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Abstract
Judgments are taken in a structured way; both human and business management decisions involve a hierarchical process

that requires a level of compromise between risk, cost, reward, experience and knowledge. This article proposes a

management decision structure that emulates the human brain approach based on genetic and deep learning cluster

algorithms and the random neural network. Reinforcement learning takes quick and specific local decisions, deep learning

clusters enables identity and memory, and deep learning management clusters make final strategic decisions. The presented

genetic algorithm transmits the learned information to future generations in the network weights rather than the neurons.

Because the subject’s information, a combination of memory, identity and decision data, is never lost but transmitted, the

genetic algorithm provides immortality. The management decision structure has been applied and validated in a smart

investment Fintech application: an intelligent banker that makes buy and sell asset decisions with an associated market and

risk that entirely transmits itself to a future generation. Results are rewarding; the management decision structure with

genetics and machine learning based on the random neural network algorithm that emulates the human brain and biology

transmits information to future generations and learns autonomously, gradually and continuously while adapting to the

environment.

Keywords Genetic learning � Deep learning clusters � Reinforcement learning � Random neural network �
Fintech � Smart investment

1 Introduction

The brain takes decisions in a structured way, and the

striatum is a fundamental area essential in decision making

formed of different sections that have distinct roles: the

dorsolateral striatum functions in typical actions, the dor-

somedial striatum in goal-directed actions and the ventral

striatum in motivation [1]; although these three different

regions have independent functions, they coordinate

between each other during the different stages of decision-

making process based on hierarchical reinforcement

learning. Similar structured decision-making approach is

also applied in business management, company and

institution operations and emergency services that require a

level of compromise between risk, cost, reward, experience

and knowledge.

In addition to our brain hierarchical decision process,

biological organisms autonomously learn in a gradual and

continuous approach while adapting to the environment

using genetic changes to generate new complex structures

in organisms [2]. The current structure of the organisms

defines the type and level of the future genetic variation

that will provide a better adaption to the environment or

increased reward to a goal function. Random genetic

changes have more probability to be successful in organ-

isms that change in a systematic and modular manner

where the new structures acquire the same set of subgoals

in different combinations. This approach enables organ-

isms not only to remember their reward evolution but also

to generalize goal functions to successfully adapt to future

environments [3]. The adaptations learned from the living

organisms affect and guide evolution, even though the
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characteristics acquired are not transmitted to the genome

[4]; however, its gene functions are altered and transmitted

to the new generation. This method enables learning

organisms to evolve much faster.

Successful machine learning and artificial intelligence

models have been based on biology emulating the struc-

tures provided by nature during the learning, adaptation

and evolution when interacting with the external environ-

ment. Neural networks and deep learning are based on

brain structure which is formed of dense local clusters of

the same neurons. Dense clusters perform different func-

tions which are connected between each other with

numerous very short paths and few long distance connec-

tions [5]. The brain retrieves a large amount of data

obtained from the senses; analyzes the material and finally

selects the relevant information [6] where the cluster of

neurons specialization occurs due to their adaption when

learning tasks.

1.1 Research proposal

This article proposes a management decision structure that

emulates the brain functions using reinforcement learning

and deep learning clusters based on the random neural

network. Information in the presented model is learned

through the interaction and adaptation to the environment

using reinforcement and deep learning. Decisions are taken

in a hierarchical way with different learnings specialized in

different stages of the decision process:

• Reinforcement learning [7–9] takes quick and specific

local decisions;

• Deep learning clusters [10–12] enable identity and

memory;

• Deep learning management clusters [13–16] make final

strategic decisions.

In addition, this article presents a genetic learning algo-

rithm based on the genome and evolution applying extreme

learning machine methods [17–21]. Information in the

proposed genetic algorithm is transmitted to future gener-

ations in the network weights through the combinations of

four different nodes rather than the value of nodes them-

selves. The four nodes represent the genome nucleotides

(C, G, A or T) that form the double helix of the DNA where

the output layer of nodes replicates the input layer as the

genome reproduces replicas of organisms. The genetic

learning algorithm fixes the output to four neuron values

that represent the four different nucleoids, and it also fixes

the network weights to generate four different types of

neurons rather than random values as proposed by the ELM

theory. Genetic algorithm provides immortality: the entire

subject’s information, defined as the combination of

memory, identity and decision data, is never lost but

transmitted to future generations.

The proposed management decision structure has been

applied and validated in a smart investment application: an

intelligent banker that makes buy and sell asset decisions

with an associated market and risk that entirely transmits

itself to a future generation.

The results presented by this article are rewarding and

promising: the intelligent banker takes the right decisions,

learns the variable asset price, makes profits on specific

markets at minimum risk and finally efficiently transmits

the information learned to future generations.

1.2 Research structure

This article presents the research background that consists

on the genome, artificial neural networks, machine learn-

ing, genetic algorithms and extreme machine learning in

Sect. 2. The random neural network with reinforcement

learning, deep learning clusters, deep learning management

clusters and genetic algorithm are defined in Sect. 3. The

management decision structure and its application to smart

investment in an intelligent banker are presented in Sect. 4,

whereas its implementation is described in Sect. 5. The

experimental results are shown in Sect. 6 with a cryp-

tocurrency evaluation in Sect. 7. Finally, conclusions and

future work are shared in Sect. 8.

2 Research background and literature
review

Artificial neural networks, machine learning and genetic

algorithms have been applied in economics and finance to

make predictions where extreme machine learning have

improved the performance of classic neural network

models.

2.1 Genome

The genome is the genetic material of an organism; it

consists of 23 pairs of chromosomes (1–22, X and Y) for a

human cell formed of genes (approximately 21,000 in total)

that code for a molecule that has a function or instruction to

make proteins as presented by Pellegrini et al. [22]. Fur-

thermore, genes are formed of base pairs (approximately 3

billion in total). The DNA is a double helix formed by the

combination of only four nucleotides (cytosine [C], gua-

nine [G], adenine [A] or thymine [T]) where each base pair

consists of the combination of two nucleoids G-C and A-T.

The genetic code is formed of codons; a sequence consisted

of three nucleotides or three-letter words. Proteins that

have similar combination of base pairs tend to have a
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related functionality determination of protein functions

from genetic sequences following the research of Suzuki

[23].

2.2 Artificial neural networks

Artificial neural networks have been applied to make

financial predictions and represent financial models. The

bankruptcy prediction capability of several neural network

architectures based on different training sets and number of

iterations was evaluated by Leshno and Spector [24]; the

neural networks are trained with data obtained from dif-

ferent firm’s financial reports where the prediction capa-

bility of the neural network is compared against classical

discriminant analysis models. Artificial neural networks for

a financial distress prediction model are used by Chen and

Du [25]; the back propagation learning algorithm is trained

with a dataset obtained from the Taiwan Stock Exchange

Corporation where the inputs to the neural network are 37

model factor ratios. An artificial neural network with back

propagation gradient descent learning algorithm to predict

the direction of stock market index movement for the

Istanbul Stock Exchange is applied by Kara et al. [26]; the

inputs of the feedforward network correspond to ten tech-

nical indicators such as moving average or momentum and

the output neuron represents the direction of the index

movement.

The effectiveness of neural network models in stock

market predictions was evaluated by Guresen et al. [27]; the

models analyzed are multilayer perceptron, dynamic artifi-

cial neural network and hybrid neural networks where the

mean square error and mean absolute deviate metrics are

used to compare each model. Different artificial neural net-

works in bankruptcy prediction against traditional Bayesian

classification theory are analyzed by Zhang et al. [28]; the

method of cross-validation is applied to examine the sample

variation between neural networks. Different ways to use

prior knowledge such as newspaper headlines and neural

networks to improve multivariate prediction ability is

investigated by Kohara et al. [29]; the topics are chief Tokio

stock exchange price index, exchange rate dollar-yen,

interest rate, crude oil price and NewYork Dow Jones where

the inputs to the neural network are the relative topic dif-

ference. Regression, artificial neural networks and support

vector machines for predicting the S&P 500 Stock Market

Price Index are compared by Sheta et al. [30]; they use 27

potential financial and economic variables that impact the

stock movement; these variables are used as the input nodes

whereas the output node gives the predicted next week value.

Artificial neural networks and fuzzy logic for market pre-

dictions are included by Khuat et al. [31] where the input

layer contains 30 neurons corresponding to 30 close days and

the output node is the close price of the next day.

A feedforward multilayer perceptron to predict a com-

pany’s stock value is used by Naeini et al. [32]; the net-

work predicts the next day stock value of a company listed

in the Tehran Stock Exchange Corporation only based on

its stock trade history and without any information of the

current market. A hybrid system based on a multiagent

architecture to analyze stock market behavior is created by

Iuhasz et al. [33] to improve the profitability in a short or

medium time period investment; the proposed system

compares the results of feed forward and recurrent neural

network in terms of accuracy and time performance. The

use of neural networks as an alternative to classical sta-

tistical techniques for forecasting within the framework of

arbitrage pricing theory model for stock ranking is exam-

ined by Nicholas et al. [34]; the training and test sets

consist of data presented as factors extracted from the

balance sheets of the companies in the UK stocks, and the

resultant outperformance Y is the output.

A comparative survey of artificial intelligence applica-

tions in Finance is presented by Bahrammirzaee [35] that

covers artificial neural networks, expert system and hybrid

intelligent systems in financial markets, credit evaluation,

portfolio management and financial prediction and plan-

ning. The use of artificial neural networks in accounting

and finance is reviewed by Coakley and Brown [36]; it

includes modeling issues and applicability guidelines such

as the selection of the learning algorithm, error and transfer

functions, architecture and network training. The applica-

tions of neural networks in finance are analyzed by Fadlalla

and Lin [37]; in particular, the common characteristics of

these applications are examined and compared against

applications based on statistical and econometrics models.

The use of neural networks in finance and economics

forecasting is reviewed by Huang et al. [38]; input vari-

ables, type of neural network models and performance

comparisons are analyzed for the prediction of foreign

exchange rates, stock market index and economic growth.

Li et al. [39] summarize different applications of artificial

intelligence technologies such as neural networks, deep

learning and machine leaning in several domains of busi-

ness administration including finance, retail, manufacturing

and management consultancy.

Machine learning has been applied to solve nonlinear

models in continuous time in macroeconomics and finance

by Duarte [40] where the problem of solving the corre-

sponding nonlinear partial differential equations can be

reformulated as a sequence of supervised learning prob-

lems. A single variable time-series model that combines

two financial volatility metrics to predict and forecast one

of them is proposed by Stefani et al. [41]; the method is

based on artificial neural networks with a multilayer per-

ceptron in a single-hidden-layer configuration, the k-near-

est neighbors as a local nonlinear model used for
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classification and regression and finally support vector

machine in a regression methodology. Deep learning has

also been incorporated in long–short-term memory neural

networks for financial market predictions by Fischer and

Krauss [42] where day returns are calculated for each day

at defined stocks. Hasan et al. [43] investigate how to apply

hierarchical deep learning models for the problems in

finance such as stock market prediction and classification;

the deep learning models are based on neural networks,

recurrent neural networks with big data finance datasets.

2.3 Genetic algorithms

Genetic algorithms (GA) have been proposed as method to

increase learning performance. Overlapping generations

(OLG) economies in which agents use genetic algorithms

to learn correct decision rules are studied by Arifovic [44];

the results of an OLG model with GA learning against the

results of the same model where the agents form expecta-

tions via either the sample average of past prices or least

squares adaptive algorithms are compared in terms of on

equilibrium within inflationary economies. A genetic

algorithm to feature discretization in artificial neural net-

works for the prediction of stock market index was pro-

posed by Kim and Han [45]; the GA is applied to improve

the learning algorithm and to reduce the complexity in

feature space.

A hybrid model based on genetic algorithm and neural

networks to forecast tax collection is applied by Ticona

et al. [46]; endogenous and exogenous variables are used as

input variables of the neural network for the multistep time

series to forecast a hybrid model based on lags of the value

of the time series, differences and moving averages. A

genetic algorithm-based deep learning method is presented

by Hossain and Capi [47]; the GA is used to optimize the

deep learning parameters such as the number of hidden

units, the number of epochs, learning rates and momentum

in learning stage of the hidden layers. A genetic algorithm

assisted method for deep learning that improves the per-

formance of a deep autoencoder producing a sparser neural

network is presented by David and Greental [48]; the GA

population of each chromosome is a set of weights for the

autoencoder. The latest deep learning structures and evo-

lutionary algorithms that can be used to train them are

reviewed by Tirumala [49]; these include convolutional

neural networks, deep belief networks, stacked autoen-

coders, generative neuroevolution and deep learning using

genetic algorithm.

2.4 Extreme learning machine

The learning speed of feedforward neural networks is in

general slower than required due to the slow gradient-based

learning algorithm that adjusts iteratively the parameters of

the networks. A new learning algorithm called extreme

learning machine (ELM) for single-hidden-layer feedfor-

ward neural networks (SLFNs) which randomly chooses

hidden nodes and analytically determines its output weight

is proposed by Huang et al. [17]. The output weights linking

the hidden layer to the output layer of SLFNs can be ana-

lytically determined through simple generalized inverse

operation of the hidden layer output matrices; Huang et al.

[18] proves that SLFNs work as universal approximators by

randomly choose hidden nodes and then only adjusting the

output weights linking the hidden layer and the output layer.

An ELM architecture for multilayer perceptron is proposed

by Tang et al. [19]; the ELM is divided into two main

components: self-taught feature extraction followed by

supervised feature classification which they are connected

by random initialized hidden weights. ELM provides a

unified learning platform with extensive methods of feature

mappings that can be applied in regression and multiclass

classification applications directly, as demonstrated by

Huang et al. [20]. An extreme learning machine-based

autoencoder is introduced by Kasun et al. [21] which learns

feature representations using singular values.

Reservoir computing consists on an input signal that is

fed into a fixed or random dynamical system, or reservoir,

where the dynamics of the reservoir map the input to a

higher dimension, then a retrieval method is trained to read

the state of the reservoir and map it to the desired output

[50]; the main benefit is that the reservoir is fixed and

training is performed only at the retrieval stage therefore

the complexity of the computationally demanding neural

networks learning algorithms is reduced. An empirical

analysis of deep recurrent neural network architectures

with stacked layers develops and improves hierarchical

dynamics in deep recurrent architectures within the effi-

cient reservoir computing approach [51]; a deep layering of

recurrent models provides an effective diversification of

temporal representations in the layers of the hierarchy.

Deep Echo State Network models consist of a stack of

multiple nonlinear reservoir layers that potentially allow

the exploitation of the advantages of a hierarchical tem-

poral feature representation at different levels of abstrac-

tion while preserving the training efficiency typical of the

reservoir computing methodology [52]; however, adding

layers to a deep reservoir architecture affects the regime of

network’s dynamics toward equally or less stable behav-

iors. A new architecture, reservoir with random static

projections is proposed to improve the performance of

Echo State Networks based on the compromise between

the amount of nonlinear mapping and short-term memory

when applied to time-series data which are highly nonlin-

ear [53]; a similar method is also applied using an ELM

whose input is presented through a time delay.
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Radial basis function (RBF) networks that have one

hidden layer are capable of universal approximation [54];

RBF networks with the same smoothing factor in each

kernel node is broad enough for universal approximation.

ELMs can be also extended to a RBF network case, which

allows the centers and impact widths of RBF kernels to be

randomly generated and the output weights to be simply

analytically calculated instead of iteratively tuned [55]; the

ELM algorithm for RBF networks can complete learning at

very fast speed and produce generalization performance

very close to support vector machines in many artificial and

real benchmarking function approximation and classifica-

tion applications. The RBF network applies a nonmono-

tonic transfer function based on the Gaussian density

function [56]; while producing robust decision surfaces, the

RBF also provides an estimate of how close a test instance

is to the original training data, allowing the classifier to

identify that a test instance potentially represents a new

class while still presenting the most probable classification.

Feedforward neural networks using RBF assume that the

patterns of the learning environment are separable by

hyperspheres [57]; it is demonstrated that their related cost

function is local minima free with respect to all the net-

work weights.

3 The random neural network genetic deep
learning model

3.1 The random neural network

The random neural network (RNN) [7–9] represents more

closely how signals are transmitted in many biological

neural networks where they travel as spikes or impulses,

rather than as analogue signal levels. The RNN is a spiking

recurrent stochastic model for neural networks. Its main

analytical properties are the ‘‘product form’’ and the exis-

tence of the unique network steady state solution. The

random neural network has also been applied in different

genetic models [58–67].

The RNN is composed of M neurons each of which

receives excitatory (positive) and inhibitory (negative)

spike signals from external sources which may be sensory

sources or neurons (Fig. 1). These spike signals occur

following independent Poisson processes of rates k? (m)

for the excitatory spike signal and k- (m) for the inhibitory

spike signal, respectively, to cell m 2 1; . . .Mf g.
Neurons interact with each other by interchanging sig-

nals in the form of spikes of unit amplitude:

• A positive spike is interpreted as excitation signal

because it increases by one unit the potential of the

receiving neuron;

• A negative spike is interpreted as inhibition signal

decreasing by one unit the potential of the receiving

neuron or has no effect if the potential is already zero.

Each neuron accumulates signals and it will fire if its

potential is positive. Firing will occur at random, and

spikes will be sent out at rate r(i) with independent, iden-

tically and exponentially distributed inter-spike intervals:

• Positive spikes will go out to neuron j with probability

p?(i, j) as excitatory signals;

• Negative spikes with probability p-(i, j) as inhibitory

signals.

A neuron may send spikes out of the network with prob-

ability d(i). We have:

d ið Þ þ
Xn

j¼1

pþ i; jð Þ þ p� i; jð Þ½ � ¼ 1 for 1� i� n ð1Þ

Neuron potential decreases by one unit when the neuron

fires either an excitatory spike or an inhibitory spike.

External (or exogenous) excitatory or inhibitory signals to

neuron i will arrive at rates K(i), k(i), respectively, by

stationary Poisson processes. The random neural network

weight parameters w?(j, i) and w-(j, i) are the nonnegative

rate of excitatory and inhibitory spike emission, respec-

tively, from neuron i to neuron j:

wþ j; ið Þ ¼ r ið Þpþ i; jð Þ � 0

w� j; ið Þ ¼ r ið Þp� i; jð Þ � 0
ð2Þ

Information is transmitted by the rate or frequency at which

spikes travel. Each neuron i, if it is excited, behaves as a

frequency modulator emitting spikes at rate w(i, j) = w?(i,

j) ? w-(i, j) to neuron j. Spikes will be emitted at expo-

nentially distributed random intervals. Each neuron acts as

a nonlinear frequency demodulator transforming the

incoming excitatory and inhibitory spikes into potential.

In this model, each neuron is represented at time t C 0

by its internal state km(t) which is a nonnegative integer. If

km(t) C 0, then the arrival of a negative spike to neuron

m at time t results in the reduction of the internal state by

one unit: km(t
?) = km(t) - 1. The arrival of a negative

spike to a neuron has no effect if km(t) = 0. On the other

hand, the arrival of an excitatory spike always increases the

neuron’s internal state by 1; km(t
?) = km(t) ? 1.

Fig. 1 The random neural network
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The random neural network defines qi as the probability

a neuron i is excited:

qi ¼
kþðiÞ

r ið Þ þ k�ðiÞ r ið Þ ¼
Xn

j¼1

wþ i; jð Þ þ w� i; jð Þ½ �

for 1� i� n

ð3Þ

where the k?(i), k-(i) for i = 1, …, n satisfy the system of

nonlinear simultaneous equations:

kþ ið Þ ¼
Xn

j¼1

qjrðjÞpþðj; iÞ
� �

þ KðiÞ

k� ið Þ ¼
Xn

j¼1

qjrðjÞp�ðj; iÞ
� �

þ kðiÞ:
ð4Þ

3.2 Reinforcement learning algorithm

A random neural network (RNN) [7–9] with at least as

many nodes as the number of decisions to be taken is

generated where neurons are numbered 1, …, j, …, n;

therefore, for any decision i, there is some neuron i. Deci-

sions in this RL algorithm with the RNN are taken by

selecting the decision j for which the corresponding neuron

is the most excited, the one which has the largest value of

qj.

The state qj is the probability that it is excited, these

quantities satisfy the following system of nonlinear

equations:

qj ¼
kþðjÞ

r jð Þ þ k�ðjÞ ð5Þ

The reinforcement learning algorithm used in this model is

based on the cognitive packet network presented by

Gelenbe [68–72]. Given some Goal G that the agent has to

achieve as a function to be optimized and reward R as a

consequence of the interaction with the environment, suc-

cessive measured values of the R are denoted by Rl, l = 1,

2, … and these are used to compute a decision threshold:

Tl ¼ aTl�1 þ 1� að ÞRl ð6Þ

where a is some constant 0\ a\ 1 that can be statically

assigned or dynamically updated based on the external

observations.

The agent takes the lth decision which corresponds to

neuron j and then the lth reward Rl is measured and its

associated Tl-1 is calculated where the network weighs are

updated as follows for all neurons i = j.

if Tl-1 B R1:

wþ i; jð Þ ¼ wþ i; jð Þ þ R1

w� i; kð Þ ¼ w� i; kð Þ þ Rl

n� 2
if k 6¼ j

ð7Þ

else if Rl\ Tl-1:

wþ i; kð Þ ¼ wþ i; kð Þ þ Rl

n� 2
if k 6¼ j

w� i; jð Þ ¼ w� i; jð Þ þ Rl

ð8Þ

This research uses reinforcement learning to make binary

decisions with only two neurons (Fig. 2).

q0 ¼
kþð0Þ

r 0ð Þ þ k�ð0Þ q1 ¼
kþð1Þ

r 1ð Þ þ k�ð1Þ

where

kþ 0ð Þ ¼ q1w
þ
10 þ K0 kþ 1ð Þ ¼ q0w

þ
01 þ K1

k� 0ð Þ ¼ q1w
�
10 þ k0 k� 1ð Þ ¼ q0w

�
01 þ k1

r 0ð Þ ¼ wþ
01 þ w�

01 r 1ð Þ ¼ wþ
10 þ w�

10:
ð9Þ

On the above equations, wij
? is the rate at which neuron

i transmits excitation spikes to neuron j and wij
- is the rate

at which neuron i transmits inhibitory spikes to neuron j in

both situations when neuron i is excited. Ki and ki are the

rates of external excitatory and inhibitory signals,

respectively.

3.3 The random neural network with multiple
clusters

Deep learning with random neural networks is described by

Gelenbe and Yin [10–12]. This model is based on the

generalized queuing networks with triggered customer

movement (G-networks) where customers or tasks are

either ‘‘positive’’ or ‘‘negative’’ and customers or tasks can

be moved from queues or leave the network. G-networks

are introduced by Gelenbe [73, 74]; an extension to this

model is developed by Gelenbe et al. [75] where syn-

chronized interactions of two queues could add a customer

in a third queue.

The model considers a special network M(n) that con-

tains n identically connected neurons, each which has a

firing rate r and external inhibitory and excitatory signals

k- and k?, respectively (Fig. 3). The state of each cell is

denoted by q, and it receives an inhibitory input from the

state of some cell u which does not belong to M(n);

therefore, for any cell i 2 M nð Þ, there is an inhibitory

weight w-(u) : w-(u,i)[ 0 from u to i.

For any i; j 2 M nð Þ, we have w?(i,j) = w-(i,j) = 0, but

all whenever one of the neurons fires, it triggers the firing

of the other neurons with the following values. As pre-

sented in [14–16], the potential for each identical neuron is

calculated as:

q ¼
Kþ rqðn�1Þð1�pÞ

n�qpðn�1Þ

r þ kþ quw� uð Þ þ rqpðn�1Þ
n�qpðn�1Þ

ð10Þ
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where (10) is a second-degree polynomial in q:

0 ¼ q2pðn� 1Þ kþ quw
� uð Þ½ � � q½npðKþ rÞ þ nðk

þ quw
�ðuÞÞ � pðKþ rÞ þ r� þ nK: ð11Þ

3.4 Deep learning clusters

The deep learning architecture presented in [10–12] is

composed on C multiple clusters, each of which is made up

of a M(n) cluster each with n hidden neurons (Fig. 4). For

the cth such cluster, c = 1, …, C, the state of each of its

identical cells is denoted by qc. In addition, there are U

input cells which do not belong to these C clusters, and the

state of the uth cell u = 1, …, U is denoted by �qu. The

cluster network has U input cells and C clusters.

The deep learning clusters model defines:

• I = (idl1, idl2, …, idlu), a U-dimensional vector I 2
0; 1½ �U that represents the input state qu for the cell u;

• w-(u, c) is the U 9 C matrix of inhibitory weights from

the U input cells to the cells in each of the C clusters;

• Y = (ydl1, ydl2, …, ydlc), a C-dimensional vector Y 2
0; 1½ �C that represents the cell state qc for the cluster c.

Each hidden neuron in the clusters c, with c 2
1; . . .;Cf g receives an inhibitory input from each of the U

input neuron. Thus, for each neuron in the cth cluster, we

have inhibitory weights w-(u, c)[ 0 from the uth input

neuron to each neuron in the cth cluster; the uth input

neuron will have a total inhibitory ‘‘exit’’ weight, or total

inhibitory firing rate ru to all the clusters which is of value:

ru ¼ n
XC

c¼1

w�ðu; cÞ ð12Þ

As calculated in (10), the potential for each neuron qc in

cluster C is:

qc ¼
Kc þ rcqcðn�1Þð1�pcÞ

n�qcpcðn�1Þ

rc þ kc þ
PU

u¼1 quw
� u; cð Þ þ rcqcpcðn�1Þ

n�qcpcðn�1Þ
ð13Þ

The activation function of the cth cluster is defined as:

fðxcÞ ¼
bc

2ac
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2c � 4acdc

p

2ac
ð14Þ

where

xc ¼
XU

u¼1

quw
�ðu; cÞ ð15Þ

We have:

yc ¼ fðxcÞ

The network learns the U 9 C weight matrix w-(u, c) by

calculating new values of the network parameters for the

input I and output Y using gradient descent learning algo-

rithm which optimizes the network inhibitory weight

parameters w-(u, c) from a set of input–output pairs

(iu, yc).

Fig. 2 Reinforcement learning

algorithm

q1

qk

q2

qn

Cluster

Neuron 1 Neuron 2

Neuron k Neuron n

λ+

quw-(u)

λ-

Fig. 3 Clusters of neurons

w-(u,c)
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Cluster 1

q1

q1q1

q2

Cluster 2
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q2q2

qc

Cluster c

qc

qcqc

q1

q2

qk

qu
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Cell 2
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Cell u

Matrix of inhibitory 
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Fig. 4 The random neural network with multiple clusters
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3.5 Deep learning management cluster

The deep learning management cluster was proposed by

Serrano et al. [13–16]. It takes management decisions

based on the inputs from different deep learning clusters

(Fig. 5). The deep learning management cluster defines:

• Imc, a C-dimensional vector Imc 2 0; 1½ �C that represents

the input state qc for the cluster c;

• w-(c) is the C-dimensional vector of inhibitory weights

from the C input clusters to the cells in the management

cluster mc;

• Ymc, a scalar Ymc 2 0; 1½ �, the cell state qmc for the

management cluster mc.

The activation function of the management cluster mc is

defined as:

where

xmc ¼
XC

c¼1

�qcw
�ðcÞ ð17Þ

we have:

ymc ¼ fðxmcÞ:

3.6 Genetic learning algorithm model

The proposed genetic learning algorithm on this article is

an autoencoder based on the extreme learning machine

(ELM) presented by Huang et al. [17–21] for single-layer

feedforward networks (SLFN). For N arbitrary distinct

samples (xi, ti), where xi = [xi1, xi2, … xin]
T 2 Rn and

ti = [ti1, ti2, … tim]
T 2 Rm, an standard SLFN with N 0

hidden nodes and activation function g(x) is mathemati-

cally modeled as:

fN0 xj
� �

¼
XN 0

i¼1

bigiðxjÞ ¼
XN 0

i¼1

bigi wi � xj þ bi
� �

¼ tj

for j ¼ 1; . . .N

ð18Þ

where wi = [wi1, wi2, … win]
T is the weight vector con-

necting the ith hidden node and the input nodes, bi = [bi1,

bi2, … bim]
T is the weight vector connecting the ith hidden

node and the output nodes, bi is the threshold of the ith

hidden node and g(x) activation function of hidden nodes.

The above N equations can be written as:

h xð Þb ¼ tj

Hb ¼ T
ð19Þ

where T = [ti1, ti2, … tim]
T are the target outputs and

H = [gi(w1�x1 ? b1), gi(w2�x2 ? b2), … gi(wn0�xn0 ? bn0)]
T.

The output weights b can be calculated by Eq. 6:

b ¼ HyT ð20Þ

where H� is the Moore–Penrose generalized inverse of

matrix H.

Extreme learning machine [17–21] proves that the input

weights and hidden layer biases of SLFNs can be randomly

assigned if the activation functions in the hidden layer are

infinitely differentiable. In addition, SLFNs can be con-

sidered as a linear system where the output weights can be

analytically determined through simple generalized inverse

operation of the hidden layer output matrices.

The proposed genetic learning algorithm is based on an

ELM auto encoder that models the genome as it codes the

replica of the organism that contains it. It consists of two

instances of the network described in Sect. 3.4. Network 1

is formed of U input neurons and C clusters, and network 2

w-(c)

q1

Cluster 1

q1

q1q1

q2

Cluster 2

q2

q2q2

qc

Cluster c

qc

qcqc

qmc

Management 
Cluster

qmc

qmcqmc

YmcImc=( imc1, imc2, … , imcc  )

Vector of inhibitory 
weights

Fig. 5 The random neural network with a management cluster

f xmcð Þ ¼ np Kmc þ rmcð Þ þ n kmc þ xmcð Þ � p Kmc þ rmcð Þ þ rmc½ �
2pmc n� 1ð Þ kmc þ xmc½ �

�


np Kmc þ rmcð Þ þ n kmc þ xmcð Þ � p Kmc þ rmcð Þ þ rmc½ �2�4pmcðn� 1Þ Kmc þ xmc½ �nKmc

q

2pmc n� 1ð Þ kmc þ xmc½ �

ð16Þ
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has C input neurons and U clusters (Fig. 6). The organism

is represented as a set of data X which is a U vector

X 2 0; 1½ �U . The genetic learning algorithm fixes C to 4

neurons that represent the four different nucleoids G, C,

A and T and it also fixes W1 to generate four different types

of neurons rather than random values as proposed by the

ELM theory. The operational complexity of the proposed

algorithm is O(n2).

Network 1 encodes the organism, and it is defined as:

• q1 = (q1
1, q2

1, …, qu
1), a U-dimensional vector q1 2

0; 1½ �U that represents the input state qu for neuron u;

• W1 is the U 9 C matrix of weights w1
-(u,c) from the

U input neurons to the neurons in each of the C clusters;

• Q1 = (Q1
1, Q2

1, …, Qc
1), a C-dimensional vector Q1 2

0; 1½ �C that represents state qc for the cluster c where

Q1 ¼ f W1Xð Þ.
Network 2 decodes the genome, as the pseudoinverse of

Network 1, it is defined as:

• q2 = (q1
2, q2

2, …, qc
2), a C-dimensional vector q2 2

0; 1½ �C that represents the input state qc for neuron

c with the same value as Q1 = (Q1
1, Q2

1, …, Qc
1);

• W2 is the C 9 U matrix of weights w2
-(c,u) from the

C input neurons to the neurons in each of the U cells;

• Q2 = (q1
2, q2

2, …, qu
2), a U-dimensional vector Q2 2

0; 1½ �U that represents the state qu for the cell u where

Q2 = f(W2Q
1) or Q2 = f(W2 f(XW1)).

The learning algorithm is the adjustment of W1 to code the

organism X into the four different neurons or nucleoids and

then calculate W2 so that resulting decoded organism Q2 is

the same as the encoded organism X:

min X � f W2f XW1ð Þð Þk ks:t:W1 � 0ðW1positive definite)

ð21Þ

Following the extreme learning machine model, W2 is

calculated as:

f XW1ð ÞW2 ¼ X ð22Þ

we have:

W2 ¼ pinv f XW1ð Þð ÞX ð23Þ

where pinv is the Moore–Penrose pseudoinverse:

pinvðxÞ ¼ xTx
� �

xT :

4 Management decision structure: smart
investment

The management decision structure combines in a hierar-

chal way the four presented different learnings: reinforce-

ment learning, deep learning, deep learning management

clusters and genetic learning (Fig. 7). This approach

enables structured decisions based on shared information

where different learnings are specialized in a decision area.

Final decisions are taken collaboratively to achieve a big-

ger reward that includes the entire decision-making chain.

The smart investment model, named ‘‘GoldAI Sachs,’’ is

formed of clusters of intelligent bankers that take local fast

binary decisions ‘‘buy or sell’’ on a specific asset based on

reinforcement learning (RL) through the interactions and

adaptations with the environment where the reward is the

profit made. Each asset banker has an associated deep

learning (DL) cluster that learns asset identity such as price

and reward.

Asset bankers are dynamically clustered to different

properties such as investment reward, risk or market type

being managed by a market banker deep learning man-

agement cluster that selects the best performing asset

bankers. The market bankers specialize in learning which

asset banker will take the best decision, rather than directly

the asset properties.

Finally, a CEO banker deep learning management

cluster manages the different market bankers and takes the

final structured investment decisions based on the market

reward and associated risk prioritizing markets that gen-

erate more reward at a lower risk, as any banker would do.

The CEO banker genetic algorithm provides immortality:

the entire subject’s information, defined as the combination

of memory, identity and decision data, is never lost but

transmitted to future generations.

w1
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q1

Q1
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q1

q1q1
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Q1
c-Cluster c
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qcqc
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Fig. 6 Genetic learning

algorithm
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4.1 Asset banker reinforcement learning

The asset banker reinforcement learning algorithm used in

the proposed model takes only two fast binary local asset

investment decisions. Each intelligent banker is formed of

two interconnected neurons where the investment decision

is taken according to the neuron that has the maximum

potential.

‘‘GoldAI Sachs’’ asset banker reinforcement learning is

defined as:

• q0, neuron 0 for a buy decision

• q1, neuron 1 for a sell decision

The reward R is based on the economic profit that the asset

bankers achieve with the decisions they make, successive

measured values of the R are denoted by Rl, l = 1,2…;

these are used to compute the predicted reward:

PRl ¼ aPRl�1 þ 1� að ÞRl ð24Þ

where a represents the investment reward memory that can

be statically assigned or dynamically updated based on the

external observations.

If the observed measured reward is greater than the

associated predicted reward; reinforcement learning

rewards the decision taken by increasing the network

weight that point to it; otherwise; it penalizes it:

if Rl[PR1:

RewardBuy decision:wþ
10 ¼ wþ

10 þ Rj j
or Reward Sell decision:wþ

01 ¼ wþ
01 þ Rj j

ð25Þ

Otherwise, if Rl\PR1:

Penalise Buy decision:w�
10 ¼ w�

10 þ Rj j
or Penalise Sell decision:w�

01 ¼ w�
01 þ Rj j

ð26Þ

In addition to the reinforcement leaning, asset bankers

make prediction price assets (PPA) based on the previous

prediction (PAP) and current price asset (CPA):

PPAl ¼ cPAPl�1 þ 1� cð ÞCPAl ð27Þ

where c represents the asset price prediction memory.

4.2 Asset banker deep learning cluster

Deep learning is used to learn key investment values that

generate asset identity. The smart investment model

assigns a deep learning cluster per asset banker. Each

different deep learning cluster learns the asset reward or

profit prediction, the asset price and the asset price

prediction.

‘‘GoldAI Sachs’’ groups asset bankers dynamically into

market sectors according to their risk, profit or type. The

model defines a set of x asset banker deep learning clusters as:

• IBanker-x = (i1
Banker-x, i2

Banker-x, …, iu
Banker-x) a U-dimen-

sional vector where i1
Banker-x, i2

Banker-x, and iu
Banker-x are

the same banker number x;

• wBanker-x
- (u, c) is the U � C matrix of weights of the

deep learning cluster for banker x;

• YBanker-x = (y1
Banker-x, y2

Banker-x, …, yc
Banker-x) a C-dimen-

sional vector where y1
Banker-x is the reinforcement learn-

ing reward prediction, y2
Banker-x is the dynamic reward

prediction, y3
Banker-x is the transaction price, and yc

Banker-x

is the price prediction for banker number x.

4.3 Market banker deep learning management
cluster

The market banker deep learning management cluster

analyzes the predicted reward from its respective asset
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banker deep learning clusters, prioritizes their values based

on local market knowledge and finally reports to the CEO

banker deep learning management cluster the total pre-

dicted profit that its market can make.

‘‘GoldAI Sachs’’ model defines a set of x market banker

deep learning management clusters as:

• IMarketBanker-x, a C-dimensional vector IMarketBanker�x 2
0; 1½ �C with the values of the predicted rewards from

asset banker x;

• wMarketBanker-x
- (c) is the C-dimensional vector of

weights that represents the priority of each asset banker

x;

• YMarketBanker-x, a scalar YMarketBanker�x 2 0; 1½ � that rep-
resents the predicted profit the market banker deep

learning management cluster can make.

4.4 CEO banker deep learning management
cluster

The CEO banker deep learning management cluster, ‘‘AI

Morgan’’ takes the final investment management decision

based on the inputs from the market bankers and the

associated. The CEO banker selects the markets that can

generate better reward at lower risk where the maximum

risk is defined as b by the ‘‘GoldAI Sachs’’ board of

directors, or other user, where the higher the value the

higher risk. b can be statically assigned or dynamically

updated based on the external observations.

‘‘GoldAI Sachs’’ model defines the CEO banker deep

learning management cluster:

• ICEO-Banker, a X-dimensional vector ICEO�Banker 2 0; 1½ �X
with the values of the set x banker DL management

clusters;

• wCEO-Banker
- (c) is the C-dimensional vector of weights

that represents the risk associated to each market;

• YCEO-Banker, a scalar YCEO�Banker 2 0; 1½ � that represents
the final investment decision.

4.5 CEO banker genetic algorithm

Genetic learning transmits entirely the knowledge acquired

from the CEO banker, defined as the combination of

memory, identity and decision data, to future banker gen-

erations when ‘‘AI Morgan’’ considers itself no longer

valid due energy limitations or cybersecurity attacks.

Because the CEO banker information is never lost but

transmitted to future generations, genetic algorithm pro-

vides immortality rather than reinforcement learning

applied in fast local decisions or deep learning in identity

(Fig. 8).

‘‘GoldAI Sachs’’ model defines genetic learning as an

autoencoder where:

• XGenetic = (x1
Genetic, x2

Genetic, …, xu
Gentetic) a U-dimen-

sional vector where x1
Genetic, x2

Genetic, and xu
Genetic are

outputs of the x banker deep learning clusters;

• wGenetic-1
- (u, c) is the U 9 C matrix of weights of the

genetic encoder;

• YNucleoid = (y1
Nucleoid, y2

Nucleoid, …, yc
Nucleoid) a C-dimen-

sional vector where y1
Nucleoid, …, yc

Nucleoid is the value of

the nucleoid

• wGenetic-2
- (c, u) is the C 9 U matrix of weights of the

genetic decoder;

• YGeneration = (y1
Generation, y2

Generation, …, yc
Generation) a C-

dimensional vector where y1
Generation,…, yc

Generation is the

value of the new banker generation.

5 Smart investment implementation

‘‘GoldAI Sachs’’ is implemented in Java with eight asset

bankers clustered in two different markets; bond market is

low reward and therefore low risk, whereas risk market is

high reward and high risk.

5.1 Asset banker reinforcement learning
and deep learning clusters

Each asset banker has a two-node reinforcement learning

algorithm to make local fast decisions ‘‘buy or sell’’ trade

on different assets. the banker DL cluster learns the asset

properties to create asset identity; it has four inputs cells

(u = 4) and four output clusters (c = 4) where the input cell

is the normalized value of the x asset banker identification:

x (i1
Banker-x = 0�x, i2

Banker-x = 0�x, i3
Banker-x = 0�x, i4

Banker-x-

= 0�x) and the output clusters are the normalized asset

properties: (y1
Banker-x

= reinforcement learning reward pre-

diction, y2
Banker-x = dynamic reward prediction, y3

Banker-x-

= transaction price, y4
Banker-x

= price prediction as shown in

Table 1. ‘‘GoldAI Sachs’’ normalizes the DL clusters; the

inputs to: x/10 and the outputs to (reward or price/

100) ? 0.5, respectively, to keep the learning algorithm

within the stable region.

5.2 Market banker deep learning management
clusters

‘‘GoldAI Sachs’’ has two market banker DL management

clusters for the bond and commodities market, respec-

tively. The inputs of the market bankers are the predicted

asset banker rewards, whereas the output is the predicted

reward the market can make. The network weighs are the

asset banker priority; i.e., the best asset banker only to be
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considered with the maximum banker set at 1.0 and others

at 0.0 or the four Bankers with the same priority; with all

the network weights set at 0.25 as shown in Table 2.

5.3 CEO banker deep learning management
clusters

The input of the CEO banker deep learning management

cluster is the market profit provided by the market bankers

and its network weight is the risk associated to each mar-

ket. The smart investment model considers that market risk

level is related to the reward the market can generate. The

CEO banker, ‘‘AI Morgan’’ starts gradually assessing the

reward increasing the risk b from 0.1 up to the maximum

risk limit permissible by ‘‘GoldAI Sachs’’ owner or man-

ager. ‘‘AI Morgan’’ then takes the final decision based on a

greater predicted reward at the lowest risk b as represented

in Table 3.

5.4 CEO banker genetic algorithm

Genetic learning algorithm is an autoencoder where the

Market’s properties, identity and decisions learned by the

banker deep learning clusters are codified into four neurons

that represent the 4 nucleoids of the Genome: (cytosine

[C], guanine [G], adenine [A] or thymine [T]). These val-

ues are transmitted to the next generation in a daily basis.

The input XGenetic to the genetic algorithm corresponds

to a 32-dimensional vector where x1
Genetic, x2

Genetic, …
x32
Genetic correspond to the 4 outputs of the 8 asset bankers

YBanker-x YGene a is 4-dimensional vector where y1
Nucleoid, …,

y4
Nucleoid is the value of the four different nucleoids. The

output of the genetic algorithm YGeneration corresponds to

the input XGenetic as shown in Table 4.
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Fig. 8 ‘‘GoldAI Sachs’’ smart

investment model definition

Table 1 Asset banker DL

cluster implementation
Cluster Input Value Output Value

Banker 1 i1
Banker-1 0.1 y1

Banker-1 Reinforcement learning reward prediction

Banker 1 i2
Banker-1 0.1 y2

Banker-1 Dynamic reward prediction

Banker 1 i3
Banker-1 0.1 y3

Banker-1 Transaction price

Banker 1 i4
Banker-1 0.1 y4

Banker-1 Price prediction

… … … … …
Banker 8 i1

Banker-8 0.8 y1
Banker-8 Reinforcement learning reward prediction

Banker 8 i1
Banker-8 0.8 y2

Banker-8 Dynamic reward prediction

Banker 8 i1
Banker-8 0.8 y3

Banker-8 Transaction price

Banker 8 i1
Banker-8 0.8 y4

Banker-8 Price prediction
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6 Smart investment experimental results

‘‘GoldAI Sachs’’ is evaluated with eight different assets to

assess the adaptability and performance of our proposed

smart investment solution for 11 days. The assets are split

into the bond market with low risk and slow reward and the

derivative market with high risk and fast reward (Fig. 9).

Experiments are carried out with reinforcement learning

first initialized with a buy decision.

6.1 Asset banker reinforcement learning
validation

The profit that each asset banker makes when buying or

selling 100 assets for 11 days with the maximum profit, the

ratio between both the number of winning decisions against

the losing ones and the number of buy decisions against the

sell, is shown in Tables 5 and 6. The validation covers

three different values of investment reward memory a.
The simulation results are almost independent from the

value of the investment reward memory a, this is due the

reduced complexity in asset price variation. The rein-

forcement learning algorithm adapts very quickly to vari-

able asset prices where asset 6 shows that the lowest

investment memory, a = 0.1, is the optimum value. The

profit made in assets that start downward such as asset 2,

asset 4, asset 6 and asset 8 is worse than the upward ones

because the asset bankers are initialized with a buy

decision.

6.2 Asset banker deep learning cluster
validation

The asset banker deep learning cluster validation for the

eight different assets during the 11 different days is shown

in Table 7. The learning algorithm error threshold is set at

1.0E-25. The first value is the final iteration number for

learning algorithm number, and the second is the normal-

ized error at 1.0E-26.

The learning algorithm of the deep learning clusters is

very stable; it achieves a minimum error 1.0E-25 with

very reduced iterations.

6.3 Market banker deep learning management
cluster validation

The profits generated by the market bankers are shown in

Tables 8 and 9 and Figs. 10 and 11. The market bankers take

market decisions rather than individual asset decisions form the

asset bankers. Market bankers invest 400 assets which is the

combination of the four asset bankers purchasing power. The

combinedprofits that the asset bankers canmake independently

and the profits the bond market manager can obtain are pre-

sented; in addition, the maximum values are also shown.

The addition of a specialized market banker deep

learning management cluster increases the profits almost to

the maximum value. Tables 10 and 11 represent the bond

and derivative market bankers deep learning management

clusters values.

Table 2 Market banker DL management cluster implementation

Cluster Input Network weights Output

IBondMarketBanker wBondMarketBanker
- (c) YBondMarketBanker

Bond Predicted reward banker 1

Predicted reward banker 2

Predicted reward banker 3

Predicted reward banker 4

0.0

1.0

0.0

0.0

Best predicted

reward bond banker

Cluster Input Network weights Output

IDerivativeMarketBanker wDerivativeMarketBanker
- (c) YDerivativeMarketBanker

Derivative Predicted reward banker 5

Predicted reward banker 6

Predicted reward banker 7

Predicted reward banker 8

0.0

1.0

0.0

0.0

Best predicted reward

derivative banker

Table 3 CEO banker DL

management cluster

implementation

Cluster Input Network weight Output

ICEO-Banker wCEO-Banker
- (c) YCEO-Banker

CEO banker YBondMarketBanker

YDerivativeMarketBanker

1 - b

b

Predicted reward at risk b
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Fig. 9 Smart investment data

model

Table 4 Genetic algorithm

implementation
Name Variable Value

XGenetic x1
Genetic y1

Banker-1

x2
Genetic y2

Banker-1

x3
Genetic y3

Banker-1

x4
Genetic y4

Banker-1

x5
Genetic y4

Banker-2

… …
x8
Genetic y4

Banker-2

… …

x32
Gentetic y4

Banker-8

wGenetic-1
- (u,c) wGenetic-1

- (1, 1) … wGenetic-1
- (32, 1) 0.02, … 0.02

wGenetic-1
- (1, 2) … wGenetic-1

- (32, 2) 0.15, … 0.15

wGenetic-1
- (1, 3) … wGenetic-1

- (32, 3) 0.40, … 0.40

wGenetic-1
- (1, 4) … wGenetic-1

- (32, 4) 0.99, … 0.99

YNucleoid y1
Nucleoid (0.00\C B 0.25 0.2048

y2
Nucleoid 0.25\G B 0.50 0.3900

y3
Nucleoid 0.50\A B 0.75 0.6295

y4
Nucleoid 0.75\T\ 0.99) 0.9268

wGenetic-2
- (c,u) wGenetic-2

- (1, 1) … wGenetic-2
- (1, 32) pinv(YNucleiod)XGenetic

wGenetic-2
- (2, 1) … wGenetic-2

- (2, 32)

wGenetic-2
- (3, 1) … wGenetic-2

- (3, 32)

wGenetic-2
- (4, 1) … wGenetic-2

- (4, 32)

YGeneration y1
Generation x1

Genetic

y2
Generation x2

Genetic

y3
Generation x3

Genetic

y4
Generation x4

Genetic

y5
Generation x5

Genetic

… …
y8
Generation x8

Genetic

… …
y32
Generation x32

Gentetic

4200 Neural Computing and Applications (2020) 32:4187–4211

123



6.4 CEO banker deep learning management
cluster validation

The CEO banker, ‘‘AI Morgan,’’ profited at different risks

ratios with a total of investment of 800 assets is represented

in Table 12. A low risk value b = 0.2 represents 640 assets

in the bond market (B) and 160 is the derivative market

(D), whereas a high risk value b = 0.8 is 160 assets in the

bond market and 640 in the derivative market, respectively.

The more risk the CEO banker ‘‘AI Morgan’’ takes, the

more profit is able to generate as the investment decisions

are directed to the derivative market reaching nearly opti-

mum values. Table 13 and Fig. 12 represent the CEO

Table 5 Asset banker reinforcement learning validation; a = 0.1

Assets Profit Maximum profit Ratio Win Loss Buy Sell

1 1000 1000 1.00 10 0 10 0

2 800 1000 0.80 9 1 1 9

3 600 600 1.00 6 0 10 0

4 300 500 0.60 4 1 6 4

5 2000 2000 1.00 8 0 4 6

6 1200 2000 0.60 6 2 4 6

7 1600 2000 0.80 9 1 6 4

8 800 2000 0.40 7 3 4 6

Table 6 Asset banker

reinforcement learning

validation; a = 0.5 and a = 0.9

Asset Profit Maximum profit Ratio Win Loss Buy Sell

1 1000 1000 1.00 10 0 10 0

2 800 1000 0.80 9 1 1 9

3 600 600 1.00 6 0 10 0

4 300 500 0.60 4 1 6 4

5 (a = 0.5) 2000 2000 1.00 8 0 4 6

5 (a = 0.9) 1600 2000 0.80 7 1 7 3

6 600 2000 0.30 5 3 3 7

7 1600 2000 0.80 9 1 6 4

8 800 2000 0.40 7 3 4 6

Table 7 Asset banker deep

learning cluster validation
Day Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

2 It: 1725 It: 983 It: 663 It: 519 It: 389 It: 416 It: 302 It: 337

E: 9.87 E: 9.70 E: 9.48 E: 9.38 E: 9.51 E: 9.79 E: 6.59 E: 9.92

3 It: 1720 It: 889 It: 663 It: 519 It: 367 It: 324 It: 300 It: 277

E: 9.73 E: 9.74 E: 9.48 E: 9.38 E: 9.86 E: 8.10 E: 7.90 E: 8.81

4 It: 1720 It: 886 It: 663 It: 519 It: 366 It: 321 It: 299 It: 273

E: 9.77 E: 9.47 E: 9.48 E: 9.38 E: 9.95 E: 9.00 E: 9.81 E: 9.70

5 It: 1718 It: 884 It: 663 It: 519 It: 386 It: 352 It: 300 It: 273

E: 9.93 E: 9.69 E: 9.48 E: 9.38 E: 7.83 E: 9.80 E: 7.57 E: 9.53

6 It: 1718 It: 884 It: 628 It: 519 It: 429 It: 373 It: 300 It: 287

E: 9.97 E: 9.68 E: 9.90 E: 9.38 E: 9.00 E: 8.38 E: 7.48 E: 7.51

7 It: 1720 It: 884 It: 627 It: 547 It: 431 It: 374 It: 370 It: 336

E: 9.83 E: 9.16 E: 9.10 E: 9.26 E: 9.81 E: 8.78 E: 9.33 E: 9.77

8 It: 1720 It: 884 It: 627 It: 494 It: 388 It: 409 It: 303 It: 335

E: 9.42 E: 9.49 E: 9.46 E: 8.82 E: 9.89 E: 9.50 E: 9.11 E: 8.75

9 It: 1720 It: 884 It: 627 It: 491 It: 367 It: 324 It: 300 It: 277

E: 9.41 E: 9.57 E: 9.17 E: 8.95 E: 9.77 E: 8.55 E: 8.38 E: 9.54

10 It: 1719 It: 886 It: 627 It: 491 It: 369 It: 319 It: 299 It: 274

E: 9.89 E: 9.11 E: 9.12 E: 8.29 E: 9.94 E: 8.34 E: 9.87 E: 7.56

11 It: 1720 It: 896 It: 626 It: 495 It: 407 It: 335 It: 315 It: 273

E: 9.74 E: 8.21 E: 9.55 E: 9.99 E: 8.76 E: 7.38 E: 8.07 E: 9.83
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banker deep learning management clusters values at dif-

ferent risks with the final risk decision.

6.5 CEO banker genetic algorithm validation

The genetic algorithm validation for the four different

nucleoids (C, G, A, T) during the 10 different days is

shown in Tables 14 and 15 with the genetic algorithm

error.

The genetic algorithm codifies the CEO banker and

transmits this information to the next generations with a

residual error with only one iteration at a minimum time.
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Fig. 10 Bond market banker

accumulative profits; a = 0.1

Table 8 Bond market banker profits; a = 0.1

Day Total asset

banker

Bond market

banker

I (%) Maximum asset

banker

Maximum market

banker

I (%)

2 0 400 400.00 200 400 100.00

3 200 400 100.00 200 400 100.00

4 200 400 100.00 200 400 100.00

5 200 400 100.00 200 400 100.00

6 300 400 33.33 300 400 33.33

7 200 400 100.00 400 400 0.00

8 400 400 0.00 400 400 0.00

9 400 400 0.00 400 400 0.00

10 400 400 0.00 400 400 0.00

11 400 400 0.00 400 400 0.00

Total 2700 4000 48.15 3100 4000 29.03

Table 9 Derivative market banker profits; a = 0.1

Day Total asset

banker

Derivative market

banker

I (%) Maximum asset

banker

Maximum market

banker

I (%)

2 0 800.0 400.00 800 800.0 400.00

3 1000 1200 20.00 1000 1200 20.00

4 1000 1200 20.00 1000 1200 20.00

5 800 800 0.00 800 800 0.00

6 400 0 - 100.00 400 0 - 100.00

7 - 400 - 800 100.00 400 800 100.00

8 0 800 800 800 800 0.00

9 1000 1200 20.00 1000 1200 20.00

10 1000 1200 20.00 1000 1200 20.00

11 800 800 0.00 800 800 0.00

Total 5600 7200 28.57 8000 8800 10.00
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Fig. 11 Derivative market

banker accumulative profits;

a = 0.1

Table 10 Bond market banker

deep learning management

cluster validation

Day IBondMarketBanker wBondMarketBanker
- (c) YBondMarketBanker

2 0.0000 0.0000 0.0000 0.0000 1.0 0.0 0.0 0.0 0.9994

3 0.5090 0.4910 0.5000 0.5000 1.0 0.0 0.0 0.0 0.5146

4 0.5100 0.5081 0.5000 0.5000 1.0 0.0 0.0 0.0 0.5142

5 0.5100 0.5098 0.5000 0.5000 1.0 0.0 0.0 0.0 0.5142

6 0.5100 0.5100 0.5000 0.5000 1.0 0.0 0.0 0.0 0.5142

7 0.5100 0.5100 0.5090 0.5000 1.0 0.0 0.0 0.0 0.5142

8 0.5100 0.5100 0.5099 0.4910 1.0 0.0 0.0 0.0 0.5142

9 0.5100 0.5100 0.5100 0.5081 1.0 0.0 0.0 0.0 0.5142

10 0.5100 0.5100 0.5100 0.5098 1.0 0.0 0.0 0.0 0.5142

11 0.5100 0.5100 0.5100 0.5100 1.0 0.0 0.0 0.0 0.5142

Table 11 Derivative market

banker deep learning

management cluster validation

Day IDerivativeMarketBanker wDerivativeMarketBanker
- (c) YDerivativeMarketBanker

2 0.0000 0.0000 0.0000 0.0000 1.0 0.0 0.0 0.0 0.9994

3 0.5180 0.4820 0.5180 0.4820 1.0 0.0 0.0 0.0 0.5103

4 0.5288 0.5252 0.5198 0.5162 1.0 0.0 0.0 0.0 0.5051

5 0.5299 0.5295 0.5200 0.5196 1.0 0.0 0.0 0.0 0.5046

6 0.5210 0.5210 0.5200 0.5200 1.0 0.0 0.0 0.0 0.5088

7 0.5021 0.5021 0.5200 0.5200 0.0 0.0 1.0 0.0 0.5093

8 0.5002 0.5002 0.4840 0.4840 1.0 0.0 0.0 0.0 0.5190

9 0.5180 0.4820 0.5164 0.4804 1.0 0.0 0.0 0.0 0.5103

10 0.5288 0.5252 0.5196 0.5160 1.0 0.0 0.0 0.0 0.5051

11 0.5299 0.5295 0.5200 0.5196 1.0 0.0 0.0 0.0 0.5046

Table 12 CEO banker profits;

a = 0.1
Day Risk b = 0.2 Risk b = 0.5 Risk b = 0.8 Max profit

B D Total B D Total B D Total

2 640 320 960 400 800 1200 160 1280 1440 1440

3 640 480 1120 400 1200 1600 160 1920 2080 2080

4 640 480 1120 400 1200 1600 160 1920 2080 2080

5 640 320 960 400 800 2800 160 1280 1440 1440

6 640 0 640 400 0 400 160 0 160 640

7 640 - 320 320 400 - 800 - 400 160 - 1280 - 1120 320

8 640 320 960 400 800 1200 160 1280 1440 1440

9 640 480 1120 400 1200 1600 160 1920 2080 2080

10 640 480 1120 400 1200 1600 160 1920 2080 2080

11 640 640 1280 400 800 1200 160 1280 1440 1440

Total 6400 3200 9600 4000 7200 12,800 1600 11,520 13,120 15,040
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7 Cryptocurrency evaluation

‘‘GoldAI Sachs’’ is evaluated with seven different assets to

assess the adaptability and performance of our proposed

smart investment solution for 664 days, from 07/08/2015

to 31/05/2017. The assets are split into the Bitcoin

exchange market (BITSTAMP, BTCE, COINBASE,

KRAKEN) and the currency market (Bitcoin, Ethereum,

Ripple). Reinforcement learning is first initialized with a

buy decision.

Cryptocurrency evaluation data has been produced

though datasheets obtained from Kraggle; only three dif-

ferent currencies were found (Fig. 13). The values of the

different assets within the Bitcoin exchange market are

very similar as they trade the same currency, whereas the

currency market presents a more disperse set of values.
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Fig. 12 CEO banker

accumulative profits; a = 0.1

Table 14 Genetic algorithm

validation
Day Error Nucleoid-C Nucleoid-G Nucleoid-A Nucleoid-T

2 3.05E-31 0.2048 0.3893 0.6295 0.9268

3 5.85E-31 0.2026 0.3861 0.6263 0.9259

4 6.78E-32 0.2025 0.3859 0.6262 0.9259

5 1.17E-31 0.2029 0.3865 0.6267 0.9260

6 4.44E-31 0.2033 0.3870 0.6272 0.9262

7 1.29E-31 0.2049 0.3894 0.6296 0.9269

8 3.61E-31 0.2031 0.3868 0.6271 0.9261

9 2.96E-31 0.2021 0.3852 0.6255 0.9257

10 6.90E-31 0.2020 0.3851 0.6254 0.9256

11 1.36E-31 0.2023 0.3856 0.6259 0.9258

Table 15 Genetic algorithm validation

Error genetic Iteration Time (ns)

Value 3.13E-31 1.00 3.17E?05

r 2.11E-31 0.00 5.75E?04

95% CR 1.31E-31 0.00 3.56E?04

Table 13 CEO banker deep

learning management cluster

validation

Day ICEO-Banker Risk b = 0.2 Risk b = 0.5 Risk b = 0.8

YCEO-Banker D YCEO-Banker D YCEO-Banker D

2 0.9994 0.9994 0.2127 0.1 0.2127 0.1 0.2127 0.8

3 0.5147 0.5103 0.3444 0.2 0.3450 0.5 0.3456 0.8

4 0.5142 0.5051 0.3450 0.2 0.3462 0.5 0.3475 0.8

5 0.5142 0.5046 0.3451 0.2 0.3464 0.5 0.3477 0.8

6 0.5142 0.5088 0.3447 0.2 0.3454 0.5 0.3461 0.8

7 0.5142 0.5093 0.3447 0.2 0.3453 0.5 0.3460 0.8

8 0.5142 0.5190 0.3441 0.1 0.3441 0.1 0.3441 0.1

9 0.5142 0.5103 0.3446 0.2 0.3451 0.5 0.3456 0.8

10 0.5142 0.5051 0.3451 0.2 0.3463 0.5 0.3475 0.8

11 0.5142 0.5046 0.3451 0.2 0.3464 0.5 0.3477 0.8
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7.1 Asset banker reinforcement learning
validation

The profit that each asset banker makes when buying or

selling 100 assets for 664 days from year 2015 to 2017

with the maximum profit, the ratio between both the

number of winning decisions against the losing ones and

the number of buy decisions against the sell, is shown in

Tables 16, 17 and 18. The validation covers three different

values of investment reward memory a.
The RNN reinforcement learning algorithm adapts very

quickly to variable asset prices and makes profits; although

not to optimum values. The value of the investment reward

memory does not have a mayor impact in the overall profit

due to the great adaptation of reinforcement learning

algorithm though a high value of investment reward

memory generates more profits (Fig. 14).

7.2 Asset banker deep learning cluster
validation

The asset banker deep learning cluster validation for the

seven different assets during the 664 different days from

year 2015 to 2017 is shown in Table 19. The learning

algorithm error threshold is set at 1.0E-25. The first value

is the final iteration number for learning algorithm number,

and the second is the normalized error at 1.0E-26.

7.3 Market banker deep learning management
cluster validation

The profit the market bankers can make for the 664 days

from year 2015 to 2017 is shown in Tables 20, 21 and 22

where the validation includes three different values of

investment reward memory a. The market bankers take

market decisions rather than individual asset decisions

form the asset bankers. Bitcoin exchange market banker

invests 400 assets which is the combination of the four

asset bankers purchasing power whereas currency market
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Fig. 13 Cryptocurrency

investment data model

Table 16 Asset banker

reinforcement learning

validation; a = 0.1, year

2015–2017

Asset Profit Maximum profit Ratio Win Loss Buy Sell

BITSTAMP 192,530 957,018 0.20 386 277 597 66

BTCE 177,133 749,307 0.24 355 258 595 68

COINBASE 172,257 985,625 0.17 383 279 503 160

KRAKEN 187,647 977,763 0.19 367 258 619 44

Bitcoin 195,083 952,339 0.20 393 270 634 29

Ethereum 18,626 58,916 0.32 332 322 385 278

Ripple 17 101 0.17 292 370 662 1

Total 943,293 4,681,069 0.20 2508 2034 3995 646
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banker invests 300 assets as there are only three asset

bankers.

The Bitcoin exchange market banker does not increase

the profits of the market; this is mostly due to the fact that

the four Bitcoin exchange asset bankers perform very

similarly on almost equal asset conditions therefore with

the addition of a market banker, the independent knowl-

edge acquired by each asset banker is lost. However, when

the currency asset bankers operate under diverse asset

conditions, the addition of a currency market banker

increases the market profit due to the right selection of the

best performing asset banker. Different values of invest-

ment reward memory have an impact on the final profit

where a balanced investment reward memory (a = 0.5)

between previous and last investment provides optimum

results (Figs. 15, 16).

Table 23 represents the bond and derivative market

bankers deep learning management clusters average values

for the 664 days from year 2015 to 2017.
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Fig. 14 Asset banker reinforcement learning validation; a = 0.1;

a = 0.5; a = 0.9

Table 19 Asset banker deep

learning cluster validation
Period Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7

664 days It: 1854.67 It: 945.43 It: 670.24 It: 524.43 It: 436.12 It: 377.75 It: 336.71

2015–2017 E: 9.60 E: 9.51 E: 9.45 E: 9.34 E: 9.24 E: 8.94 E: 8.71

Table 20 Market banker profits; a = 0.1, year 2015–2017

Market Total asset banker Market banker I (%) Maximum asset banker Maximum market banker I (%)

Exchange 729,567 541,559 - 25.77 3,669,714 3,731,781 1.69

Currency 213,726 472,323 120.99 1,011,356 2,050,320 102.73

Table 17 Asset banker

reinforcement learning

validation; a = 0.5, year

2015–2017

Asset Profit Maximum profit Ratio Win Loss Buy Sell

BITSTAMP 196,226 957,018 0.21 389 274 644 19

BTCE 180,596 749,308 0.24 371 242 659 4

COINBASE 192,951 985,625 0.20 392 270 644 19

KRAKEN 188,704 977,763 0.19 366 259 648 15

Bitcoin 196,059 952,339 0.21 385 278 496 167

Ethereum 19,446 58,916 0.33 355 299 175 488

Ripple 20 101 0.20 293 369 663 0

Total 974,002 4,681,070 0.21 2551 1991 3929 712

Table 18 Asset banker

reinforcement learning

validation; a = 0.9, year

2015–2017

Asset Profit Maximum profit Ratio Win Loss Buy Sell

BITSTAMP 196,226 957,018 0.21 389 274 644 19

BTCE 191,875 749,308 0.26 373 240 631 32

COINBASE 192,951 985,625 0.20 392 270 644 19

KRAKEN 187,052 977,763 0.19 359 266 643 20

Bitcoin 202,803 952,339 0.21 394 269 613 50

Ethereum 21,476 58,916 0.36 339 315 432 231

Ripple 20 101 0.20 293 369 663 0

Total 992,403 4,681,070 0.21 2539 2003 4270 371
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7.4 CEO banker deep learning management
cluster validation

The CEO banker, ‘‘AI Morgan,’’ profits at different risks

ratios b with a total of investment of 700 assets for different

investment rewardmemories a is shown in Tables 24, 25 and
26 for the 664 days from year 2015 to 2017. A risk value

b = 0.2 represents 560 assets in the exchangemarket and 140

in the currency market whereas a risk value b = 0.8 is 140

assets in the exchange market and 560 in the currency mar-

ket, respectively. This research considers the exchange

market as low risk and the currency market as high risk.

The results are consisted with the previous validation the

best reward is at a = 0.5. The CEO banker takes the right

decisions where the profits increase as the risk increases.

Table 27 represents the CEO banker deep learning man-

agement clusters values at different risk decisions

(Figs. 17, 18).

7.5 CEO banker genetic algorithm validation

The genetic algorithm validation for the four different

nucleoids (C, G, A, T) average value during the 664
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Fig. 15 Exchange market banker profits; a = 0.5
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Fig. 16 Currency market banker profits; a = 0.5

Table 23 Bond and derivative

market banker deep learning

management cluster validation

Period IBondMarketBanker wBondMarketBanker
- (c) YBondMarketBanker

Bond market banker

664 days

2015–2017

0.99 0.99 0.99 0.99 0.21 0.29 0.25 0.25 0.35

Period IDerivativeMarketBanker wDerivativeMarketBanker
- (c) YDerivativeMarketBanker

Derivative market banker

664 days

2015–2017

0.99 0.99 0.99 N/A 0.65 0.28 0.07 N/A 0.29

Table 21 Market banker profits; a = 0.5, year 2015–2017

Market Total asset banker Market banker I (%) Maximum asset banker Maximum market banker I (%)

Exchange 758,477 596,973 - 21.29 3,669,714 3,403,866 - 7.24

Currency 215,525 547,631 154.09 1,011,356 2,003,275 98.08

Table 22 Market banker profits; a = 0.9, year 2015–2017

Market Total asset banker Market banker I (%) Maximum asset banker Maximum market banker I (%)

Exchange 768,104 427,220 - 44.38 3,669,714 3,335,495 - 9.11

Currency 224,299 531,675 137.04 1,011,356 2,271,457 124.60
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different days from year 2015 to 2017 is shown in Table 28

with the genetic algorithm error. The genetic algorithm

codifies the CEO banker with a residual error.

8 Conclusions

This article has presented a management decision structure

based on the human brain with its hierarchical decision

process. In addition, this article has defined a new learning

genetic algorithm based on the genome where the informa-

tion is transmitted in the networkweights rather than through

the neurons. The management decision structure has been

implemented in a Fintech application: smart investment

model that simulates the human brain with reinforcement

learning for fast decisions, deep learning to learn properties

to create asset identity, deep learningmanagement clusters to

make global decisions and genetic to transmit learned

information and decisions to future generations.

In the smart investor model, ‘‘GoldAI Sachs’’ asset banker

reinforcement learning algorithm takes the right investment

decisions; with great adaptability to asset price changes

whereas asset banker deep learning learns asset properties and

identity. Market bankers success to increase the profit by

selecting the best performing asset bankers and the CEO

banker, ‘‘AI Morgan,’’ increases the profits considering the
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Fig. 17 CEO banker maximum profits; a = 0.5
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Fig. 18 CEO banker profits; a = 0.5

Table 24 CEO banker profits;

a = 0.1, year 2015–2017
Risk b = 0.2 Risk b = 0.5 Risk b = 0.8 Max profit

E C E C E C

758,183 220,418 473,864 551,044 189,546 881,670 6,181,310

Total: 978,600 Total: 1,024,908 Total: 1,071,216

Table 25 CEO banker profits;

a = 0.5, year 2015–2017
Risk b = 0.2 Risk b = 0.5 Risk b = 0.8 Max profit

E C E C E C

835,763 255,561 522,352 638,903 208,941 1,022,244 5,700,274

Total: 1,091,324 Total: 1,161,254 Total: 1,231,185

Table 26 CEO banker profits;

a = 0.9, year 2015–2017
Risk b = 0.2 Risk b = 0.5 Risk b = 0.8 Max profit

E C E C E C

598,107 248,115 373,817 620,287 149,527 992,460 5,729,706

Total: 846,222 Total: 994,104 Total: 1,141,986

Table 27 CEO banker deep

learning management cluster

validation

Period ICEO-Banker Risk b = 0.2 Risk b = 0.5 Risk b = 0.8

YCEO-Banker D YCEO-Banker D YCEO-Banker D

664 days 0.3530 0.2904 0.4422 0.2 0.4562 0.5 0.4712 0.8
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associated market risks, prioritizing low risk investment deci-

sion at equal profit.

Genetic learning transmits entirely the knowledge

acquired from the CEO banker, defined as the combination

of memory, identity and decision data, to future banker

generations at a minimum error and time. Because the CEO

banker information is never lost but transmitted to future

generations, genetic algorithm provides immortality.

Future work will analyze different methods to improve the

performance or increase the profits, of the proposed deep

learning cluster structure.
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Appendix: Smart investment model—neural
schematic

Table 28 Genetic algorithm

validation, year 2015–2017
Error genetic Iteration Time (ns) Nucleoid

C G A T

Value 6.76E-31 1.00 1.21E?05 0.1849 0.3594 0.5992 0.9177

r 7.91E-31 0.00 1.29E?05 0.0064 0.0098 0.0103 0.0033

95% CR 6.02E-32 0.00 9.81E?03 0.0005 0.0007 0.0008 0.0002
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