based on

quality but also diversity. Thereby, it always gives priority

to solutions that are as diverse as possible as well as good

performing. Looking only for well-performing solutions

without regarding diversity can be useful in ‘‘easy to

solve’’ problems, like moDPB with velocities.

Finally, the genotype and behavioural diversity are

shown in Fig. 2, respectively, in Fig. 3. All combinations

for all population sizes start with (nearly) the same diver-

sity. All percentage data occurring in the following para-

graphs refer to this initial value, which represents 100%

here.

Let us first consider the genotype diversity, e.g. Fig. 2.

In general, the diversity decreases during the evolutionary

process. However, the rate of diversity loss is more pro-

nounced for small population sizes. This holds for all

combinations. Considering the different variants, the

diversity of A2 drops to a level of 10–15% of its initial

value and thereby the lowest diversity. This behaviour can

be observed for all population sizes. In contrast, A1 is

affected strongly by the choice of l. For l
 200, its

genotype diversity is only slightly reduced during the

15,000 evaluations. The reason can be found, in combi-

nation with the other data evaluated concerning moDPB,

that only very small progress has been made by A1 when

Table 3 Success rates of the corresponding algorithms

l A1 (%) A2 (%) A3 (%)

SR

50 98 100 100

200 98 100 100

500 52 100 100

A run of an algorithm is said to be successful if it found a solution of

(at least) satisfying fitness within 15,000 evaluations

Table 4 Number of evaluations necessary to find a solution of (at

least) satisfying fitness

l A1 A2 A3

Evaluations

50 1914 2013 1214

± 1785 ± 1840 ± 592

200 5051 2344 2424

± 2741 ± 838 ± 763

500 9317 3864 4410

± 3042 ± 1223 ± 1134

Note that only successful runs, i.e. runs that could find such a solution

within 15,000 evaluations, are regarded
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l
 200. For a small population of l ¼ 50, A1 performed

similar to A2 and A3, and the population’s genotype

diversity also approached a level of 25%. Furthermore the

diversity of A3 only got reduced to a level of 35–40% and

thereby the highest value for genotype diversity in com-

bination with reasonable progress concerning quality.

The situation about the behavioural diversity is similar:

All combinations with all population sizes start at a similar

initial value and then enter a phase of diversity reduction.

This phase is then followed by a phase of increasing

diversity; the larger the population the later in evolutionary

process this phase starts. This indicates that ‘‘after a few

generations’’, the behavioural diversity starts to increase.

This phase is either followed by a third phase of decreasing

diversity that ends in stagnating diversity values (A1 and

A2) or directly in stagnating diversity (A3). Whereas the

diversity of A3’s populations stagnates at a level of 130–

150% and thereby the highest level, A2’s populations

stagnate at the lowest diversity level of 1–10%. For A1

with l ¼ 50; the diversity also drops to a level of 48%. For

l ¼ 200; it even increases to 145%. Only for l ¼ 500; the

behavioural diversity of the population stagnates at its

initial level. The diversity analysis shows that the diversity

of the populations of A2 always attains the smallest values

compared to the other combinations. On the other hand, the

highest diversity values are achieved by A3. The diversity

levels of A1 are dissimilar depending on the population

size applied. This might be caused by the problem that

when the population size is increased a larger absolute

number of solutions remains unsorted every epoch, thereby

the nNEAT is not able to drive the development of the

population into a certain, purposeful direction.

The experiments conducted show that both quality

measures, iterative R2 and QD, are able to fulfil the pur-

pose they have been designed for. While iterative R2

achieves the best quality within a small number of evalu-

ations, see Fig. 1, the QD is able to keep the genotype and

behavioural diversity at a high level, see Figs. 2 and 3.

Nevertheless, all combinations investigated here are able to

solve the given task reliably within a small number of

evaluations. Only A1 requires an increasing amount of

time, proportional to population size.

3.2 Comparison to NEAT-PS and NEAT-MODS

As diversity and quality are both important, the QD mea-

sure is applied as the default sorting mechanism for

mNEAT and nNEAT in the following experiment. Here,

our algorithms mNEAT and nNEAT are compared to other

multi-objective versions of NEAT, namely the NEAT-PS

and NEAT-MODS. The configuration of the four algo-

rithms remains the same as in Sect. 3.1, see Table 2. Note

the following abbreviations for the algorithms:

• A4 = nNEAT, Sorting: QD measure (Q: NDR ? R2, D:

CD)

• A5 = NEAT-PS, Sorting: Pareto Strength

• A6 = NEAT-MODS, Sorting: 1. Non-dominated Rank-

ing ? 2. Crowding Distance

• A7 = mNEAT, Sorting: QD measure (Q: NDR ? R2, D:

CD)

Table 6 shows the success rates of the algorithms. It is

discernible that A4 is successful in each experiment of the

series, while A5–A7 are not able to find a solution of sat-

isfying fitness in each repetition. While the success rates of

A5 and A7 increase with the population size, the success

rate of A6 seems to be independent from the choice of l:

Table 5 Comparison of the average fitness of the best solutions found

within 15,000 evaluations

l ID f1 f2 f3

Mean best fitness

50 A1 0.019 0.002 0.005

± 0.134 ± 0.002 ± 0.023

A2, A3 A2, A3 A2, A3

A2 0.0 0.002 0.001

± 0.0 ± 0.002 ± 0.001

A1, A3 A1, A3 A1, A3

A3 0.06 0.113 0.002

± 0.24 ± 0.306 ± 0.001

A1, A2 A1, A2 A1, A2

200 A1 0.024 0.008 0.007

± 0.127 ± 0.012 ± 0.017

A2, A3 A2, A3 A2, A3

A2 0.0 0.002 0.001

± 0.0 ± 0.002 ± 0.001

A1 A1, A3 A1, A3

A3 0.0 0.003 0.002

± 0.0 ± 0.003 ± 0.001

A1 A1, A2 A1, A2

500 A1 0.198 0.092 0.046

± 0.326 ± 0.213 ± 0.08

A2, A3 A2, A3 A2, A3

A2 0.0 0.002 0.001

± 0.0 ± 0.003 ± 0.001

A1 A1, A3 A1, A3

A3 0.0 0.005 0.003

± 0.0 ± 0.003 ± 0.002

A1 A1, A2 A1, A2

The third line for each algorithm indicates the algorithms to which

statistically significant differences exist. Note that large values

(compared to mean) in standard deviation are caused by a very small

number of outliers
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Table 7 reveals that A4 requires the least number of

evaluations to find a solution of satisfying fitness. The

number of evaluations grows with increasing population

size. In contrast, the number of evaluations required by A6

decreases with increasing population size. This leads to A6

being the best algorithm in the case of the largest popula-

tion size. A5 and A7 are only successful in at most 50% of

all repetitions. For A5, no clear trend in the number of

evaluations could be identified. The standard deviation for

A5 and A7 remains nearly constant. A4 shows only a small

standard deviation which means that it is consistently able

to find solutions of satisfying fitness within a small number

of evaluations. It is an interesting question, whether A7

could find a solution within an even lower number of

evaluations when the population size is increased further.

While A5 and A7 are only successful in a comparably

small number of repetitions, A4 and A6 appear promising

with a preference of A4, nNEAT, due to its singular suc-

cess rate of 100%.

The mean best fitness in Table 8 underlines this finding:

A4 achieves the best mean fitness values for all objectives

and population sizes. These are also significantly better

than the fitness values of A5–A7. The second best fitness

values were reached by A7 in f1 and f2, also with significant

difference the values of A5 and A6. In particular, the fit-

ness values for f1, i.e. the time in balance, are important

here. When the fitness for f1 is inferior, the values of f2 and

f3 are only of small practical relevance. Thereby, a certain

threshold value for f1 could also be defined as constraint.

The mean best fitness values for f1 for A5 and A6 for each

population size are in the range of 0.698–0.967. Thereby,

the best controllers found by A5 and A6 are not able to

balance the cart for more than 30.2% of the experiment’s

duration. This is very likely caused by the default beha-

viour of NEAT to discard large parts of the population

every epoch. Thereby, a well-performing solution might be

found during the evolutionary process, but this in turn may

be discarded before the evolutionary process stops. Our

nNEAT (A4) follows a steady-state approach and thereby

only discards the worst performing solutions each epoch.

Furthermore, mNEAT (A7) does rely on an external

archive that stores the best performing solutions found so

far. The archive represents the population of mNEAT in

the experiment evaluation. This explains why the best
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Fig. 1 Runtime behaviour based on the average Hypervolume value after a certain number of evaluations. l: {0, 1, 2} = 50; {3, 4, 5} = 200; {6,
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fitness values attained by A7 are much better than the ones

of the other ‘‘pure’’ NEAT-based algorithms A5 and A6.

All in all, the best values are obtained by nNEAT and

mNEAT for all population sizes, while with respect to the

success rate or runtime behaviour, NEAT-PS and NEAT-

MODS are also able to find solutions of promising fitness.

The runtime behaviour is shown in Fig. 4. It is discernible

that A4 and A7 initially converge faster for a smaller

population size but achieve the best Hypervolume level for

a medium population size of l ¼ 200. The Hypervolume

level achieved by A4 lies between 0.93 and 0.96, and A7

could reach 0.87–0.92. On the other hand, A6 attained the

best Hypervolume level, 0.83, for a small population l ¼
50 and the worst, 0.76, for l ¼ 500. Finally, A5 is not able

to make considerable progress when l� 200. For a large

population size of l ¼ 500, A5 finally reaches a Hyper-

volume level of 0.5. It is an interesting question whether

NEAT-PS will be able to converge to similar Hypervolume

levels as A4, A6, and A7 when the population size is

increased further. Summarizing the runtime behaviour

shows that A4 reaches a higher Hypervolume level than

A7, A7 a higher level than A6 and, finally, A6 a higher

level than A5. This shows clear performance benefits of all

algorithms over NEAT-PS.

The comparison of the genotype diversity in Fig. 5

reveals that all algorithms start at a similar initial level

which is followed by two contrasting trends: Either the

diversity is reduced during evolution or it increases. A

diversity decrease is observed for A4 and A5. The only

exception is the small population size l ¼ 50 for A5,

where the diversity is increased to 200%. The diversity

increases for A6 and A7. While A4 and A5 stagnate at a

similar level of diversity between 50 and 70%, A7 achieves

a higher diversity (220–270%) than A6 (180–200%). The

difference between the first and second group might be

explained by the nature of NEAT-MODS (A6) and

mNEAT (A7) to foster genotype diversity by speciation.

Furthermore, NEAT-PS seems not to be able make any

reasonable or directed progress and thereby achieves those

dissimilar diversity levels. On the other hand, nNEAT does

not focus on genotype but on behavioural diversity. This

makes the loss of genotype diversity comprehensible in

that case.
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The situation for the behavioural diversity draws a dif-

ferent image, see Fig. 6. All algorithms start at a similar

level and first enter a phase of diversity reduction. While

A5 ends in diversity stagnation between 60 and 70%,2 A4

and A7 enter a phase of diversity enlargement. The smaller

the population size is, the earlier in the evolutionary pro-

cess this phase starts. While A4 and A7 both increase the

diversity, their behaviour differs over the course of the

evolution. A4’s populations’ diversity stagnates at levels

between 145 and 165%. The diversity of A7’s populations

seems to increase continuing over the 15,000 evaluations

and might grow further with more evaluations given. At the

end of the evolutionary process, it achieves diversity levels

between 120 and 145%. For both, A4 and A7, the diversity

attains a higher level when a smaller population is applied.

For A6, the impact of the initial reduction phase is
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Table 6 Success rates of the corresponding algorithms

l A4 (%) A5 (%) A6 (%) A7 (%)

SR

50 100 14 74 26

200 100 12 60 50

500 100 36 66 50

A run of an algorithm is said to be successful if it found a solution of

(at least) satisfying fitness within 15,000 evaluations

Table 7 Number of evaluations necessary to find a solution of (at

least) satisfying fitness

Evaluations

l A4 A5 A6 A7

50 1961 7770 6850 4192

± 1152 ± 3239 ± 2837 ± 3389

200 3027 6038 5607 5572

± 958 ± 3574 ± 3825 ± 3214

500 6064 7568 4015 7730

± 1687 ± 3341 ± 2138 ± 3059

Note that only successful runs, i.e. runs that could find such a solution

within 15,000 evaluations, are regarded

2 Except for l ¼ 50, then the diversity stagnates at the initial value.
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comparably small. On the other hand, it is not capable to

increase its populations’ diversity at all, except for l ¼ 50

where it attains a level of 125%. The fact that nNEAT (A4)

and mNEAT (A7) achieve higher diversity levels than the

other algorithms might be caused by the quality measure

QD that promotes quality as well as behavioural diversity.

Furthermore NEAT-MODS (A6) also applies the Crowd-

ing Distance as secondary sorting criterion and thereby

achieves a higher diversity than A5 does. Note that due to

the diversity value of the population is being averaged over

the population size, a large population is likely to contain

more similar individuals on the whole than a small popu-

lation does.3

3.3 Summary of the multi-objective double pole
balancing experiments

This section compared different quality measures for

nNEAT (Sect. 3.1) and the nNEAT and mNEAT to NEAT-

PS and NEAT-MODS (Sect. 3.2). The obtained results

show that the QD measure is very promising for driving the

evolutionary process not only to find well-performing but

also diverse solutions. Furthermore, nNEAT as well as

mNEAT are able to outperform NEAT-PS and NEAT-

MODS with respect to the given problem.

Note that all investigated algorithms used the same

parameter configuration in the experiment. Future work

will investigate the influence of additional effort being put

into parameter adjustment to improve the performance of

our algorithms even further. The population size also plays

an important role. In particular, NEAT-PS seems to depend

strongly on an adequately large population. One major

problem occurring with NEAT-PS might be its difference

to SPEA2: While SPEA2 relies on Pareto strength in

combination with a diversity measure [11], NEAT-PS does

only apply the Pareto strength approach without respect to

diversity [10]. Future research will also investigate

approaches for dynamically adjusting the population size.

An example is represented by IPOP-CMA-ES [29] which

increases its population size with every restart. Also using a

large maximum number of evaluations might be beneficial

as indicated in this section. Of course, the superiority of our

algorithms over other multi-objective variants of NEAT

does not allow to claim a general preference of our algo-

rithms over the others. Therefore, further experiments, for

example, the multi-objective double pole balancing with-

out velocities, and experiments with more than three

objectives will be conducted in future research.

Table 8 Comparison of the average fitness of the best solutions found

within 15,000 evaluations

l ID f1 f2 f3

Mean best fitness

50 A4 0.0 0.048 0.003

± 0.0 ± 0.177 ± 0.004

A5, A6, A7 A5, A6, A7 A5, A6, A7

A5 0.959 0.33 0.011

± 0.177 ± 0.394 ± 0.013

A4, A7 A4, A6, A7 A4, A6, A7

A6 0.794 0.564 0.067

± 0.402 ± 0.486 ± 0.151

A4, A7 A4, A5, A7 A4, A5, A7

A7 0.047 0.231 0.076

± 0.151 ± 0.229 ± 0.093

A4, A5, A6 A4, A5, A6 A4, A5, A6

200 A4 0.0 0.003 0.003

± 0.0 ± 0.003 ± 0.002

A5, A6, A7 A5, A6, A7 A5, A6, A7

A5 0.967 0.208 0.032

± 0.15 ± 0.325 ± 0.055

A4, A6, A7 A4 A4, A6, A7

A6 0.698 0.571 0.121

± 0.461 ± 0.493 ± 0.21

A4, A5, A7 A4 A4, A5, A7

A7 0.025 0.155 0.064

± 0.084 ± 0.234 ± 0.104

A4, A5, A6 A4 A4, A5, A6

500 A4 0.0 0.007 0.004

± 0.0 ± 0.008 ± 0.003

A5, A6, A7 A5, A6, A7 A5, A6, A7

A5 0.893 0.242 0.025

± 0.3 ± 0.375 ± 0.055

A4, A6, A7 A4, A6, A7 A4, A6, A7

A6 0.835 0.638 0.04

± 0.359 ± 0.482 ± 0.091

A4, A5, A7 A4, A5, A7 A4, A5, A7

A7 0.045 0.142 0.058

± 0.113 ± 0.274 ± 0.101

A4, A5, A6 A4, A5, A6 A4, A5, A6

The third line for each algorithm indicates the algorithms to which

statistically significant differences exist. Note that large values

(compared to mean) in standard deviation are caused by a very small

number of outliers

3 All ANNs initially have the same topology, the only difference are

the weights of the links. As all weights are set randomly within range

from -Weight Mutation Rate to Weight Mutation Rate, a
large population will contain more similar solutions than a small does.

The diversity of a small population naturally attains a higher level

than a large population in many cases. Note that this also depends on

the prevalent selection pressure and other factors, e.g. the variation

operators.
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4 The fighting game AI competition

As stated before, games and digital games have experi-

enced considerable research interest in the AI community.

Aside from the quest for challenging non-player characters,

digital games are an interesting testbed for AI algorithms.

In order to assess and compare the performance of different

techniques, several platforms and competitions have been

introduced. Lu et al. [30] give an overview over different

competitions that have been carried out back in 2013. A

well-known example is based on TORCS (The Open

Racing Car Simulator [31]) which aimed for developing

AI-controlled drivers. However, not only racing car simu-

lations have been considered. The earliest publications

concerning AI and games can be found in the area of board

games [1, p. 119]. Further examples include card games,

arcade games as Pac-Man or the often used variant Ms Pac-

Man, or strategy games as StarCraft, see the overview in [1,

pp. 119–145]. Lu et al. [30] suggest another genre for

comparing AI in competitions: fighting games, which have

attracted research interest for several years, see e.g. [32].

Similar to well-known commercial games as Tekken4

and Street Fighter5, they introduced a novel Java-based

fighting game framework, specialized on developing agents

based on artificial intelligence. The FightingICE platform

is a 2D fighting game simulation which provides the

framework used in the FighTing Game AI Competition

(FTGAIC). It is developed by the Intelligent Computer

Entertainment Lab. (ICE Lab.) at the Ritsumeikan

University, Japan. The program is implemented in Java but

also offers a wrapped Python platform. The framework

allows researchers and programmers to develop their own

AI players for the FTGAIC [33].

There have been a lot of interesting contributions

throughout the annually competitions based on different

approaches. These include for example hierarchical plan-

ners [34] or dynamic scripting [2]. A hierarchical task

network (HTN) groups high-level tasks into subordinate

compound-tasks and primitive tasks. Every task can

depend on multiple pre-conditions. Selecting a path
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4 http://www.tekken.com, last accessed: 2019-09-12.
5 https://streetfighter.com, last accessed: 2019-09-12.
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through the network thus may happen from left to right

(priority-based) or in any other way, e.g. using a heuristic

[34]. Dynamic scripting combines the strengths of scripting

with the capability of regarding even initially unforeseen

situations. Therefore, a script is composed dynamically

during runtime based on a set of predefined rules [2]. Note

that hierarchical planners as well as dynamic scripting and

other rule-based approaches require expert knowledge

about the problem domain [2, 34].

On the other hand, approaches exist that do not require any

domain-specific knowledge. Among these are genetic pro-

gramming [35], neuroevolution [36], and other evolutionary

approaches, and Monte Carlo tree search [3]. The first two

are based on the biological process of evolution and aim at

iteratively creating solutions of higher performance by

mutating and combining existing ones. Theymainly differ in

the representation of their solutions: While genetic pro-

gramming typically encodes candidate solutions as binary

trees, where nodes are functions or logical operators and

leaves represent the data being processed [35], neuroevolu-

tion evolves artificial neural networks as described in this

paper. Note that Martı́nez-Arellano et al. [35] replaced the

binary tree by a sequential encoding of possible actions. On

the other hand, Monte Carlo tree search iteratively builds a

search tree, where every path from the root to a leave is a

possible sequence of actions. These are evaluated and new

leaves are added to the tree until a predefined budget is

reached. The most promising path, i.e. the one with the

highest reward is selected finally [37].

Table 9 provides a short overview on approaches used

for fighting games since 2014. The FooAI, second place of

the official 2017 competition, is based on Monte Carlo tree

search (MCTS) [37], for example, whereas the MizunoAI

[38] predicts the opponent’s next action using the k-nearest

neighbour algorithm [39] and tries to find a useful coun-

teraction. Table 10 gives a brief overview over some AI

fighters of the last competitions.

In this paper, a novel AI player for the FTGAIC based

on neuroevolution is introduced. Furthermore, the question,

whether using multiple conflicting fitness functions and

employing multi-objective neuroevolution results in agents

that can cope with different opponents, is investigated.

In the case of success, our results may show that it is

possible to derive general well-performing fighting strate-

gies. This may deliver an answer on the main research

questions the ICE Laboratory defined:
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• Is it possible to realize general fighting game AI? In

other words an AI that is strong against any opponent,

human and artificial, in any play mode.

• If the first question can be answered with yes, how to

realize such an AI?

As stated in the introduction, several researchers have

considered ANNs as controllers in fighting games, for

example [5, 32, 36, 40, 41]. The approaches show that

neural networks may operate as well-performing con-

trollers. The approaches range from traditional neural

networks over neuroevolution to deep learning. Yoon and

Kim [42], for example, used deep Q-Networks to evolve an

AI controller for the FTGAIC, based on visual input only.

A drawback is that all are using only a scalar fitness

function which results in only one objective that can be

optimized. While multiple fitness functions can be mapped

into a single one using scalarization, where each fitness

function is assigned a weight determining its importance;

this has the disadvantage that the user has to assign the

weights a priori without further knowledge about the range

of solutions existing [20, p. 196]. To avoid this and other

disadvantages, multiple fitness functions can be optimized

concurrently. Multi-objective optimization for digital

games has been considered before. For example, Schmitt

and Köstler [43] apply a multi-objective genetic algorithm

for finding optimal parameter configurations for opposing

players’ units in the real-time strategy game StarCraft II.

However, we are unaware of approaches for neuroevolu-

tion and fighting games.

This paper considers an ANN-controlled agent for the

FTGAIC. The ANN is evolved using the novel multi-ob-

jective neuroevolutionary algorithms previously described

taking several conflicting fitness functions into account.

Neuroevolution necessitates the simulation of a large

number of fights, i.e. games. Every game in the case of the

FTGAIC consists of three rounds each with a duration of

60 seconds. For evolving ANNs efficiently, a considerable

reduction in the simulation time is required. For this rea-

son, several changes to the source code6 of the FTGAIC

have become necessary.
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6 The original source code is available publicly on GitHub: https://

github.com/TeamFightingICE/FightingICE, last accessed: 2019-09-

12.
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The game is limited to 60 frames per second (fps). In

every frame both opponents are required to return an input

to the simulation. This means that each controller has a

timeslot of 1 s/60 � 16:67 ms to perform necessary com-

putations. Because each controller runs in a separate

thread, it is necessary that both threads and the main thread

of the FTGAIC are synchronized each frame. The syn-

chronization is handled in the AI controller’s class. As a

consequence of multi-threading, the FTGAIC may not run

with 60 fps on older, respectively, slower hardware.

For evolving ANNs as controllers for AI players in the

FTGAIC, it is necessary to remove unused features from

the implementation. Among these is the 60 fps limitation of

the game, all classes belonging to visual or acoustical

effects and all logging functions. By removing graphics

and sound from the game, the storage size of the game

resources could be reduced which significantly increases

the loading speed. The result of operating without these

features is a comparatively fast simulating version of the

game. The drawback is that due to the synchronization of

multiple controller threads, the controllers’ commands are

only executed in very few frames because the simulation

proceeds without waiting for the threads.

To solve this problem, the multi-threading component

has been replace by a single thread in which all computa-

tions are performed. The advantage of a single-threaded

simulation is that it is independent of the executing com-

puter’s hardware. Additionally, synchronization between

multiple threads is not necessary any more. The drawback

of this approach is that the simulation only uses a single

CPU core for computation. This drawback can be

Table 9 Selected approaches for fighting games

Authors Year Methods Platform References

Park and Kim 2014 Multi-armed bandit FightingICE [44]

Yamamoto et al. 2014 k-nearest neighbour FightingICE [38]

Asayama et al. 2015 Linear extrapolation, k-nearest neighbour FightingICE [45]

Majchrzak et al. 2015 Dynamic scripting reinforcement learning FightingICE [2]

Mendoça et al. 2015 Deep reinforcement learning neural networks Boxer [5]

Sato et al. 2015 Switching, rule based FightingICE [4]

Zuin and Macedo 2015 Hidden Markov models Own development [46]

Kristo and Maulidevi 2016 Neuroevolution FightingICE [36]

Zuin et al. 2016 Evolutionary algorithms Own development [47]

Demediuk et al. 2017 Monte Carlo tree search FightingICE [48]

Kim and Kim 2017 Monte Carlo tree search FightingICE [49]

Neufeld et al. 2017 Hierarchical task network FightingICE [34]

Nguyen et al. 2017 Deep convolutional neural networks FightingICE [50]

Yoon and Kim 2017 Deep Q learning FightingICE [42]

Martı́nez et al. 2017 Genetic programming M.U.G.E.N. [35]

Pinto and Coutinho 2018 Hierarchical reinforcement learning Monte Carlo tree search FightingICE [3]

Table 10 Overview over the opponents selected

Name References Remarks

FooAI – Optimized version of MctsAi

JayBot_GM [51] Combination of genetic algorithm and MCTS for character ZEN

JerryMizunoAI [53] Improved version of MizunoAI using fuzzy control to avoid MizunoAI’s ‘‘cold start problem’’, when no data for

prediction are available

KotlinTestagent – Optimized version of MCTS-based GigaThunder with respect to performance and behaviour

MctsAi – Sample AI of FTGAIC, based on MCTS

Thunder – New version of GigaThunder, improvements in agent behaviour

The column References lists literature available about the corresponding fighter
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compensated in turn by running multiple simulations con-

currently on a single computer.

Another drawback of our lightweight implementation of

FTGAIC is that it cannot be used to evolve visual-based

AI, because all methods and dependencies handling visual

data have been removed.

5 ANNBot: an ANN-controlled FTGAIC agent

This section provides the details of applying our neu-

roevolutionary approaches to derive a controller for the

FTGAIC. To this end, several design decisions are required

which range from the information made available to the

network over the outputs and actuators of the resulting

ANNBot to the fitness functions used during the training.

Finally, a controller evolved by our multi-objective neu-

roevolutionary algorithms is evaluated against several

other AI fighters. First of all, an interface between the

neuroevolution and the FightingICE platform needed to be

established.

5.1 The ANNBot

This section describes the new AI for the FTGAIC, called

ANNBot. The ANNBot is controlled by an artificial neural

network which can either be set by reference to a Java

object or loaded from an XML-file. The first variant is used

for the training and evaluation of the ANNs, while the

latter can be applied for participating in competitions using

a full version of FTGAIC.

It is worth to mention that our ANNBot is much less

time-consuming than MCTS-based AI opponents, e.g.

FooAI and MctsAi. Due to the fact that MCTS needs a

large number of iterations to find a successful strategy at

each frame, while the neural network controller of

ANNBot needs only a single iteration, our ANNBot is (1)

computationally efficient and (2) its quality is independent

from the hardware running on. Of course, it must be trained

beforehand. Furthermore, it can be used as a reference to

develop new AI players for the Fighting Game AI

Competition.

5.1.1 The neural network: input layer

The ANNBot extracts different information about the game

state every frame. All necessary information is normalized

to values in the interval [0, 1], respectively, set to �1 if not

existing.

After conducting preliminary experiments to assess the

effects of input combinations, the following seven input

values have been selected:

Let w ¼ 960 be the width of the arena and h ¼ 640 the

height of the arena. First, the ANNBot is provided its

current horizontal location xp which can take a value in

range ½0;w � 1�. Note that a character’s location in x- and

y-direction is always the centre of its hitbox7 throughout

this paper. Concerning the vertical location, the ANNBot is

only provided an information whether the character is

currently in air (1) or standing or crouching on the ground

(0). The current location determines which attacks are

available. Additionally, the ratio of available EP of the

character and maximum EP necessary for starting the most

EP consuming attack is given to the ANNBot. The

ANNBot further provided the current distance in x- and y-

direction to the opponent. As the FTGAIC always converts

all values and inputs of each character p as if it would stand

left of the opponent o and looking towards it, the x-distance

can be computed as

dxðp; oÞ ¼
xp � xo

�
�

�
�

w
:

In contrast, y-values are not converted by the simulation.

Therefore, the ANNBot has to distinguish between three

scenarios: equal y-location of both fighters (dy ¼ 0:5), the

player is above the opponent (dy\0:5) and the player is

below the opponent (dy [ 0:5)

dyðp; oÞ ¼ 1

2

yp � yo

h
þ 1

� �

:

The last two input values are the distance in x- and y-

direction to the nearest dangerous projectile. As projectiles

fired by the own character cause no damage to itself, only

the opponent’s projectiles are dangerous. These values are

determined in the same way as the distance to the oppo-

nent. If no dangerous projectile exists, both values are set

to �1. This sums up to seven input values each taking a

value between [0, 1] or �1.

The vector of input values does not take any velocities

into account. Furthermore the controller is not aware of

what action is currently performed by its character or the

one of the opponent. When the opponent attacks, it might

be useful to provide the ANN the location or distance to the

hitbox of the attack. Additionally, predicting some infor-

mation like the expected position of the next attack’s hit-

box or the location of its own or the opponent’s character in

the next frame(s). All these and further information might

be taken into account in a future version of the ANNBot.

For sure, these can also be prepared and combined in a

7 Each character and each attack have a certain rectangle that

describes their location, called hitbox. In FTGAIC, this is an

abstracted version of collision detection: If the hitboxes of a character

and an attack collide or overlap, the attack was successful and the

character gets hit by that attack.
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smart way in order to let the ANNBot learn the meaning of

the input values quickly.

5.1.2 Output layer

In the FTGAIC, there are seven keys a player can hit each

frame: attacks A, B, C and movement directions up, left,

down, and right. Most combinations of keys cause simple

actions as movement or an attack. Additionally, there are

combinations of keys that are performed over a certain

number of frames, for example 1. Down, 2. Down ?

Forward, 3. Forward ? Attack-Button C causes a fireball

to be thrown. There are only a few valid combinations of

keys over one or more frames. Namely there are 56 dif-

ferent actions a player can perform. Only 40 of the 56

actions [51] can be triggered by the player, whereas the

remaining actions are performed as a consequence of a

previous action, for example, recovering from a suffered

hit or a performed attack. The 40 actively triggered actions

consist of movement, guarding, close, and distant combat.

As seven keys allow 128 different permutations while only

40 of these are linked to a valid action, the ANN’s output

cannot be simply seven values determining which keys are

hit in the current frame. This would lead to a large part of

the output values causing invalid key combinations. Zuin

et al. [47] have investigated evolutionary algorithms to find

combos and unexpected key sequences. Although their

results are promising and could easily be adopted to our

needs, for example by defining an additional fitness func-

tion counting the proportion of valid output values, we

decided to employ another procedure which always pro-

duces valid combinations.

The proposed approach aims at keeping the controller

network as small and simple as possible by reducing the

number of output values to a minimum. Namely there are

three output values o1 to o3 which always will contain a

value between zero and one each. Two types of actions a

character can perform need to be distinguished: Movement

and attacks. While movement comprises all movement

actions, including jumping and crouching, and guarding

positions, attacks can be in close or far distance. The output

value o3 determines whether the agent will move or per-

form an attack in the next frame(s): If o3 � 0:5 , the agent

will move; otherwise, it will try to start an attack.

The output values o1 and o2 determine the x- and y-

position the next action of the agent aims to. Here,

movement (Fig. 7) and performing an attack (Fig. 8) need

to be distinguished.

The range of length one (for o1 and o2) is split into

several intervals of different length, as shown in Fig. 7.

One can image this selection approach like the analogue

stick of a game controller. The output values (0.5, 0.5)

indicate the initial position of the analogue stick, which is

denoted by A here. Intuitively, this should result the agent

in doing nothing; however, in order to avoid receiving

unnecessary damage, the agent should always ‘‘do some-

thing’’. Therefore, the agent would take a standing guard-

ing position in that case. The example output values

(0.8, 0.2) which are marked by B here, i.e. a movement of

the analogue stick into the upper right direction, will make

the ANNBot perform a jump forwards. Note that all actions

are selected based on the � operator: For example

(0.5, 0.25) will select the Jump action and (0.75, 0.75) the

Guard (Standing) action. If the character is currently not

standing on the ground, it does not have any influence on

its movement until it lands on touches the ground again. In

that case, the character will always perform the in-air

guarding position. Furthermore, keep in mind that the

pixels of the arena in FTGAIC are numbered according to

the pixels of a monitor starting by (0, 0) in the top-left-

corner and ending at ðw � 1 ¼ 959; h � 1 ¼ 639Þ in the

bottom-right-corner, which explains our choice of the

layout.

In the case o3 [ 0:5 , an attack will be started in the next

frame. The way how the next attack is selected is shown in

Fig. 8. Note that the attacks available for execution depend

on the character’s current y-location: There is a different

set of attacks when the player is standing or crouching on

the ground as if it were jumping. Furthermore, close and far

combat attacks are distinguished. If o3 � 0:75 , a close

attack will be chosen; otherwise, if o3 [ 0:75 a far attack.

This comprises four sets of different attacks, and Fig. 8

shows a single exemplary set containing five attacks.

For the selection, some initial preparations are carried

out. Each attack contains information about the associated

hitbox. The hitbox defines a rectangle relative from the

fighter’s position starting at ðxmin; yminÞ and ending at

ðxmax; ymaxÞ. First, all attacks are sorted into four groups,

depending on the location where these can be started

(ground, air) and the location of effect (close, far). Then,

the smallest and largest x- and y-values in each group are

determined, which allows to normalize all values to the

interval [0, 1] as shown in Fig. 8. This in turn allows to

create a map of the attacks’ hitboxes as shown exemplary

in Fig. 8. As empty and overlapping areas may occur,

unlike Fig. 7, this map contains the challenge to handle

different situations:

1. Exactly one hitbox matching the position is selected by

output values o1 and o2. The attack the corresponding

hitbox belongs to is chosen as next action. Example:

Location A in Fig. 8.

2. At least two hitboxes covering the position selected by

the two output values. In that case, the attack with the

higher expected damage is carried out. Example:

Location B in Fig. 8.

Neural Computing and Applications (2020) 32:13885–13916 13905

123



3. There is no hitbox at the position that has been

selected. As this situation may arise quite often,

depending on the number of attacks available and

their corresponding hitboxes, the agent has to select an

adequate alternative action. Here, the shortest

(squared) euclidean distances from the centre of each

hitbox in the map to the selected location are deter-

mined. The hitbox with the smallest distance to the

given location will get its corresponding attack

performed. Example: Location C in Fig. 8. The

figure only depicts the distances from attacks 1, 2,

and 3 hitboxes to location C, as the other hitboxes

obviously do not come into question. Finally, attack 1

will be selected.

Before the corresponding attack for o1 and o2 is selected,

the map of attacks possible is filtered for attacks that the

character can start due to energy constraints:

EPattack �EPcharacter. Three of the groups contain attacks

that do not require any EP to be started, only the group

(Ground, Far) consists of attacks that all require a certain

amount e of EP. In the case that EPattack\e it may happen

that no attack is found in that group. Then, the ANNBot

will fall back to perform a movement action.

The selected action, movement or attack, is executed

using the CommandCenter-class over at least one frame

in the simulation. If a multi-frame-input has been selected

in a previous frame, an input is already defined in the

current frame. In this case, the player is not allowed to

perform another action in the current frame, and the ANN

is not updated to save computation time.

5.2 Training

The training of the ANNBot can be done in two different

ways: Either against an already existing opponent like

FooAI or MctsAi, or against other ANN-controlled oppo-

nents. Because FooAI and MctsAi are both based on

MCTS, see e.g. [1, p. 45f], they repeat as many MCTS

iterations as possible in the 16.67 ms timeslot per frame.

Thus, the evolution would progress very slow (in nearly

real time) fighting against those AI opponents. Additionally

fighting against a single opponent could lead the ANNs to

being overfitted to exactly the opponent they have been

trained with.

To avoid overfitting and to perform as many evaluations

as possible in very little time, a competitive coevolutionary

approach may be useful, see e.g. [20, p. 223f] for more

information. This first case study follows the first approach

using a small number of evaluations. The coevolutionary

approach will be investigated in future research.

Every solution is evaluated for five fights against FooAI

and JayBot_GM each and not against any other ANNBot.

Every solution is only evaluated once for ten fights, i.e. if it

has just been created. The advantage of this procedure

compared to the coevolutionary approach is that it gener-

ally requires less fights for evaluating a solution. To

Fig. 7 Map for selecting the next movement or guarding action. Note

that Move H equals o1 and Move V equals o2

Fig. 8 An exemplary map for selecting the next attack. The rectangles

labelled from 1 to 5 are the corresponding hitboxes. Note that there

exist four different maps depending on the character’s location and

whether a close or far combat attack is to be performed. Each map is

filtered by the EP the character possesses and the EP the attacks

require to be started. This ensures that the ANNBot does only select

and try to start an attack that it really can perform. Note that Move H
equals o1 and Move V equals o2
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evaluate the first generation 10 l fights are necessary, in

every following generation only the k new solutions need

to be evaluated, requiring 10k fights. Furthermore, this

approach focuses on beating the specified opponents FooAI

and JayBot_GM and also opponents that behave similarly.

As more than one reference opponent is applied for eval-

uation, this approach can also derive a generally good

performing fighting game AI against different types of

opponents. Every fight goes over three rounds. The fitness

of each solution is averaged over its results in all fights.

The fitness of newly created solutions is also determined as

the average fitness over all fights.

5.3 Fitness functions

To evolve controllers of desired behaviour, several fitness

functions are defined. These are promoting properties like

win–loss rate, offensive and defensive behaviour. All fit-

ness values are in range 0 to 1 and have to be minimized.

The performance of an ANNBot a fighting against an

opponent b can be assessed by:

1. The ratio of the rounds won by a in relation to the total

number of rounds. This fitness function shall promote

ANNs that win more rounds than their respective

opponent. Note that by default rndtotal ¼ 3, other

settings are also possible. Note that if a lost the fight

against b, this fitness function always returns 1.

Thereby, it promotes solutions that are not only able

to win many rounds but also enough rounds to win the

corresponding fight

f1ðaÞ ¼
1; if rndwonðaÞ\rndwonðopponentðaÞÞ

1� rndwonðaÞ
rndtotal

; otherwise

8

<

:
:

2. The total damage the opponent of a has received. As

this value is to be maximized its value has to be

subtracted from 1 in order to convert it to a minimiza-

tion problem. The constant dmgmax ¼ 1000 denotes the

maximum regarded damage per round. If the damage

exceeds this limit, the damage rate is capped to 1. This

fitness function fosters controller’s that are offensively

strong and able to cause much damage, not only by

direct attacks but also indirect possibilities to cause

damage to the opponent, for example by performing

attack combos

f2ðaÞ ¼ 1�min 1;
dmgðopponentðaÞÞ
rndtotal � dmgmax

� �

:

3. The total damage the ANNBot a has expected.

Contrary to f2 this value has to be minimized naturally.

It promotes controllers that either are capable of

avoiding getting in contact with the opponent,

respectively, the effects of the opponent’s attacks or

is able to defend the opponent’s attacks

f3ðaÞ ¼ min 1;
dmgðaÞ

rndtotal � dmgmax

� �

:

4. The total number of close combat attacks started by the

ANNBot a. Throughout preliminary experiments with

only the three previous fitness functions, the ANNBot

almost always discovered the strategy to fire projectiles

on the opponent permanently. To foster close combat

attacks f4 has been introduced, the plus one in the

divisor ensures to avoid division by zero in case that no

close combat attacks were started

f4ðaÞ ¼
1

attackscloseðaÞ þ 1
:

The fitness functions described above promote different

behaviours simultaneously: First, the generally desirable

property having won more fights than lost (f1) and causing

more damage (f2) than receiving (f3) are strengthened.

These properties lead to a controller that is either good in

offensive or defensive behaviour or both. Promoting the

ANNBot to use as many close combat attacks as possible in

addition is an auxiliary fitness function in order to avoid the

inflationary use of projectiles and to foster human-like

behaviour. The fitness functions are conflicting, in so far

they force the training of defensive and offensive beha-

viour simultaneously. Note that—for the final competi-

tion—f1 is the most important fitness function, because our

goal is to evolve ANN controllers that are capable of

defeating existing opponents. The remaining fitness func-

tions mainly support evolving promising behaviour.

5.4 Experimental results and discussion

As described in Sect. 5.2, ANNs have been trained against

the well-performing opponents FooAI and JayBot_GM. A

single run of the experiment using the algorithm nNEAT

with the QD measure for sorting has been conducted. The

population size was set to l ¼ 50 individuals. The control

parameters and the activation function remain unchanged.

The experiment was terminated after 5000 solutions

have been evaluated. Note that the MCTS algorithm used

in FooAI and JayBot_GM achieves better results with an

increasing number of repetitions. The FooAI performs as

many repetitions as possible during the 16.67 ms available

per frame, our test system used 100–200 repetitions per

frame on average. The performance of FooAI heavily

depends on the performance of the computer executing the

simulation. Many fighters are based on MCTS, while

FooAI has some random components other fighters always

result in the same behaviour when the number of MCTS
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iterations remains the same. For avoiding some fighters

behaving deterministically and making our results compa-

rable, a random number of MCTS iterations within

between 200 and 225 is done every frame. As the number

of iterations is drawn randomly, on average, there will be

212 iterations.

As noise is present, although desired, measures have to

be taken to reduce the influence of noise when evaluating

and especially comparing the solutions among each other.

Playing ten games over three rounds per solution equals

resampling with ten samples. The fitness is the average

value for each fitness function over the ten games played

[52]. Finally, the population is sorted using the QD

measure.

The best performing ANN with respect to f1, i.e. the

ratio of won and lost rounds, of the final external fitness

evaluation was selected for further investigation. The ANN

has been found after 2,100 evaluations and consists of

seven input, three output and no hidden neurons. There are

23 links of which no one is recurrent. It is interesting to see

that no hidden layer is required for a well-performing bot.

This may hint at several phenomena. One possible reason

may be that the opponents may be exploited by a learning

approach which is able to detect non-obvious weak points.

Further research is required, however. The selected indi-

vidual was evaluated for 200 fights consisting of three

rounds each against the opponents listed in Table 10.

The results are shown in Table 11 and the corresponding

fitness values in Table 12.

Note that our experiments are subject to the following

restrictions: The FTGAIC offers three different characters

to play, each with strengths and weaknesses. All experi-

ments were performed only with the character Zen (vs.

Zen). Additionally, the ANNBot always played as player 1

starting in the left half of the fighting arena. This has only

small to no influence on the character’s fitness, because in

most matches the players are moving and switching posi-

tions within the first few frames of the match.

Table 11 gives an overview over the fights that have

been won (or lost) by the ANNBot against the six oppo-

nents. Remarkable is that the ANNBot using the evolved

controller was capable of winning at least 51.6% of all

fights (without ties being taken into account) that have been

fought against four of the six opponents. Against FooAI,

JerryMizunoAI and MctsAi, the ANNBot was able to win

nearly all fights. The opponents KotlinTestAgent and

Thunder could not be beaten by the ANNBot in more than

11, respectively, 1% of all fights. On the other hand, in

preliminary experiments, the ANNBot was trained against

Thunder and KotlinTestAgent, the evolved controllers

were able to win a large number of fights against these

opponents. They were able to discover the weaknesses of

the corresponding opponents but were only successful

against the opponents they have been trained with. As this

is not a generally superior AI, we do not list these exper-

iments’ results here. There may be several causes for the

observations made here. First of all, the opponents may not

show a sufficient diverse behavioural range in order to

provide the necessary information for a generalization.

While we strongly suspect that this may be a significant

contributing factor, a closer look at other potential con-

tributing factors, e.g. the definition of objective functions is

required.

Compared to the results shown in [40], where an ANN

of fixed topology has been trained to fight against MctsAi

and other AI opponents, our ANNBot performs much

better: The ANNBot was able to win 99% of all fights

against MctsAi, the ANN evolved in [40] is only successful

in four of 30 rounds (with character Zen), which comprises

a success rate of 13.3%. Note that MctsAi is the only

mutual opponent that has been investigated in this paper

and [40]. As our ANN is compared against the state-of-the-

Table 11 Number of fights that have been won, tied, or lost by the

ANNBot using the corresponding controller

Opponent Won Tie Lost Success rate

FooAI 198 0 2 99.0

JayBotGM 95 16 89 47.5 (51.6)

JerryMizunoAI 199 0 1 99.5

KotlinTestAgent 22 0 178 11.0

MctsAi 192 0 8 96.0

Thunder 2 0 198 1.0

Additionally, the proportion of successful fights is provided, the

number in brackets is the success rate without ties being taken into

account

Table 12 Fitness values of the ANNBot against the different

opponents

Opponent f1 f2 f3 f4

FooAI 0.053 0.599 0.163 0.594

±0.147 ±0.039 ±0.051 ±0.411

JayBot_GM 0.612 0.833 0.182 0.481

±0.384 ±0.048 ±0.079 ±0.427

JerryMizunoAI 0.043 0.758 0.147 0.975

±0.126 ±0.028 ±0.027 ±0.124

KotlinTestAgent 0.925 0.917 0.431 0.633

±0.215 ±0.066 ±0.155 ±0.396

MctsAi 0.115 0.712 0.136 0.673

±0.228 ±0.061 ±0.055 ±0.399

Thunder 0.993 0.953 0.302 0.293

±0.066 ±0.041 ±0.069 ±0.387
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art opponents of FTGAIC, it can be concluded that our

ANNBot performs better than the bot evolved in [40].

The fitness values of our ANNBot against the different

opponents are given in Table 12. By definition the value of

f1 is proportional to the number of won fights. The large

standard deviation against FooAI and JerryMizunoAI is

caused by a small number of outliers. The values for f2
range from 0.6 to 0.95 which comprises that the opponents

received between 400 and 50 damage points per round on

average. The worst values in f2 were achieved against

Thunder and KotlinTestAgent. On the other hand, the

values for f3 reach from 0.14 to 0.43 which means that the

ANNBot received between 140 and 430 damage points per

round on average. The most damage points the ANNBot

received against KotlinTestAgent and Thunder. The fitness

function f4 has been introduced in order to foster close

combat attacks too. The values in Table 12 indicate that the

selected controller does not apply close combat attacks in

general—only one to three attacks per fight. All good

performing controllers with respect to f1 were not using

close but far combat. Thus, the fitness function f4 could not

keep the ANNBot from using far combat attacks con-

stantly. A solution could be not to divide close and far

combat attacks in the selection procedure described in

Sect. 5.1.2. We assume that the ANNBot then will also

choose close combat attacks, and this in turn would likely

require a larger number of evaluations to train the

ANNBot.

To achieve this and enable to perform a large number of

evaluations within very few time, future work will conduct

two necessary steps: First ANN controllers will be trained

to copy their opponents’ behaviour, for example from

previously recorded fights. Then, a set of sufficiently

similarly behaving copies of existing AI opponents will be

used as reference to train ANNs. This will probably enable

us to evolve more complex structures and behaviours of

our ANNBot.

We additionally analysed the ANNBot using the official

FTGAIC simulation, and thereby found that the controller

confirmed our expectation regarding f4: The ANNBot tries

to reach one of the corners of the fighting arena and then

continuously fires projectiles in the opponent’s direction

while jumping in certain intervals. The projectiles are

hindering the opponent from getting close to the ANNBot

and thereby avoid the ANNBot from getting hit by close

combat attacks. Furthermore by jumping, the ANNBot can

avoid some of the opponent’s projectiles.

The results show that the success of our example con-

troller is based on (1) the controller strategy, which allows

to fire a projectile nearly every frame or (2) the exploitation

of a weakness of the FTGAIC simulation which allows to

fire projectiles without further limitations. This leads us to

the conclusion that the currently evolved ANNBot will be

successful against many opponents on the one hand, but on

the other hand do not behave ‘‘typically human’’. Men-

donça et al. [5] investigated in how far ANNs are capable

of mimicking human behaviour and being successful in the

fighting game Boxer.8 To this end, they utilized data of

recorded battles between human players. This approach

may also be used in future work to train ANNs, for

example with an additional fitness function describing the

‘‘humaneness’’ of a controller.

6 Summary

This paper focused on multi-objective neuroevolutionary

approaches which are seldom considered in research. It

continued our work first begun in [13] by focusing on the

selection procedure which plays an important role in evo-

lutionary multi-objective optimization. To this end, novel

sorting mechanisms for our multi-objective algorithms

were presented: The QD measure that promotes finding

solutions of high quality as well as maintaining diversity

and the iterative R2 contribution introduced by Dı́az-

Manrı́quez et al. [14]. Furthermore, the paper introduced a

novel procedure for computing the exact R2 contribution of

all solutions in a set that is faster than the existing proce-

dures by factor l (population size).

A first series of experiments concerning a multi-objec-

tive double pole balancing problem has been conducted.

Therefore, ANN controllers for the cart were evolved using

our neuroevolutionary variants mNEAT and nNEAT and

furthermore the well-performing NEAT-PS [10] and

NEAT-MODS [12]. The results of the experiments have

shown that our algorithms were able to outperform the

existing multi-objective variants of NEAT not only with

respect to quality but also population diversity. Further-

more, the nNEAT converges faster towards the Pareto front

than mNEAT, NEAT-PS and NEAT-MODS. The perfor-

mance of nNEAT will be investigated more closely in the

future using further application cases in order to analyse

whether it remains the best performing technique.

Since the results were promising, we then focused on the

application of nNEAT in the area of fighting games. This

game genre represents a challenging test case for AI-con-

trolled characters. In addition, it constitutes a major part of

commercial games. Also multi-objective formulations arise

naturally and appear beneficial for deriving a well-per-

forming fighting bot.

Therefore, the paper examined whether multi-objective

neuroevolution is able to evolve artificial neural networks

as controllers for AI players for fighting games focusing on

8 https://gamejolt.com/games/boxer/29331/, last accessed: 2019-09-

12.
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the Fighting Game AI Competition. Although multi-ob-

jective optimization appears promising, it has not been

explored before for fighting games.

To investigate the capabilities of nNEAT for fighting

games, we first created a novel AI player called ANNBot.

Here, we also had to define the inputs and outputs for the

neural network, as well as the fitness functions that are

meant to train a controller that performs well in both,

attacking and defending, and thus, is capable of defeating

other AI opponents. The training phase of the ANNBot

required the development of a lightweight version of the

Fighting Game AI Competition. This variant is usable as a

kind of framework for AI player evolution for similar

approaches.

Finally, we applied our nNEAT in order to evolve a

controller for the ANNBot in the FTGAIC. The best per-

forming controller with respect to the opponents FooAI and

JayBot_GM was selected for further investigation. Here,

we let fight the ANNBot with the corresponding controller

for 200 fights against six different AI opponents (see

Table 12). The results show: nNEAT is capable to evolve

controllers that are able to beat most opponents considered

in more than the half of all fights. In some cases, the

success rate even exceeded 96%. Our ANNBot even out-

performs previous AI players based on neural networks by

at least the factor seven [40].

The Fighting Game AI Competition was started to shed

more light on the research question whether general

fighting game AI could be developed. The results of this

paper show that neuroevolution in combination with multi-

objective optimization may present one possible approach.

While our ANNBot has only been tested against AI players

and in one play mode, we are confident that it will perform

well also against human players and in different play

modes using different characters. This will be investigated

in future work. Additionally, other controller strategies,

e.g. arbitrary output of key combinations, whose validity

determines the value of an additional fitness function [47]

and input values for the neural networks should be

investigated.

7 Conclusions and future work

To summarize the main results, this paper contributes to

the research on multi-objective neuroevolution by intro-

ducing the novel QD measure for sorting solutions within

our mNEAT and nNEAT, multi-objective variants of the

well-known NEAT. The measure enables to drive the

search towards both, high-quality and diverse solutions

which is one of the main objectives in multi-objective

optimization. Future work will investigate additional

strategies for applying quality and diversity measures in

order to gain maximum profit for the search.

Furthermore, a novel efficient way of determining the

R2 contribution of solutions has been proposed which in

turn improves the performance of the neuroevolutionary

algorithm. A first experimental comparison between

mNEAT, nNEAT and other multi-objective variants of

NEAT has been conducted. While the first results are

promising, further experiments will be carried out in future

work to allow more general statements about the perfor-

mance of mNEAT and nNEAT. Since deriving good set-

tings of the control parameters is a difficult problem that

depends on the task at hand, we are also currently working

on parameter adjustment in order improve the usability of

the algorithms.

Aside from the double pole balancing problem, this

paper described a lightweight and efficient simulation

environment for the Fighting Game AI Competition and an

exemplary implementation of an ANN-based bot. The

experimental results are promising. However, as in the case

of the competing research, it can be seen only as a first step

towards a general fighting game AI. Therefore, more

complex experiments will be considered. This also includes

to train ANN controllers to copy their opponents beha-

viour. This will allow achieving challenging competitors

much faster. In addition, the optimization of the ANNBot’s

input and output strategy, supporting it becoming more

powerful against other opponents, and aspects like the

‘‘humanness’’ of an AI fighter will be investigated.
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Appendix 1: An efficient computation
of the exact R2 contribution

The R2 indicator [54] is based on a utility function u :

RK ! R which assigns a utility value to each solution a in

set A. The utility function is based on the standard

weighted Tchebycheff utility function

u zð Þ ¼ � max
i2 1;...;Kf g

ki z	i � zi

�
�

�
�

� �

for a point or solution z, a reference point z	 and a weight

vector k ¼ k1; . . .; kKð Þ 2 K. Following [55], the point z	

should be an ideal point that cannot be dominated by any

feasible solution. The set K (usually) comprises uniformly

distributed weight vectors over the weight space [55]. Note

that the expression R2 value is used to describe the R2

value of a whole set and R2 contribution for the R2 value

of a single individual of a set, here. The R2 value is defined

as

R2ðA;K; z	Þ ¼ � 1

Kj j
X

k2K
max
a2A

u að Þf g

¼ � 1

Kj j
X

k2K
max
a2A

� max
k2 1;...;Kf g

kk z	k � ak

�
�

�
�

� �
� �

¼ 1

Kj j
X

k2K
min
a2A

max
k2 1;...;Kf g

kk z	k � ak

�
�

�
�

� �
� �

:

The R2 indicator returns the averaged sum of the minimal

distances for all a 2 A in any dimension for each weight

vector k 2 K. Thus, if a set A has a lower R2 value than

another set B, its individuals are located closer to the ref-

erence point on average than B’s individuals with respect to

the selected weight vectors. The R2 contribution of a single

individual a 2 A is determined as

R2ða;A;K; z	Þ ¼ R2ðAn af g;K; z	Þ � R2ðA;K; z	Þ:

The R2 value is computed in time O Kl Kj jð Þ [55], while the
computation of the R2 contribution of all individuals in a

set A with Aj j ¼ l requires time O Kl2 Kj jð Þ. This makes

the R2 indicator very efficient to compute, especially for

large number of dimensions (K [ 3) [56], compared to

other quality indicators as the Hypervolume, which

requires time O l log lþ l
K
2þ1

� �

[16] and thus grows

exponentially with the number of dimensions.

The original computation of the R2 contribution works

as follows: For each individual i 2 P the R2 contribution of

i is the difference between P ’s R2 value and the R2 value

of Pn if g. Therefore, the R2 value of P is computed once in

time O Kl Kj jð Þ first. Next, the R2 value of each subset

Pn if g is computed 8i 2 P in time O l K l� 1ð Þ Kj jð Þð Þ.
Finally, the difference between both contributions is

computed for every individual i 2 P. This sums up to time

O Kl Kj j þ l K l� 1ð Þ Kj jð Þð Þ ¼ O Kl2 Kj jð Þ.
Shang et al. [57] propose a new R2 indicator Rnew

2 based

on a new Tchebycheff function introduced by Zhang et al.

[58]. The new R2 indicator is defined as follows:

Rnew
2 A;K; z	ð Þ ¼ 1

Kj jmax
a2A

min
k2 1;...;Kf g

z	k � aj

�
�

�
�

kk

� �� �m

The only difference to previously proposed R2 indicators

is the exponential m which leads, properly set, to a linear

relation with the true Hypervolume of a set A. Thereby,

the Rnew
2 can be used to efficiently approximate the

Hypervolume of a set A [57]. The runtime of the algo-

rithm comprises O Kl Kj jð Þ, which leads to equal runtime

as the conventional approach when the R2 (or approxi-

mated Hypervolume) contribution of all individuals in the

set A has to be computed. Nevertheless, the Rnew
2 is an

interesting alternative to the utilization of the Hypervol-

ume indicator for sorting populations upon multiple fit-

ness functions. Therefore, it should be investigated in

future work.

As described in Sect. 2, Dı́az-Manrı́quez et al. [14]

introduced a novel procedure, which approximates the R2

contribution of all individuals i 2 P in time O Kl Kj jð Þ. For
each weight vector k 2 K , their approach first determines

the individual ik 2 P with the shortest weighted distance to

the reference point z	. The R2 contribution of each of the

previously identified individuals ik 2 P is then approxi-

mated with the weighted distance from ik to z	 with respect

to k. The weighted distance is defined later in this paper.

In the case that an individual i 2 P exists which has the

shortest weighted distance for more than one weight vector

expressed by 9k1; k2 2 K : k1 6¼ k2 ^ ik1 ¼ ik2 , the R2

contribution of i is the sum of all weighted distances for all

weight vectors.

Whereas the approach above is computationally effi-

cient, a drawback is that it only delivers an approximation

of each individual’s R2 contribution, because the weighted

distance of the second nearest individual for each weight

vector is not taken in account. The resulting approximation

influences the order of the individuals in P based on their

R2 contribution.

In the following, the weighted distance and minimum

weighted distance to reference point z	 are defined and a

theorem about the efficient computation of the R2 contri-

bution of a population’s individuals is introduced. Finally,

a proof of the theorem and the pseudocode of the corre-

sponding algorithm are given.
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Definition 1 (Weighted distance to z	) Let there be an

individual i, a weight vector k and a reference point z	.
Then, dði; k; z	Þ is defined as the weighted distance of the

individual i to z	 weighted by k

dði; k; z	Þ ¼ max
k2 1;...;Kf g

kk z	k � ik
�
�

�
�

� �

¼ �uðiÞ: ð1Þ

Definition 2 (Minimum weighted distance to z	) Given a

population P, a weight vector k, and a reference point z	.
Then, the minimum weighted distance to z	 for the weight

vector k for all individuals a 2 P dmin P; k; z	ð Þ is defined
as

dmin P; k; z	ð Þ ¼ min
a2P

dða; k; z	Þf g: ð2Þ

An individual i 2 P for which dði; k; z	Þ ¼ dmin P; k; z	ð Þ is
called dominating k (domk;P) throughout this paper.

Theorem 1 (Computation of the R2 contribution) Let P
be a population and K a set of weight vectors. The set

X � K defines the set of weight vectors for which

8k 2 X : domk;P ¼ i. For all k 2 X , there exists an indi-

vidual jk 2 P : jk 6¼ i each with domk;Pn if g ¼ jk, i. e., the

second shortest weighted distance for k in P to z	. Then,

the R2 contribution of i is given by

R2ði;P;K; z	Þ ¼ 1

Kj j
X

k2X

dðjk; k; z	Þ � dði; k; z	Þ: ð3Þ

Proof (Computation of the R2 contribution) The R2 value

of a population P is given by

R2ðP;K; z	Þ ¼ 1

Kj j
X

k2K
min
a2P

dða; k; z	Þf g: ð4Þ

Note that only the individual that dominates a weight

vector k 2 K contributes to the R2 value of P. Let i 2 P be

an individual and X � K a subset of weight vectors with

8k 2 X : domk;P ¼ i. Thus, i has the lowest weighted dis-

tance to z	 for all weight vectors in X.

If there exists another individual j 2 P with j 6¼ i for

which dðj; k; z	Þ ¼ dði; k; z	Þ for any weight vector k 2 X,

then i has been selected as individual with lowest weighted

distance and j as individual with the second lowest

weighted distance although their weighted distance is the

same. Switching the order of two or more individuals with

the same weighted distance has neither an influence on the

R2 contribution of a single individual nor on the whole

population’s R2 value as it comprises zero for that weight

vector.

The R2 value of P using only the weight vectors k 2 X

is determined by

R2ðP;X; z	Þ ¼
X

k2X

min
a2P

dða; k; z	Þf g

¼
X

k2X

dði; k; z	Þ:
ð5Þ

Let Y ¼ KnX be the set of weight vectors for which

8k 2 Y : domk;P 6¼ i. This implies

R2ðP; Y ; z	Þ ¼
X

k2Y

min
a2P

dða; k; z	Þf g

¼
X

k2Y

min
a2Pn if g

dða; k; z	Þf g
ð6Þ

because the individual i has no influence on the R2 value in

this case. Since X [ Y ¼ K and X \ Y ¼ ;, the R2 value of

P can be computed as

R2ðP;K; z	Þ

¼ 1

Kj j
X

k2Y

min
a2P

dða; k; z	Þf g þ
X

k2X

min
a2P

dða; k; z	Þf g
 !

¼Eq. 5 and 6 1

Kj j
X

k2Y

min
a2Pn if g

dða; k; z	Þf g þ
X

k2X

dði; k; z	Þ
 !

ð7Þ

and the R2 value of Pn if g as

R2ðPn if g;K; z	Þ

¼ 1

Kj j
X

k2Y

min
a2Pnn if g

dða; k; z	Þf g þ
X

k2X

min
a2Pn if g

dða; k; z	Þf g
 !

:

ð8Þ

The R2 contribution of the individual i 2 P is determined

as follows:

R2ði;P;K; z	Þ ¼ R2ðPn if g;K; z	Þ � R2ðP;K; z	Þ

¼Eq. 7 and 8

1

Kj j
X

k2Y

min
a2Pn if g

dða; k; z	Þf g þ
X

k2X

min
a2Pn if g

dða; k; z	Þf g
 !

� 1

Kj j
X

k2Y

min
a2Pn if g

dða; k; z	Þf g þ
X

k2X

dði; k; z	Þ
 !

¼ 1

Kj j
X

k2X

min
a2Pn if g

dða; k; z	Þf g � dði; k; z	Þ
	 


:

ð9Þ

Per definition the term mina2Pn if g dða; k; z	Þf g is the

weighted distance from the second dominating individual

jk 2 P for each weight vector k 2 X to z	. Therefore, it is
replaced by dðjk; k; z	Þ resulting in

R2ði;P;K; z	Þ ¼ 1

Kj j
X

k2X

dðjk; k; z	Þ � dði; k; z	Þ ð10Þ

h
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Our proof shows that the R2 contribution of i only

depends on the weight vectors k 2 X for which i is domi-

nating and the individual jk ¼ domk;Pn if g (second shortest

weighted distance) for each of these weight vectors.

The R2 contribution of i then equals the sum of its

contribution for all weight vectors k 2 X, divided by Kj j.
This means if the two individuals domk;P and

domk;Pn domk;Pf g are known for all weight vectors k 2 K, the

R2 contribution of every individual can be computed by

summing up the difference of domk;Pn domk;Pf g’s and

domk;P’s weighted distance to z	 for all weight vectors

k 2 K and dividing it by Kj j.

This results in the following algorithm (see Algorithm 1

for pseudocode): To compute the R2 contribution of all

p 2 P, an array r2c of length Pj j that contains the R2

contribution of each individual, is created and initialized

with zero each. The algorithm then iterates over all weight

vectors k 2 K and determines the distances of the indi-

viduals i; j 2 P to z	 for which domk;P ¼ i and

domk;Pn if g ¼ j. Now, the difference of both distances is

added to the R2 contribution of individual i

r2c½i� ¼ r2c½i� þ dðj; k; z	Þ � dði; k; z	Þð Þ:

After iterating over all weight vectors, the array r2c con-

tains the R2 contribution of each individual p 2 P multi-

plied by factor Kj j. To get the exact R2 contribution of each

individual, all values in r2c are divided by Kj j. This has no
influence on the sorting of the population and makes this

step redundant. The algorithm of Dı́az-Manrı́quez et al.

does not divide the R2 contribution values by Kj j [14]. The
algorithm provided here terminates in time O Kl Kj jð Þ,
which is equal to the algorithm’s runtime presented in [14].

Because Dı́az-Manrı́quez et al. do not consider the dis-

tance of the second dominating individual for each weight

vector [14], the algorithm results in an approximation of

the R2 contribution of each individual. The approximation

has influence on the sorting of the population’s individuals

based on R2 contribution. Contrary to that, our algorithm

delivers exactly the same results as the original
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computation of the R2 contribution does, but has a runtime

that is reduced by factor l.

Appendix 2: Description of the control
parameters

In the following, we provide an overview over the control

parameters that either mNEAT, nNEAT or both algorithms

depend on.

Weight mutation range (WMR)

The maximum amount a link’s weight can be perturbed by

in a single mutation operation.

Modify weight probability (MWP)

The probability that a link of an ANN will get its weight

perturbed. The probability applies on each link of an ANN

separately.

Add neuron probability (ANP)

The probability that a new neuron is added to an ANN

during mutation.

Add link probability (ALP)

The probability that a new link at one or between two

existing neurons is added to an ANN during mutation.

Looped connection probability (LCP)

The probability that a new link will be self recurrent.

Crossover probability (CP)

The probability that crossover between two parental

solutions is performed during variation. Note that this

parameter becomes obsolete, if the natural conditions for

crossover are not fulfilled (e.g. less than two parents

available).

Mutation probability (MP)

The probability that an offspring solution is mutated.

This can be the result from crossover or a copy of an

existing solution. Note that if crossover and mutation are

not to be performed due to probability, one of both will be

forced to be performed with equal probability randomly,

unless stated otherwise.

Gene enabled on crossover probability (GEOCP)

Probability that a gene, i.e. link is enabled on crossover

if it occurs in both parents and is disabled in either.

Mate by choosing probability (MBCP)

The probability that a common gene, i.e. link of two

parents is taken over from one parent during crossover.

Otherwise, the offspring’s gene is averaged from the

parents.

Interspecies mating rate (IMR)

The probability that an offspring solution is created from

two parent solutions from different species instead of same

species. mNEAT only.

Survival threshold (ST)

The proportion of a species’ members (sorted by fitness)

that are taken into account for parent selection during

offspring creation. mNEAT only.

Replacement rate (RR)

The proportion of solutions of the population that will be

replaced by offspring individuals during each epoch.

nNEAT only.

Speciation coefficient (SC)

Multipurpose parameter that is applied for different

settings around speciation, e.g. the speciation threshold.

Factor C1 excess (FCE)

Coefficient for excess genes for the determination of the

distance between two ANNs. A larger value results in a

larger influence of excess genes on the total distance.

Factor C2 disjoint (FCD)

Coefficient for disjoint genes for the determination of

the distance between two ANNs. A larger value results in a

larger influence of disjoint genes on the total distance.

Factor C3 weight difference (FCWD)

Coefficient for common genes’ weight difference for the

determination of the distance between two ANNs. A larger

value results in a larger influence of weight differences

(among common genes) on the total distance.

Age bonus malus (ABM)

The bonus or malus (in per cent) a young respectively

old solution’s fitness is decreased or increased. A lower

value (bonus) results in better overall fitness.

Maximum stagnation (MS)

The maximum number of generations a species is

allowed to survive without finding a new best solution

among its members. mNEAT only.

Selection pressure (SP)

The selection pressure for parent selection. A larger

value results in a greater chance for good performing

solutions to be selected as parent as well as a lower chance

for worse performing.

Age threshold young (ATY)

The number of generations a solution is stated to be a

young solution (starting at its creation).

Age threshold old (ATO)

The number of generations from which a solution is

stated to be an old solution.
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