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Abstract
This paper presents a web-oriented expert system, named iHurdling, to predict results and generate training loads for 110

and 400 m hurdles races. The database contains 40 annual training programmes for the 110 m hurdles and 48 programmes

for the 400 m hurdles. The predictive models include linear regressions in the form of ordinary least squares, ridge,

LASSO, elastic net and nonlinear models in the form of a radial basis function neural network and fuzzy rule-based system.

The leave-one-out cross-validation method is used to compare, and choose the best model. It shows that the proposed

fuzzy-based model has the lowest validation error. The developed web application can support a coach in planning training

programmes for hurdles races. It allows the athlete’s results to be predicted and can generate training loads for an athlete,

selected from database. The application can be run on a computer or a mobile device. The system was implemented using

the R programming language with the Shiny framework and additional packages. The limitations of the presented approach

are related to the lack of consideration of an athlete’s physiological and psychological parameters, but the generated

training programs might be used as a suggestion for the coach.
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1 Introduction

Expert systems have been widely implemented and

examined by researchers. They mimic the decision-making

abilities of a human expert, and they are designed to solve

complex problems by reasoning. Expert system applica-

tions include, among others, medicine [29, 53, 60], diag-

nosis and control of power systems [26, 27], evaluation of

journal grades [61], information systems investment eval-

uation [19], transport management [31, 51], industry

[14, 38] and sport [12, 15, 32, 33, 39].

Nowadays, in sports science various types of computer

tools and methods play an important role. Competitors and

coaches are looking for new solutions that can support their

work. One aspect of such support can be the application of

machine learning methods, which can be used to calculate

performance results [13, 15, 43], identify sporting talent

[35, 39, 48, 49] or support the training process

[30, 40, 41, 45, 50, 52].

For example, in the paper [13], the authors use artificial

neural networks to predict competitive performance in

swimming. The neural models were cross-validated, and

the results show that the modelling was very precise. The

paper [43] describes the use of linear and nonlinear mul-

tivariable models as tools to predict the results of 400 m

hurdles races. All the models were constructed using the

training data of 21 athletes from the Polish National Team.
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The best prediction results were obtained by the LASSO

regression method. Gu et al. [15] proposed an expert sys-

tem to predict National Hockey League (NHL) game out-

come. The prediction accuracy of the system was 77:5%.

Another paper [17] presents a review of data mining

techniques that are used for prediction in various sports

disciplines.

Roczniok et al. [48] proposed using Kohonen’s neural

networks for the recruitment process in competitive

swimming. Experiments were conducted on a group of 140

young swimming contestants aged about 10. Another

approach to identifying sporting talent was proposed by

Rogulj et al. [49]. The authors have developed two

methodological approaches to recognize an athlete’s mor-

phological compatibility for various sports. In the paper

[35], Maszczyk et al. determined the usefulness of neural

models in optimizing recruitment processes. Statistical

analyses were carried out on the measured results of javelin

throwers using full take off. For the investigated group, the

perceptron network with the 4–3–2–1 structure achieved

the best predictive results.

In the paper [50], Ryguła et al. proposed using an arti-

ficial neural network (ANN) to model swimming perfor-

mance in the 200 m individual medley and the 400 m front

crawl events. The ANNs were also used to analyze tactics

in team sports [41]. Another study was devoted to the use

of ANNs to classify kick techniques [30]. The aim of that

paper was to find out whether it is possible to distinguish

two different kick techniques from a kick impact force

profile. The paper [52] presents the application of a neural

network to model swimming performance. The authors

created highly realistic models of swimming performance

prediction based on previously selected criteria that were

related to the dependent variable. Experiments were con-

ducted on 138 swimmers (65 males and 73 females) at

national level.

Despite the existing methods to predict and support

training, there is lack of tools that could be used by coaches

during the training process. Papić et al. [39] developed a

fuzzy expert system for scouting and evaluating young

sporting talent. A similar system is presented in [33], where

the authors perform talent identification in soccer using a

web-oriented expert system.

From the review of literature, it can be seen that there is

a need to create tools for supporting sports training. The

main contribution of this paper is, therefore, to develop a

web-oriented expert system, named iHurdling, to predict

results and generate training loads in the 110 and 400 m

hurdles. The system we have developed can support a

coach in planning training programmes in hurdles races.

The system uses linear regression models (OLS, ridge,

LASSO, elastic net) and nonlinear models (RBF, fuzzy

model, OLS with fuzzy correction). The main advantages

of this system are an easy-to-use interface and compati-

bility with different platforms which means that it can be

run from a computer or a mobile device.

2 Training data

The training data contain training plans carried out by

hurdlers in the Polish National Team. One record contains

the parameters of an athlete and the training programme

carried out by this athlete during their annual training

cycle. The models for result prediction (PR) and for gen-

erating training loads (GT) were build using 21 variables

(Table 1). For the PR models, the input variables x1�x5

represent the parameters of the athlete, the input variables

x6�x20 represent the training loads and the output variable

y represents the predicted result. For the GT models, x1�x6

represent the parameters of the athlete and y1�y15 repre-

sent the training loads. The training programs were recor-

ded according to the classification proposed in [22]. The

classification consists of two areas of influence: energy

(exercise) and information (related to the formation of

technique). In the analyzed training loads, there are speed,

endurance and strength as well as exercises that develop

the technique of hurdles clearance. A similar classification

of exercises can be found in another papers devoted to

sprinters and hurdlers [2, 37]. The values of these loads are

the sum of all loads of the same type realized during the

annual training cycle. The results for the hurdles races were

registered before and after the cycle. Both runs were car-

ried out under simulated starting conditions of the 110 and

400 m hurdle race. In this study, the current result at the

training distance was assumed as the indicator of perfor-

mance level. As concluded in the paper [25], this result is

strongly correlated with performance parameters and other

motor skills tests used in hurdles races. For the 110 m

hurdles, the training data contain 40 records. These records

were collected from 18 highly trained athletes (mean result

in 110 m hurdles: 14.02 s) aged 18–28. In 400 m hurdles,

the 48 records from 21 athletes aged 19–27 were used. The

hurdlers practising the 400 m had also a high sport level.

(Mean result on 400 m hurdles was equal to 51.26 s.)

3 Mathematical models

In this paper, we use the regression methods for building

multi-input, single-output (MISO) and multi-input, multi-

output (MIMO) models. The MISO models are used for the

prediction of result, while the MIMO models are used in

the generation of training loads. In the simplified descrip-

tion that follows we assume that we have one output, since
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a MIMO model will be represented as a set of MISO

models.

In our expert system, we use:

– linear models in the form of ordinary least squares

(OLS) [7], ridge regression (RIDGE) [18], least

absolute shrinkage and selection operator (LASSO)

[54] and elastic net (ENET) [62],

– nonlinear models in the form of radial basis function

network (RBF) [6] and fuzzy rule-based system (FRBS)

[47].

3.1 Linear models

Consider a MISO model with p inputs (predictors) creating

the vector x ¼ ½x1; x2; . . .; xp� and one output (response) y.

The goal is to build the regression function

y ¼ f ðxÞ ¼
Xp

j¼1

xjwj ð1Þ

based on a data set containing n observations in the form of

pairs ðxi; yiÞ, where xi ¼ ½xi1; xi2; . . .; xip�, i ¼ 1; . . .; n. The

element xij denotes the jth predictor in the ith observation,

and yi is the response in the ith observation.

The linear regression problem can be written as a matrix

equation of the form

y ¼ Xw ð2Þ

where

X ¼

x11 x12 . . . x1p

x21 x22 . . . x2p

..

. ..
. . .

. ..
.

xn1 xn2 . . . xnp

2
66664

3
77775

ð3Þ

and w ¼ ½w1;w2; . . .;wp�T , y ¼ ½y1; y2; . . .; yn�T . Denoting

by Jðw; �Þ a cost function, the problem of finding a linear

model involves minimizing the function Jðw; �Þ, that is

ŵ ¼ arg min
w

Jðw; �Þ ð4Þ

where ŵ is the vector of the optimal parameter values. For

the linear models, the cost functions have the form of

JOLSðwÞ ¼ y� Xwk k2
2 ð5Þ

Table 1 Description of variables used to construct the PR and GT modules for 110 and 400 m hurdles

PR GT Description 110 m 400 m

x xmin xmax x xmin xmax

y x1 Result after training (s) 14.02 13.26 15.13 51.27 48.19 53.60

x1 x2 Age (years) 21.9 18.0 28.0 22.3 19.0 27.0

x2 x3 Body height (cm) 187.3 181.0 195.0 185.0 177.0 192.0

x3 x4 Body mass (kg) 77.8 71.0 83.0 74.3 69.0 82.0

x4 x5 Body mass index 22.1 20.3 23.5 21.2 19.7 24.4

x5 x6 Result before training (s) 14.33 13.34 15.40 51.91 48.70 54.70

x6 y1 Maximal and technical speed exercises (m) 12,513 5800 17,970 9428 2910 18,920

x7 y2 Technical and speed exercises (m) 5925 2470 10,200 4253 240 9450

x8 y3 Speed and specific hurdle endurance exercises (m) 11,961 3150 20,400 25,342 6400 101,450

x9 y4 Pace runs exercises (m) 64,087 25,780 100,300 163,796 88,000 393,800

x10 y5 Aerobic endurance exercises (m) 328,631 80,600 550,000 363,257 151,000 692,500

x11 y6 Strength endurance exercises (m) 20,638 1850 46,595 41,069 1750 169,265

x12 y7 Strength of lower limbs exercises (kg) 291,119 96,400 658,600 224,099 96,900 504,540

x13 y8 Trunk strength exercises (amount) 38,442 5240 145,000 46,438 6100 233,680

x14 y9 Upper body strength exercises (kg) 3352 1630 4850 3305 760.0 29,610

x15 y10 Explosive strength of lower limbs exercises (amount) 1244 0 2214 823 282 2138

x16 y11 Explosive strength of upper limbs exercises (amount) 656 213 1850 443 60 1360

x17 y12 Technical exercises – walking pace (min) 456 130 1110 424 45 816

x18 y13 Technical exercises – running pace (min) 574 195 1450 518 150 1500

x19 y14 Runs over hurdles exercises (amount) 778 362 1317 416 121 775

x20 y15 Hurdle runs in varied rhythm exercises (amount) 1077 320 1850 857 36 1680
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JRIDGEðw; kÞ ¼ y� Xwk k2
2 þ k wk k2

2 ð6Þ

JLASSOðw; kÞ ¼ y� Xwk k2
2 þ k wk k1 ð7Þ

JENETðw; k1; k2Þ ¼ y� Xwk k2
2 þ k1 wk k1 þ k2 wk k2

2 ð8Þ

where k, k1 and k2 are non-negative regularization

parameters. The norms jj � jj2 and jj � jj1 denote the Eucli-

dean and the Manhattan norms, respectively. The RIDGE,

LASSO and ENET regressions are regularized which

means that they can be used when the problem is ill-con-

ditioned. The detailed description of the linear models can

be found, for example, in [58].

3.2 Choosing the best model

All models were tested using cross-validation method. This

is a method of evaluating the generalization ability (pre-

diction for new data, not involved in modelling) of the

model being created. In cross-validation, data are divided

into two subsets: a training set and a testing (validation)

set. In this study, due to the small amount of data (n ¼ 40

for 110 m and n ¼ 48 for 400 m), LOOCV (leave-one-out

cross-validation) was used [3]. The idea of this method is

to extract from the set of data n learning subsets. Each

subset is created by removing only one pair from the data

set, which becomes a test pair. Then, for each resulting

subset, the model is constructed that is evaluated by

determining the error for the remaining test pair. The

predictive ability of a model is expressed by the root of the

mean square error of cross-validation (RMSECV) calcu-

lated as

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷ�ið Þ2

s
ð9Þ

where ŷ�i is the output of a model obtained after removing

the pair ðxi; yiÞ from the data set.

3.3 Nonlinear models

3.3.1 RBF models

An RBF network is a feed-forward network that typically

consists of three layers: an input layer, a hidden layer and

an output layer.

The input layer is composed of nodes that receive input

signal x, and there is one node for each predictor variable.

The hidden layer is composed of nodes with radially

symmetric activation functions. The hidden node measures

the distance between the input vector x and the centre ck of

its radial function:

ukðxÞ ¼ uk x� ckk kð Þ ð10Þ

The norm jj � jj is usually taken as the Euclidean distance,

and uðxÞ is typically taken to be the Gaussian function.

The output layer is composed of a node that receives the

outputs of nodes in the hidden layer. This node calculates

the output of the network as a linear combination of non-

linear functions of the form

y ¼
Xm

k¼1

ukðxÞwk ð11Þ

where m is the number of nodes in the hidden layer, ukðxÞ
is a basis function and wk is the weight of the kth neuron in

the output node.

The training of the RBF network involves: the number

of hidden neurons, the parameters of radial functions in the

hidden layer and the weights in the output layer.

3.3.2 Fuzzy models

In this paper, we propose two approaches to use the FRBS

[47] in regression problems. In the first approach, the fuzzy

model is build similarly to the RBF model, that is, it is

learned from the original data. (This model is called

FUZZY.) In the second approach, the FRBS is used for the

nonlinear correction of the OLS model. (This model is

called F-OLS.) The idea is to change the output of a linear

model by adding a nonlinear correction term, in such a way

that the predictive error is reduced (Fig. 1). First, we build

the OLS model and remember its cross-validation errors,

and next we build a fuzzy model that ‘‘learns’’ these errors.

The design procedure for building F-OLS models is

listed below.

Step 1. Cross-validation of the OLS model y ¼ fOLSðxÞ
for the data ðxi; yiÞ. In the ith step of cross-

validation, the error has the form

ei ¼ yi � y�i ð12Þ

where y�i ¼ fOLSðx�iÞ.

Fig. 1 The idea of calculating the output of the F-OLS model. The

variable y ¼ fOLSðxÞ is the output of the ordinary least squares

estimator, and d ¼ fcðxÞ is the output of the fuzzy nonlinear corrector
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Step 2. Constructing the fuzzy (nonlinear) corrector

d ¼ fcðxÞ ð13Þ

for the data ðxi; eiÞ. This corrector predicts the

errors obtained in Step 1. The best fuzzy model

can be chosen on the basis of cross-validation

conducted for different number of fuzzy sets.

Step 3. Cross-validation of the OLS model with the

corrected error in the form

enewi ¼ yi � ðy�i þ diÞ ð14Þ

where y�i ¼ fOLSðx�iÞ and di ¼ fcðxiÞ.
Step 4. The predicted output of the F-OLS model is

determined as

yF�OLS ¼ fOLSðxÞ þ fcðxÞ ð15Þ

where fcðxÞ is the function of the fuzzy corrector

chosen in Step 3 (Fig. 1).

4 Expert system modules

The expert system consists of two modules, the prediction

of result (PR) and the generation of training loads (GT) for

the 110 and 400 m distances. The regression models for

both modules were calculated in R language [46]. The

functions with arguments used to generate the models are

shown in Table 2, and they are described below.

The function lm was used to calculate the OLS, and the

ridge regressions were calculated using the function

lm.ridge from the ‘‘MASS’’ package [55] (with k[ 0

in 6). The LASSO and the elastic net regressions were

obtained with the function enet included in the ‘‘elastic-

net’’ package [63]. This function has two parameters ðk; sÞ,
where k� 0 denotes k2 in the formula (8) and s 2 ½0; 1� is a

fraction of the norm L1. The pair ðk; sÞ is used instead of

the pair ðk1; k2Þ in the formula (8) because the elastic net

regression can be treated as the LASSO regression for an

augmented data set [62]. Taking k ¼ 0 we get the LASSO

regression with one parameter s for the original data. The

ENET models were selected by searching the parameters k
and s.

This study uses artificial neural networks in the form of

the radial basis function (RBF). The training data were

scaled before the RBF training, and the results of the

predictions were unscaled. All the analyzed networks have

one hidden layer. For the implementation of neural net-

works, the function RSNNS::rbf was used [6]. The

optimal neural model was determined by searching a

number of hidden neurons in the range from 2 to 10.

The fuzzy models were calculated using the function

frbs.learn from the ‘‘frbs’’ package [47]. The learning

method was the Wang–Mendel (W–M) algorithm [56].

This algorithm generates fuzzy rules from input–output

data pairs. The input space is divided into fuzzy subspaces,

Table 2 R functions for models training

Model Function Arguments

OLS lm formula ¼ y� �
data.train

RIDGE lm.ridge formula ¼ y� �
data.train

lambda 2 ½0;1Þ
LASSO enet data.x, data.y

lambda = 0,

normalize = TRUE

intercept = TRUE

predict.enet model

newx

s 2 ½0; 1�
ENET enet data.x, data.y

lambda 2 ½0;1Þ,
normalize = TRUE

intercept = TRUE

predict.enet model

newx

s 2 ½0; 1�
RBF rbf data.x, data.y

size 2 ½1; 10�
maxit = 1000

linOut = TRUE

Fuzzy frbs.learn data.train

range.data

method.type = ‘‘WM’’

control = list(

num.labels = l,

type.mf = ‘‘GAUSSIAN’’,

type.defuz = ‘‘WAM’’,

type.tnorm = ‘‘MIN’’,

type.implication.func

= ‘‘MIN’’)

The function predict.enet is used for selecting the parameter

s for LASSO and ENET models
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and fuzzy rules are extracted for each subspace. The W–M

method is a one-pass procedure and does not need time-

consuming training. In the fuzzy model, the Gaussian

membership functions are used, the t-norm is ‘‘minimum’’,

the defuzzification is ‘‘weighted average method’’, and the

implication is ‘‘minimum’’. The number of fuzzy sets l was

determined by calculating cross-validation errors as

described in Sect. 3.3.2.

4.1 Models for result prediction

The cross-validation errors RMSECV and parameters of the

models for the PR module are presented in Table 3. The

parameters were chosen on the basis of the plots shown in

Figs. 2 and 3. In the case of the ridge regression, the reg-

ularization parameter k 2 ½0; 40� was considered with the

step 0.1 for both distances. In the case of the LASSO

regression, the parameter s 2 ½0; 1� was considered with the

step 0.01. For the ENET regression, the following param-

eters were chosen: k 2 ½0:1; 0:25� with the step 0.008 and

s 2 ½0:4; 0:8� with the step 0.021 for the distance of 110 m,

and k 2 ½0; 0:06� with the step 0.0032 and s 2 ½0:3; 0:5�
with the step 0.01 for the distance of 400 m. The RBF

model was analyzed for the number of neurons in the

hidden layer m 2 f2; 3; . . .; 10g, and the fuzzy models were

analyzed for the number of fuzzy sets l 2 f2; 3; . . .; 13g.

Based on the conducted analysis, the best models (models

with the smallest cross-validation error) were selected

(Table 3). It can be seen that for both the 110 and the

400 m distances, the lowest error was obtained by the

F-OLS regression. The best F-OLS models have eight

fuzzy sets for 110 m and nine sets for 400 m. The largest

error for the 110 m was obtained by the OLS regression

and by the FUZZY model for the 400 m.

4.2 Models for generation of training loads

For the GT module, each output of the model (y1-y15) was

considered and analyzed in a similar way as for the result

prediction module. The errors RMSECV for the GT module

are presented in Table 4, while the parameters of the

models are presented in Table 5. The models in the GT

module were cross-validated similarly to the PR module.

For example, for the output y14 the FUZZY model has the

largest errors (200.1 for 110 m and 132.9 for 400 m), and

the F-OLS model has the smallest errors (33.18 for 110 m

and 105.1 for 400 m). From Table 4, it can be observed

that the smallest RMSECV for all outputs has the F-OLS

model.

5 Graphical user interface

The graphical user interface was implemented in R lan-

guage using the shiny [11], shinyjs [4], shi-

nythemes [10], shinydashboard [9] and

rmarkdown [1] libraries. This interface is a web-oriented

application and therefore requires only a web browser and

an Internet connection to be used. The current version of

the developed system is available on https://hurdles.shi

nyapps.io/ihurdling. The application shown in Fig. 4 con-

sists of three panels labelled ‘‘Result prediction’’,

‘‘Generation of training loads’’ and ‘‘Athletes’ database’’.

On the left side of window is a sidebar menu with links

to each panel. The radio button in this sidebar is used to

select the PR or GT module. Moreover, the user can choose

one of the developed regression models and generate

reports. The footer contains the information about the

application and the authors.

Table 3 Errors and parameters

for the PR module for 110 and

400 m hurdles

OLS RIDGE LASSO ENET RBF FUZZY F-OLS

110 m

RMSECV 0.3807 0.2276 0.2397 0.1996 0.1985 0.2572 0.0851

Param. — k ¼ 16:1 k ¼ 0

s ¼ 0:04

k ¼ 0:16

s ¼ 0:56

m ¼ 8 l ¼ 4 l ¼ 8

400 m

RMSECV 0.6959 0.5743 0.4463 0.4308 0.6953 0.9288 0.1533

Param. — k ¼ 11:6 k ¼ 0

s ¼ 0:28

k ¼ 0:01

s ¼ 0:36

m ¼ 6 l ¼ 3 l ¼ 9

The meaning of the parameters is as follows: k and s are tuning parameters for regularized models, m is the

number of hidden neurons in the RBF network, l is the number of fuzzy sets in fuzzy models
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5.1 Panel for result prediction

The ‘‘Result prediction’’ panel is used for entering data and

for result prediction (Fig. 4). The input variables are

grouped into five boxes: ‘‘Athlete’s parameters’’, ‘‘Training

loads—endurance’’, ‘‘Training loads—technique and

rhythm’’, ‘‘Training loads—strength’’ and ‘‘Training

loads—speed’’. The value of each input can be modified

using appropriately scaled sliders. For example, the box

‘‘Training loads—endurance’’ presented in Fig. 5 has four

sliders for changing endurance training loads. Each slider

has a range determined on the basis of the minimum and

maximum values in the database (Table 1) and depends on

the distance of the hurdles race. For instance, the slider

‘‘Pace runs’’ for the 110 m hurdles has a range from 25,000

to 101,000 m with the step equal to one metre.

In the last box labelled ‘‘Results’’ two textOutput

fields display the current and predicted results. Prediction

of the result is performed automatically after changing the

position of any slider. Moreover, the result depends on the

radio button that selects the method in the sidebar menu. In

this way, the user can modify the training loads and
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observe the changes that occur in the expected result.

Generating a report from result prediction creates a .pdf

file, which contains the values from all sliders and the

predicted result.

5.2 Panel for generation of training loads

Another system panel is the generation of training loads for

both hurdles distances (Figs. 6, 7). This module consists of

two boxes: ‘‘Athletes’ parameters’’ and ‘‘Generated

training—annual cycle’’. The first box is used to enter the

athlete’s data, i.e. age, body height, body weight and his

current result. This box also includes an option to choose

the training generation mode. The user can choose the

option of one training generation or the option to generate

the training loads for a longer period of his career. The

selection of the first option will cause a slider with the

expected result to appear under the slider with the current

result. If the ‘‘career’’ option is selected, these sliders are

not available. The ‘‘career’’ option makes it possible to
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generate six training programmes which are consecutive

and improve the result by 0.25 s each year (from 15.00 to

13.50 s) for 110 m hurdles and by 1 s each year (from

53.00 to 48.00 s) for 400 m hurdles.

The contents of the box ‘‘Generated training—annual

cycle’’ change dynamically, depending on the mode. The

‘‘one training’’ option will generate a list of training loads

with suggested values (Fig. 6). In addition, a graph is

generated, in which the values of training loads, expressed

as a percentage of the maximum value of the given output,

are presented. The second option is ‘‘career’’; its selection

generates a table containing six annual training plans and

15 graphs showing the loads over the athlete’s entire career

(Fig. 7). The ‘‘career’’ is an additional option that allows us

to generate training loads for six consecutive years. In this

option, the starting result is always constant and is 14.75 s

for 100 m and 53 s for 400 m, respectively. Results are

generated in the form of a table where each row represents

the annual training and in the form of graphs where the x-

axis is the expected result and the y-axis is the value of the

training load. Career graphs allow observations of changes

in individual loads in terms of a 6-year career. The coach

can observe which load needs to be increased, which

decreased and which should stay at the same level.

Generating a report from the ‘‘Generated training’’ panel

creates a .pdf file, which contains values from the ‘‘Ath-

Table 4 Errors for the GT

module for 110 and 400 m

hurdles

Output OLS RIDGE LASSO ENET RBF FUZZY F-OLS

110 m

y1 2550 2429 2304 2304 2219 2572 1829

y2 1700 1632 1617 1606 1528 1675 244.0

y3 4351 3985 3933 3814 3843 3629 2630

y4 24,040 21,170 21,270 21,120 20,310 20,210 6254

y5 112,000 110,900 106,600 106,600 80,681 88,870 70,780

y6 12,570 11,240 11,170 11,170 10,693 9644 2546

y7 152,100 129,600 140,200 129,600 131,123 112,200 21,270

y8 30,190 26,730 27,970 26,360 25,366 22,570 3410

y9 654.1 610.9 606.1 606.1 632.8 622.3 519.2

y10 579.7 484.0 482.4 482.4 398.3 327.9 155.2

y11 267.4 244.7 247.5 239.7 191.5 236.7 143.1

y12 302.1 263.1 263.4 259.4 248.9 266.8 98.17

y13 385.5 322.8 320.5 320.5 310.7 256.1 39.93

y14 190.9 179.7 188.8 186.3 167.7 200.1 33.18

y15 436.0 401.5 400.7 391.2 399.1 434.0 205.6

400 m

y1 4477 4189 4110 4109 3038 2511 597.7

y2 1864 1778 1755 1754 1422 1460 855.9

y3 15,120 14,270 14,190 14,190 14,308 16,670 3473

y4 62,580 60,770 60,040 60,040 63,378 52,860 11,110

y5 107,100 98,490 98,120 98,120 98,906 110,600 39,340

y6 24,777 23,440 23,380 23,270 25,972 26,070 3261

y7 92,100 88,030 84,830 84,830 81,357 73,900 21,150

y8 46,360 44,810 44,510 44,510 44,399 47,740 6754

y9 4581 4190 4188 4185 4274 4139 1481

y10 369.4 350.0 350.2 350.2 365.8 428.1 61.88

y11 287.5 275.8 276.6 275.6 290.9 223.3 37.23

y12 265.8 237.6 235.8 235.8 239.3 187.3 108.3

y13 285.2 273.6 271.2 271.2 282.1 284.7 175.0

y14 127.7 124.6 122.8 122.8 115.6 132.9 105.1

y15 369.0 362.4 356.3 356.3 314.0 301.2 111.4

Neural Computing and Applications (2019) 31:7227–7243 7235

123



lete’s parameters’’ box and a table with one or six annual

training cycles depending on the types of generating

training loads.

5.3 Panel for athletes’ database

The third system panel is used to create and change the

database containing athletes’ details (Fig. 8). This panel

consists of two boxes: ‘‘Athlete’s database’’ and ‘‘Edit’’. In

the first box, the records of the database loaded from the

file are displayed. The system supports files saved in the

.csv format with field separator ‘‘;’’ and ‘‘.’’ as the decimal

point. The database file contains the following columns:

‘‘Name’’, ‘‘Surname’’, ‘‘Age’’, ‘‘Body Mass’’ and ‘‘Body

Height’’. This box displays all athletes in a table; the choice

of athlete is done by marking the appropriate line in this

table. Furthermore, the name of the selected athlete is

displayed in the sidebar. When an athlete is selected, his

data can be edited via the ‘‘Edit’’ box. The saving of the

edition is approved with the ‘‘Save’’ button. The ‘‘Delete’’

button removes the athlete from the database. The dese-

lection of the athlete is done by re-selecting him/her in the

database. If no athlete is selected, a new athlete can be

entered into the database using the ‘‘Edit’’ window. After a

new athlete is entered, you should click ‘‘Save as new’’.

After each operation performed on the database, the user

should save the database using the button ‘‘Save database’’

on the first panel. The second button on the panel (‘‘Clear

database’’) performs cleaning the database from the

application memory. In the ‘‘Athletes’ database’’ panel, it

is not possible to generate reports.

6 Discussion

In this paper, mathematical models for generation of

training loads and prediction of results expected from

athletes training the 110 and 400 m hurdle races were

presented. The best model verified by LOOCV in each of

the considered tasks and for each distance turned out to be

the model F-OLS proposed by the authors. The application

of fuzzy models in sport was also presented by Mezyk and

Unold [36]. The goal was to find the rules that can express

swimmers feelings the day after in-water training. Their

method was characterized by better predictive ability than

the traditional methods of classification, and the effec-

tiveness was at the level of 68.66%. In Papić et al. [39], the

fuzzy expert system was also presented. This system was

based on knowledge of experts in the field of sport, as well

as the data obtained as a result of motor tests. The model

suggested the most suitable sport, and it was designed to

search for prospective sports talents. Evaluation of the

system showed high reliability and high correlation with

top experts in the field.

While analyzing the literature, it can be also noticed that

mathematical models frequently used in sports are artificial

neural networks [34, 35, 40, 44, 48, 50, 52, 58]. Numerous

studies have shown that the ANN is a means of predicting

sports results which has a good predictive ability [13, 59].

Thus, the ANN enables a coach to model the future level of

athletes performance and supports the process of sports

Table 5 Parameters for the GT module for 110 and 400 m hurdles.

The meaning of the parameters is as follows: k and s are tuning

parameters for regularized models, m is the number of hidden neurons

in the RBF network, l is the number of fuzzy sets in fuzzy models

Output RIDGE LASSO ENET RBF FUZZY F-OLS

k s ðk; sÞ m l l

110 m

y1 15.9 0.06 (0, 0.06) 4 5 3

y2 15.3 0.03 (6.03, 0.40) 2 7 10

y3 32.5 0.01 (1.80, 0.41) 5 4 3

y4 47.5 0.01 (0.87, 0.59) 7 7 7

y5 4.38 0.01 (0, 0.01) 9 5 3

y6 500 0 (0, 0) 9 8 7

y7 39.6 0.04 (0.65, 0.56) 2 6 10

y8 16.6 0.05 (1.30, 0.54) 10 12 12

y9 500 0 (0, 0) 2 13 3

y10 500 0 (0, 0) 9 5 5

y11 15.0 0.06 (1.20, 0.47) 10 4 4

y12 256 0 (49.0, 0.17) 2 3 6

y13 294 0.01 (0, 0.01) 7 10 13

y14 10.7 0.48 (19.3, 0.38) 5 4 10

y15 500 0 (0.01, 0.16) 5 3 4

400 m

y1 500 0.03 (0.06, 0.09) 9 13 9

y2 500 0.02 (0.02, 0.03) 2 3 5

y3 288 0.05 (0, 0.05) 2 10 10

y4 500 0.04 (0, 0.04) 2 9 9

y5 500 0.01 (0.01, 0.01) 2 10 6

y6 30.7 0.51 (0.04, 0.72) 2 13 13

y7 19.5 0.33 (0, 0.33) 9 13 8

y8 156 0.15 (0, 0.15) 2 11 11

y9 322 0.02 (0.02, 0.05) 2 11 7

y10 88.8 0.08 (0, 0.08) 3 10 11

y11 72.6 0.06 (0.01, 0.12) 4 6 13

y12 500 0 (0, 0) 2 11 5

y13 339 0.02 (0, 0.02) 3 2 5

y14 10.5 0.21 (0, 0.21) 7 2 2

y15 140 0.04 (0, 0.04) 7 5 6
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selection [34, 40, 48, 52]. For example, Silva et al. [52]

presented high realistic models of swimming performance

prediction based on multilayer perceptron. To establish a

profile of the young swimmer, nonlinear combinations

between preponderant variables for each gender and swim

performance in the 200 m medley and 400 m front crawl

events were developed. Artificial neural networks are also

widely used in the process of planning training loads

[44, 50]. In [50], Ryguła presents a new approach for

determining training loads in a group of 16- and 17-year-

old girls practising 100 m run.

Sports training is the matter of making decisions about

the quality (type of exercise) and the quantity (volume).

This is a classical principle of sports training, emphasized

in all textbooks on the theory of sports [8, 42]. Selection of

training means and their distribution at subsequent stages

of sports training is the main element of hurdlers’ training

optimization on both distances, i.e. 110 and 400 m [50].

The selection of exercises (training means) in hurdling is

supported by research in the field of motor preparation

(strength, speed, endurance) as well as in relation to the

technical structure of the event (kinematic analyses) [21].

Fig. 4 Screenshot of the iHurdling application with PR panel
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The observation of training programs of the best athletes

[24], supported by the analysis of correlation between the

results of hurdle run and the tests results including the

physiological [16, 64] and biochemical basis [28], allows

for selection of groups of the most valuable basic exercises.

The performance tests carried out during the ergometric

effort [5] are of great importance in assessing the specifics

of hurdlers’ effort [5]. It should be emphasized that indi-

vidualization of hurdlers’ training programs also requires

an individual approach to the type of capacity, oscillating

between aerobic and anaerobic capacity. Sprinting dis-

tances in hurdling are considered to be typical running

efforts of anaerobic nature. In the case of 110 m hurdle

race, anaerobic non-lactic acidic changes with the final

accent on anaerobic lactic acidic changes are predominant.

The 400 m hurdle run requires first of all an effort of

anaerobic non-lactic acidic nature [57]. Data concerning

the specificity of the effort at a distance of 400 m indicate

that the proportions of aerobic and anaerobic efforts can be

significantly varied, taking into account the material (sports

performance level of runners), method and period of

training. In the review study by Arcelli et al., [2] those

parameters adopted values within the range of 28–70%

(aerobic) and 30–72% (anaerobic). The authors suggested

that the higher the sports performance level, the higher the

share of anaerobic element.

The determination of the type of runner due to the

aerobic and anaerobic processes would certainly make it

possible to introduce some additional information in order

to develop individual training. However, this problem has a

logistic disadvantage, as monitoring of physiological

reactions in hurdling is limited to the months when the

athletes take part in competitions. Winter conditions are

not conducive to specific running tests, and the choice of

substitute distances may negatively affect the individual

abilities of the hurdler.

Taking into account the extensive scope of hurdlers’

exercises, the basic problem of a coach is the choice of

exercises, their volume and proportions during particular

training periods. The researchers pay their attention to that

specificity of sports [8, 37]. Apart from the representative

collection of training means, the body physique and age,

often identified with the sports performance level, were

also used. The impact of those elements on the organiza-

tion of training has been already emphasized on several

occasions [20, 23]. It seems appropriate to determine the

initial value (record from the given year) and the estimated

scale of progress (plans for the next season), because it

makes it possible to control training loads depending on the

athletes age, their current performance level and the main

objective. Each athlete has different predispositions, also to

perform specific training tasks. The selection of exercises is

necessary, because it is impossible to perform the same

volume of all exercises at the same time. Such a procedure

would also be pointless, since the ‘‘rhythmic’’ type of a

hurdler prefers running exercises with hurdles, and the

‘‘speedy’’ type of the hurdle runner prefers shorter dis-

tances of the interval nature [20]. The database used is

based on the period of 20 years of training Polish hurdlers,

members of the national team. Those hurdlers represented

various types (somatic, efficient and technical); therefore

the scope of generalization (approximation) possibilities of

the proposed computer system is significant and partly

representative.

Fig. 5 Screenshot of the box for entering endurance training loads
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Summarizing the discussion, it should be noted that

there are severe limitations of the presented approach

connected with using the results in practice. The training

programs do not consider the individual physiological and

psychological parameters of an athlete. However, the

generated training programs might be used as a suggestion

for the coach who can perform necessary adjustments in

order to adapt them for a particular athlete.

7 Conclusions

In this paper, a web-oriented expert system to predict

results and generate training loads for 110 and 400 m

hurdles races was presented. The system uses the linear

regression models (OLS, ridge, LASSO, elastic net) and

nonlinear regression models (RBF, fuzzy model, OLS with

fuzzy correction). The lowest errors were obtained by the

Fig. 6 Screenshot of the panel for generation of training loads for one training programme
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proposed F-OLS model, but creating this model is more

complicated.

The application was implemented using R programming

language with Shiny framework. The advantage of this

application is that it can be run on multiple platforms such

as personal computers and mobile devices. The easy-to-use

interface allows the parameters of an athlete and the

training loads to be changed. In this way, the coach can

predict the expected result and select individual training

components for a given athlete.

Fig. 7 Screenshot of the panel for generation of training loads over the athlete’s entire career
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Further work will focus on migrating the developed

expert system to mobile application.
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49. Rogulj N, Papić V, Cavala M (2009) Evaluation models of some

morphological characteristics for talent scouting in sport. Coll

Antropol 33(1):105–110

50. Ryguła I (2005) Artificial neural networks as a tool of modeling

of training loads. In: 27th annual international conference of the

engineering in medicine and biology society, IEEE-EMBS,

pp 2985–2988
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