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Abstract
This paper investigates exponential synchronization for stochastic complex dynamical networks with reaction–diffusion

terms and S-type distributed delays. Based on a generalized Halanay inequality and Poincaré inequality, adaptive control

strategies for exponential synchronization are established by constructing a simple Lyapunov–Krasovskii functional

candidate and utilizing the truncation method. Some numerical examples are provided to demonstrate the effectiveness of

the obtained results. Finally, the proposed adaptive synchronization theoretical results are successfully applied to image

encryption.
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1 Introduction

Complex dynamical networks widely exist in our life, such

as communication networks, social networks, power grids,

cellular networks, and secure communication. The behav-

ior of complex dynamical networks has good explanation

of real-world phenomena [15, 22]. Therefore, many

researchers have intensively studied the dynamical behav-

ior and topologies of complex dynamical networks

[3, 5, 12, 25, 32, 36]. In particular, synchronization is

undoubtedly the important collective behavior because of

its mathematical importance and potential applications

[21, 24]. The synchronized nodes share the same patterns

by some control strategies, such as feedback control

[10, 38], impulsive control [2, 37], sample-data control

[17, 34], and adaptive control [1, 11].

In realistic world, stochastic perturbations are unavoid-

able in the propagation of electric potential in a neuron and

brings essential change to the neural networks [46]. Gen-

erally speaking, two types of stochastic perturbations are

introduced into the analysis of stochastic complex

dynamical networks (SCDNs): Markovian jumping

parameters and finite dimensional Brownian motions, both

of which have attracted much attention of researchers

[18, 19]. Proper control strategies are derived to synchro-

nize the state trajectory of SCDNs [8, 30, 35]. Recently, the

diffusion phenomena are also considered in SCDNs

because the electrons sometimes move in nonhomogeneous

field. The state variables of SCDNs with reaction–diffusion

terms are related to both time and space such that the

synchronization criteria should be established in Hilbert

space instead of Euclidean Space [13]. Hence, it is neces-

sary to investigate the synchronization of SCDNs with

reaction–diffusion terms [2, 4, 7, 29, 37].
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On the other hand, image encryption has attracted

intensive attention [41–44] because the security of confi-

dential digital images is very important in public trans-

mission. In recent years, many researchers have focused on

chaos-based encryption algorithms which rely on the

dynamics of the systems [40, 45]. For instance, Zhang and

Wang [45] investigated a new spatiotemporal dynamics

with fractional order differential logistic map and spatial

nonlinear coupling, which are more suitable for encryp-

tions than the former adjacent coupled map lattices. Syn-

chronization of delayed chaotic system in secure

communication was also studied in [4, 20, 33]. In [4], Chen

et al. presented a new impulsive synchronization criterion

of two identical reaction–diffusion neural networks with

discrete and unbounded distributed delays. The developed

impulsive synchronization method is applied to build a

spatiotemporal chaotic cryptosystem. Further development

about application of delayed neural networks to image

encryption refers to [4, 9] and references therein. S-type

distributed delay not only includes discrete time delay and

distributed time delay but also has better description of

hysteresis phenomena in networks, and stochastic delayed

system may have promising application to image encryp-

tion. But there is relatively less work on synchronization

and application of SCDNs with reaction–diffusion terms

and S-type distributed delays.

Motivated by above discussion, we study SCDNs with

reaction–diffusion terms and S-type distributed delays,

aiming to develop adaptive strategies for synchronization

and apply the theoretical results to image encryption. The

novelty of our contribution lies in the following aspects: (1)

Adaptive synchronization is investigated for SCDNs with

reaction–diffusion terms and S-type distributed delays

which are infinite delays; (2) the S-type distributed delays

are handled by a novel generalized Halanay inequality and

the truncation method so that the used Lyapunov-Kra-

sovskii functional candidate is a sample one without dis-

tributed term; (3) the synchronization criteria are

established in Hilbert space due to the existence of reac-

tion–diffusion terms; (4) the adaptive synchronization

results are successfully applied to image encryption based

on a spatiotemporal cryptosystem proposed in [4].

Notations H ¼ ðH1
0ðOÞÞn and L ¼ ðL2ðOÞÞn are Hilbert

spaces with norms kukH ¼ ð
Pn

i¼1

Pl
j¼1

R
O
ðoui
oxj
Þ2

dxÞ
1
2 and

kukL ¼ ð
Pn

i¼1

R
O
juij2dxÞ

1
2. ð�; �Þ is the inner product of L.

ðX;F ;PÞ is a complete probability space with filtration

fF tgt� 0. C ¼ Cðð�1; 0�; LÞ represents the Banach space

of all continuous functions from ð�1; 0� to L with norm

kukC ¼ suph� 0 kuðhÞk. LððL2ðOÞÞm; LÞ represents the

space of all linear bounded operators from ðL2ðOÞÞm into L

with operator norm. kAkF,ðtrðAATÞÞ
1
2 is the Frobenius

norm of A 2 Rn�n, and tr is the trace operator. For any

continuous F t-adapted L-valued stochastic process

uðt; xÞðxÞ : X ! L, we define a continuous F t-adapted C-

valued stochastic process utðxÞ ¼ uðt þ h; xÞðxÞ and

kutkC ¼ suph� 0 Ekuðt þ hÞk, x 2 X, x 2 O, t� 0 where

Eð�Þ is the expectation operator. Cb
F 0

denotes the family of

F 0-measurable bounded Cðð�1; 0�;RnÞ-valued stochastic

variables / with Ek/kC\1. LF t
ðX; LÞ is the family of L-

valued F t-measurable random variables n with Eknk2\1.

2 Problem formulation and preliminaries

In this paper, we consider the following SCDNs with

reaction–diffusion terms and S-type distributed delays

dsðt; xÞ ¼ ½r � ðDðxÞ � rsðt; xÞÞ � AðctÞsðt; xÞ
þ B1ðctÞfðsðt; xÞÞ þ IðtÞ þ B2ðctÞf
Z 0

�1
dgðhÞsðt þ h; xÞ

� �

�dt þ g s;

Z 0

�1
dgðhÞsðt þ h; xÞ

� �

dwðtÞ;

ð1Þ

where t�0; x 2O, sðt;xÞ ¼ ðs1ðt;xÞ; s2ðt;xÞ; � � � ; snðt;xÞÞT ,

r� ðDðxÞ �rsÞ ¼ ð
Pl

j¼1

oðD1j
os1
oxj

Þ
oxj

; � � � ;
Pl

j¼1

oðDnj
osn
oxj
Þ

oxj
ÞT , DðxÞ ¼

ðDijðxÞÞn�l, DijðxÞ� D̂ij[0, and � denotes Hadamard

product [13].
R 0

�1 dgðhÞsðtþ h;xÞ is Lebesgue-Stieltjes

integrable, and gijðhÞ (i; j¼ 1;2; . . .;n) is non-decreasing

bounded variation function which satisfies
R 0

�1 dgijðhÞ ¼ ĝij[0. IðtÞ ¼ ðI1ðtÞ; . . .; InðtÞÞT is an external

input. O is an open bounded and connected subset of Rl

with a sufficient regular boundary oO. wðtÞ is a Brownian

motion defined on the complete probability space and

g2M
n;m
2 ð0; tÞ.

fct; t� 0g is a right-continuous Markov process on the

probability space which takes values in the finite space

M ¼ f1; 2; . . .;Mg with jumping transfer matrix P ¼
fpmng ðm; n 2 MÞ given by

PfctþDt ¼ njct ¼ mg ¼
pmnDt þ oðDtÞ; if m 6¼ n;

1 þ pmnDt þ oðDtÞ; if m ¼ n;

�

where Dt[ 0 and limDt!0 oðDtÞ=Dt ¼ 0, pmn � 0 is the

transition rate from m to n if m 6¼ n and

pmm ¼ �
P

n 6¼m pmn. The Brownian motion is independent

of Markov process. The matrices AðctÞ, B1ðctÞ and B2ðctÞ
are real-valued Markovian jumping parameters. For the

sake of simplicity, we denote AðctÞ, B1ðctÞ, B2ðctÞ by Am,

B1m, B2m for ct ¼ m 2 M. Then, when ct ¼ m, the above

SCDNs can be rewritten as
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dsðt; xÞ ¼ ½r � ðDðxÞ � rsðt; xÞÞ � Amsðt; xÞ þ B1mfðsðt; xÞÞ
þ B2mf ðSðsÞÞ þ IðtÞ�dt þ gðs;SðsÞÞdwðtÞ;

ð2Þ

where SðsÞ ¼
R 0

�1 dgðhÞsðt þ h; xÞ. We consider neural

network (2) as drive system. The response SCDNs con-

sisting of N linearly coupled identical nodes are described

as

duiðt; xÞ ¼ ½r � ðDðxÞ � ruiðt; xÞÞ � Amuiðt; xÞ
þ B1mf ðuiðt; xÞÞ þ B2mf ðSðuiÞÞ

þ
XN

j¼1

cijGmðuj þ SðujÞÞ

þ Uiðt; xÞ þ IðtÞ�dt þ gðui;SðuiÞÞdwðtÞ; ð3Þ

where uiðt; xÞ ¼ ðui1ðt; xÞ; ui2ðt; xÞ; . . .; uinðt; xÞÞT and

i ¼ 1; 2; . . .;N, m 2 M. Uiðt; xÞ is the control input. Gm is

the inner coupling positive definite matrix, and ðcijÞN�N is

the coupling matrix which satisfies cii ¼ �
P

j 6¼i cij and

cij [ 0 if node j is connected to node i, otherwise, cij ¼ 0.

Defining viðt; xÞ ¼ uiðt; xÞ � sðt; xÞ as the synchronization

error of the drive system (2) and response system (3), the

error system with initial condition and Dirichlet boundary

condition can be expressed by

dviðt; xÞ ¼ ½r � ðDðxÞ � rviðt; xÞÞ � Amviðt; xÞ þ B1mFðviðt; xÞÞ

þ B2mFðSðviÞÞ þ
XN

j¼1

cijGmðvj þ SðvjÞÞ þ Uiðt; xÞ�dt

þ rðvi;SðviÞÞdwðtÞ; t� 0; x 2 O;

viðt; xÞjx2oO ¼ 0; t� 0;

viðh; xÞ ¼ /iðh; xÞ; h 2 ð�1; 0�; x 2 O;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð4Þ

where

FðviÞ ¼ f ðuiðt; xÞÞ � f ðsðt; xÞÞ;

FðSðviÞÞ ¼ fðSðuiÞÞ � fðSðsÞÞ;

rðvi;SðviÞÞ ¼ gðui;SðuiÞÞ � gðs;SðsÞÞ:

Then, we list the definitions and lemmas which will be

used throughout the paper.

Definition 1 [16] The drive system (2) and response system

(3) are globally exponentially synchronized in mean square,

if there exist positive constants M and k, such that

E
XN

i¼1

kviðt; xÞk2 �Me�ktE
XN

i¼1

k/ik
2
C:

Definition 2 [28] Let ~C ¼ Cð½t � s; t�;RnÞ, s� 0,

Wðt; x; yÞ 2 CðRþ � Rn � ~C;RnÞ. Wðt; x; yÞ ¼ ðW1;W2;

. . .;WnÞT is called an M-function, if

(i) for every t 2 Rþ, x 2 Rn, yð1Þ; yð2Þ 2 ~C,

Wðt; x; yð1ÞÞ �Wðt; x; yð2ÞÞ; for yð1Þ � yð2Þ;

where yð1Þ ¼ ðyð1Þ1 ; . . .; y
ð1Þ
n ÞT , yð2Þ ¼ ðyð2Þ1 ; . . .;

y
ð2Þ
n ÞT ;

(ii) every ith element of Wððt; x; yÞ satisfies

Wiðt; xð1Þ; yÞ�Wiðt; xð2Þ; yÞ; for any y 2 ~C; t� t0;

where arbitrary xð1Þ � xð2Þ belonging to Rn and

having the same ith component x
ð1Þ
i ¼ x

ð2Þ
i , xð1Þ ¼

ðxð1Þ1 ; x
ð1Þ
2 ; . . .; x

ð1Þ
n ÞT , xð2Þ ¼ ðxð2Þ1 ; x

ð2Þ
2 ; . . .; x

ð2Þ
n ÞT .

Lemma 1 (Poincaré inequality [23]) Let O be an open

bounded smooth domain in Rl, then

kuk� a�1kukH; u 2 H;

where the constanta[ 0 depends on the size of the domainO.

Lemma 2 [31]Letx 2 Rn, y 2 Rn andq[ 0.Then,wehave

xTyþ yTx� qxTxþ q�1yTy:

Lemma 3 [47] Assume that A; B are N � N Hermitian

matrices. Suppose that k1 � k2 � � � � � kN , l1 � l2

� � � � � lN and q1 � q2 � � � � � qN are the eigenvalues of

A, B and Aþ B; respectively. Then, one has ki þ lN
� qi � ki þ l1, i ¼ 1; 2; . . .;N.

Lemma 4 [27] Let xðtÞ ¼ ðx1ðtÞ; . . .; xnðtÞÞT , yðtÞ ¼
ðy1ðtÞ; . . .; ynðtÞÞT , �xðtÞ ¼ sup�s� h� 0 xðt þ hÞ, and �yðtÞ ¼
sup�s� h� 0 yðt þ hÞ. Then, xðtÞ\yðtÞ for t� t0, if the fol-

lowing conditions

ðL1Þ xðtÞ\yðtÞ; t 2 ½t0 � s; t0�;

ðL2Þ DþyðtÞ[Wðt; yðtÞ; �yðtÞÞ; t� t0 � 0;

ðL3Þ DþxðtÞ�Wðt; xðtÞ; �xðtÞÞ; t� t0 � 0;

hold, where Wðt; x; yÞ is an M-function.

Throughout the paper, we assume that the neuron acti-

vation functions satisfy the following condition: kf ð11Þ �
f ð12Þk2 � L2k11 � 12k2

and kgð11; 12Þ � gð1̂1; 1̂2Þk2 � L2

ðk11 � 1̂1k2 þ k12 � 1̂2k2Þ, where 11; 12; 1̂1; 1̂2 2 Rn.

3 Main results

In this section, we will derive adaptive strategy and

adaptive pinning strategy for exponential synchronization

of SCDNs with reaction–diffusion terms and S-type dis-

tributed delays. First, the following generalized Halanay

inequality is introduced to establish the sufficient condi-

tions of adaptive synchronization.
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Lemma 5 (Generalized Halanay Inequality) If UðtÞ� 0

satisfies

(i) UðtÞ�M, t 2 ð�1; 0�;
(ii) for any �� 0, there exists s� 0 such that

dUðtÞ
dt

� � aUðtÞ þ b sup
�s� h� 0

Uðt þ hÞ þ oð�Þ; t 2 ½0;þ1Þ;

where b[ 0, a� b[ 0, oð�Þ� 0, and

lim�!0 oð�Þ ¼ 0, then there exists a positive con-

stant k such that UðtÞ�Me�kt for t 2 ½0;þ1Þ.

Proof For s 2 ½0;þ1Þ, let us consider the following

function

dðkÞ ¼ �kþ a� beks; ð5Þ

where k 2 ½0;þ1Þ. Since a� b[ 0 and b[ 0, we obtain

dð0Þ[ 0 and dðkÞ is continuous and monotonous, fur-

thermore, dðkÞ ! �1 as k ! þ1. Thus, there exists a

constant k0 [ 0 such that �k0 þ a� bek0s [ 0. Let

Wðt; x; yÞ ¼ �axþ byþ oð�Þ and yðtÞ ¼ Me�k0t þ oð�Þ=
ða� bÞ. From Definition 2, we know that Wðt; x; yÞ is an

M-function. Obviously, when t 2 ð�1; 0�, UðtÞ�M\
yðtÞ. For t� 0, we have

DþUðtÞ� � aUðtÞ þ b sup
�s� h� 0

Uðt þ hÞ þ oð�Þ ¼ Wðt;UðtÞ; �UðtÞÞ;

DþyðtÞ ¼ �k0Me�k0t [ ð�aþ bek0sÞMe�k0t

� � ayðtÞ þ b sup
�s� h� 0

yðt þ hÞ þ oð�Þ ¼ Wðt; yðtÞ; �yðtÞÞ:

ð6Þ

From Lemma 4, we know that UðtÞ�Me�k0t þ oð�Þ=
ða� bÞ. As � ! 0, we obtain that UðtÞ�Me�k0t for

t 2 ½0;þ1Þ. h

Remark 1 Lemma 5 generalizes the classical Halanay

inequality [6] to inequality defined on ð�1;þ1Þ. By

employing Lyapunov method and Lemma 5, dynamical

behavior (such as stability and synchronization) for a class

of systems with infinite delays can be analyzed.

Adaptive strategy is a classical method to tune drive-

response systems toward reaching synchronization. The

adaptive controller can be expressed by

Uiðt; xÞ ¼ �kiðtÞviðt; xÞ; i ¼ 1; 2; . . .;N; ð7Þ

where kiðtÞ is the adaptive coupling strength.

Theorem 1 The drive system (2) and response system (3)

are exponentially synchronous in mean square when the

adaptive law is designed as _kiðtÞ ¼ qikviðt; xÞk2

(i ¼ 1; 2; . . .;N) where qi is an arbitrary positive constant.

Proof Given /i 2 Cb
F 0

and fixed system mode m 2 M

arbitrarily, we write viðt; xÞ ¼ viðt; x;/iÞ and define a

Lyapunov–Krasovskii functional candidate by

Vðt; v1ðt; xÞ; . . .; vNðt; xÞ; ct ¼ mÞ

¼
XN

i¼1

kviðt; xÞk2 þ
XN

i¼1

1

qi
ðkiðtÞ � ~kÞ2; ð8Þ

where ~k is a positive constant to be determined. We denote

Vðt; v1ðt; xÞ; . . .; vNðt; xÞ; ct ¼ mÞ by V(t). Thanks to Itô

formula, we have

dVðtÞ ¼
XN

i¼1

LVidt þ 2
XN

i¼1

ðkiðtÞ � ~kÞkviðt; xÞk2
dt

þ 2
XN

i¼1

Z

O

vTi rdwdx;

ð9Þ

where

LVi ¼
Z

O

vTi ðt;xÞðr � ðDðxÞ �rviðt;xÞÞÞdx

þ
Z

O

ðr � ðDðxÞ �rviðt;xÞÞÞTviðt;xÞdx

�
Z

O

½vTi ðt;xÞAmviðt;xÞ þ viðt;xÞTAT
mviðt;xÞ�dx

þ
Z

O

½vTi ðt;xÞB1mFðviÞ þFðviÞTBT
1mviðt;xÞ�dx

þ
Z

O

½vTi ðt;xÞB2mFðSðviÞÞ þFðSðviÞÞTBT
2mviðt;xÞ�dx

þ
Z

O

vTi ðt;xÞ
XN

j¼1

cijGmðvj þSðvjÞÞ
" #

dx

þ
Z

O

XN

j¼1

cijGmðvj þSðvjÞÞ
" #T

viðt;xÞdx

�
Z

O

vTi ðt;xÞUiðt;xÞdx�
Z

O

UT
i ðt;xÞviðt;xÞdx

þ tr

Z

O

rTrdx

� �

,

X9

k¼1

LVik:

ð10Þ

Taking expectation of dVðtÞ, we know that

dEVðtÞ
dt

¼
XN

i¼1

ELVi þ 2
XN

i¼1

ðkiðtÞ � ~kÞEkviðt; xÞk2: ð11Þ

From Gauss formula, Dirichlet boundary condition and

Poincaré inequality, we have

6882 Neural Computing and Applications (2019) 31:6879–6892

123



Xl

k¼1

Z

X
vij

o

oxk
Dik

ovij

oxk

� �

dx

�
Z

oX
vijDik

ovij

oxk

� �l

k¼1

�ndx�
Z

X

Xl

k¼1

Dik

ovij

oxk

� �2

dx

� �
Xl

k¼1

Z

X
D̂ikð

ovij

oxk
Þ2

dx;

ð12Þ

where i ¼ 1; 2; . . .;N and j ¼ 1; 2; . . .; n, furthermore,

ELVi1 þ ELVi2 � � a2E
Z

X
vTi ðt; xÞðD̂þ D̂TÞviðt; xÞdx:

ð13Þ

From Lemma 2, we obtain

ELVi4 �E
Z

X
vTi ðt; xÞB1mB

T
1mviðt; xÞdx

þ L2E
Z

X
vTi ðt; xÞviðt; xÞdx; ð14Þ

and

ELVi5 �E
Z

X
vTi ðt; xÞB2mB

T
2mviðt; xÞdxþ E

Z

X
FTðSðviÞÞFðSðviÞÞdx

�E
Z

X
vTi ðt; xÞB2mB

T
2mviðt; xÞdxþ L2E

Z 0

�1
dgðhÞviðt þ h; xÞ

�
�
�
�

�
�
�
�

2

:

ð15Þ

Since
R 0

�1 dgijðhÞ ¼ ĝij [ 0 (i; j ¼ 1; 2; . . .; n) and gijðhÞ is

non-decreasing bounded variation function, there exists a

constant s� t such that
R�s
�1 dgijðhÞ� � for any �� 0 and

i; j ¼ 1; 2; . . .; n. So,

E
Z 0

�1
dgðhÞviðt þ h; xÞ

�
�
�
�

�
�
�
�

2

� 2E
Z 0

�s
dgðhÞviðt þ h; xÞ

�
�
�
�

�
�
�
�

2

þ2E
Z �s

�1
dgðhÞviðt þ h; xÞ

�
�
�
�

�
�
�
�

2

� 2kĝk2
F sup
�s� h� 0

Ekviðt þ h; xÞk2 þ 2Ek/ik
2
C�

2;

ð16Þ

and

ELVi5 �E
Z

X
vTi ðt; xÞB2mB

T
2mviðt; xÞdx

þ 2kĝk2
FL

2 sup
�s� h� 0

Ekviðt þ h; xÞk2 þ 2L2Ek/ik
2
C�

2:

ð17Þ

Obviously,

ELVi6 ¼
XN

j¼1

E
Z

O

vTi ðt; xÞcijGmvjðt; xÞdx

þ
XN

j¼1

E
Z

O

vTi ðt; xÞcijGmSðvjÞdx;

ð18Þ

ELVi7 ¼
XN

j¼1

E
Z

O

vTj ðt; xÞcijGT
mviðt; xÞdx

þ
XN

j¼1

E
Z

O

STðvjÞcijGT
mviðt; xÞdx:

ð19Þ

From Lemma 2, we get
Z

O

½vTi ðt; xÞcijGmvjðt; xÞ þ vTj ðt; xÞcijGT
mviðt; xÞ�dx

�
Z

O

½vTi ðt; xÞGmG
T
mviðt; xÞ þ c2

ijv
T
j ðt; xÞvjðt; xÞ�dx;

ð20Þ

and
Z

O

vTi ðt; xÞcijGmSðvjÞdxþ
Z

O

STðvjÞcijGT
mviðt; xÞdx

�
Z

O

vTi ðt; xÞGmG
T
mviðt; xÞdxþ c2

ij

Z 0

�1
dgðhÞvjðt þ h; xÞ

�
�
�
�

�
�
�
�

2

:

ð21Þ

Thus,

XN

i¼1

ðELVi6 þ ELVi7Þ�
XN

i¼1

E
Z

X
vTi ðt; xÞð2NGmG

T
m

þ
XN

j¼1

c2
j Þviðt; xÞdxþ 2kĝk2

F

XN

j¼1

c2
j sup
�s� h� 0

E
XN

i¼1

kviðt þ h; xÞk2 þ 2
XN

j¼1

c2
j

XN

i¼1

Ek/ik
2
C�

2;

ð22Þ

where cj ¼ maxi¼1;2;...;nfcjig. Besides,

ELVi9 � L2ðEkviðt; xÞk2 þ 2kĝk2
F sup
�s� h� 0

Ekviðt þ h; xÞk2

þ 2Ek/ik
2
C�

2Þ:
ð23Þ

Thus, combining (11)–(23), we have

dEVðtÞ
dt

�ðbm � ~kÞEVðtÞ þ b sup
�s� h� 0

EVðt þ hÞ þ c�2;

ð24Þ

where bm is the maximum eigenvalue of Km, Km ¼ �a2

D̂� a2D̂T � Am � AT
m þ B1mB

T
1m þ B2mB

T
2m þ 2NGmG

T
mþ
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ð2L2 þ
PN

i¼1 c
2
i ÞI, b ¼ 2ð2L2 þ

PN
i¼1 c

2
i Þkĝk

2
F and c ¼

2ð2L2 þ
PN

j¼1 c
2
j ÞE
PN

i¼1 k/ik
2
C. The constant ~k can be

properly chosen as ~k ¼ maxmf0; bm þ bþ 1g, then one can

get bm � ~k þ b\0. Besides, E
PN

i¼1 kviðt; xÞk
2

�E
PN

i¼1 k/ik
2
C for t 2 ð�1; 0�. From Lemma 5, we see

that there exists a positive constant k such that

E
PN

i¼1 kviðt; xÞk
2 � e�ktE

PN
i¼1 k/ik

2
C. Then, the drive

system (2) and response system (3) are globally exponen-

tially synchronous in mean square. h

Remark 2 When rð11; 12Þ ¼ 0, the error system (4)

becomes Markovian jumping complex dynamical networks

with reaction–diffusion terms and S-type distributed delays

which include Markovian jumping networks and deter-

ministic networks with time-varying delays [39, 48].

As we know, the S-type distributed delays include time-

varying delays and distributed time delays. Then, we have

Corollary 1 for SCDNs (25) with reaction–diffusion terms

and mixed time delays

dvi ¼ ½r � ð ~DðxÞ � rviÞ � ~Amvi þ ~FðviÞ þ ~JðviÞ þ Uiðt; xÞ�dt

þ ~rðvi;M1ðviÞ;M2ðviÞÞdwðtÞ;
ð25Þ

where

~FðviÞ ¼ ~B1mFðviðt; xÞÞ þ ~B2mFðM1ðviÞÞ þ ~B3mFðM2ðviÞÞ;

~JðviÞ ¼
XN

j¼1

cij ~Gmðvj þM1ðvjÞ þM2ðvjÞÞ;

M1ðviÞ ¼ viðt � sðtÞ; xÞ;

M2ðviÞ ¼
Z 0

�1
fð�hÞviðt þ h; xÞdh:

Corollary 1 If the following conditions hold,

(i) 0� sðtÞ� ~s, 0� fðtÞ� je�kt where t� 0, ~s, j, and

k are positive constants;

(ii) k~rð11; 12; 13Þk2 � L2ðk11k2 þ k12k2 þ k13k2Þ,
11; 12; 13 2 Rn,

then the error system (25) and the corresponding drive-

response system with adaptive controller (7) are expo-

nentially synchronous in mean square.

From Theorem 1, SCDNs can synchronize by adaptive

control strategy on the whole networks. However, it is

sometimes impractical to impose control inputs on all

nodes of SCDNs, especially large-scale SCDNs. To reduce

the number of controlled nodes, pinning control is applied

to a fraction of networks. The adaptive pinning controller

can be expressed by

Uiðt; xÞ ¼
�kiðtÞviðt; xÞ; i ¼ 1; 2; . . .; p;

0; i ¼ pþ 1; . . .;N;

�

ð26Þ

where the first p nodes are pinned with adaptive controller

and the adaptive law is designed as _kiðtÞ ¼ qikviðt; xÞk2

(i ¼ 1; 2; . . .;N). Then, we have the following result.

Theorem 2 The drive system (2) and response system (3)

with adaptive pinning controller (26) are exponentially

synchronous in mean square, if �bþ kpþ1 þ b\0 where �b is

the maximum eigenvalue of �Km, �Km ¼ �a2D̂� a2D̂T�
Am � AT

m þ B1mB
T
1m þ B2mB

T
2m þ 2NGmG

T
m þ 2L2In for

m 2 M, k1 � k2 � � � � � kN are the eigenvalues of the

matrix �C, �C ¼
PN

j¼1 diagðcj1; cj2 � � � ; cjNÞ, and

b ¼ 2ð2L2 þ
PN

i¼1 c
2
i Þkĝk

2
F .

Proof Consider the following Lyapunov–Krasovskii

functional

�VðtÞ ¼
XN

i¼1

kviðt; xÞk2 þ
Xp

i¼1

1

qi
ðkiðtÞ � �kÞ2; ð27Þ

where �k ¼ k1 � kpþ1. As (8)–(24), we know that

dE �VðtÞ
dt

�E
Z

X
�vTðt; xÞN�vðt; xÞdxþ b sup

�s� h� 0

E �Vðt þ hÞ þ c�2;

ð28Þ

where

N ¼ IN 	 �Km þ �C 	 In � 2 �K 	 In;

�vðt; xÞ ¼ ½vT1 ðt; xÞ; vT2 ðt; xÞ; . . .; vTNðt; xÞ�
T ;

IN ¼ diagð1; . . .; 1
|fflfflffl{zfflfflffl}

N

Þ; In ¼ diagð1; . . .; 1
|fflfflffl{zfflfflffl}

n

Þ;

�K ¼ diagð�k; . . .; �k
|fflfflffl{zfflfflffl}

p

; 0; . . .; 0
|fflfflffl{zfflfflffl}

N�p

Þ;

and 	 denotes the Kronecker product. Since �C � 2 �K is a

symmetric matrix, there exists an orthogonal matrix O

satisfying �C � 2 �K ¼ OTdiagð�k1; . . .; �kNÞO where
�k1 � �k2 � � � � ; �kN are the eigenvalues of the matrix �C � 2 �K.

According to Lemma 3, one has

�2�k þ kN � �ki � � 2�k þ k1 1� i� p;

�2�k þ ki � �ki � ki pþ 1� i�N:

(

ð29Þ

Thus,

dE �VðtÞ
dt

�E
Z

X
�vTðt; xÞOT �H1O	 In�vðt; xÞdxþ b sup

�s� h� 0

E �Vðt þ hÞ þ c�2;

�E
Z

X
�vTðt; xÞOT �H2O	 In�vðt; xÞdxþ b sup

�s� h� 0

E �Vðt þ hÞ þ c�2

�ð�bþ kpþ1ÞE �VðtÞ þ b sup
�s� h� 0

E �Vðt þ hÞ þ c�2;

ð30Þ
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where

�H1 ¼ diagð�bþ �k1; . . .; �bþ �kNÞ;
�H2 ¼ diagð�b� 2�k þ k1; . . .; �b� 2�k þ k1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

; �bþ kpþ1; � � � ; �bþ kNÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N�p

;

c ¼ 2 2L2 þ
XN

j¼1

c2
j

 !

E
XN

i¼1

k/ik
2
C:

From Lemma 5 and �bþ kpþ1 þ b\0, we know that the

drive system (2) and response system (3) are globally

exponentially synchronous in mean square. h

Remark 3 Most of the existing criteria are established for

systems with finite delays [1, 14, 26], whereas adaptive

control and adaptive pinning control strategies in this

paper are derived for stochastic systems with reaction–

diffusion terms and S-type distributed delays which are

infinite delays. Due to the existence of reaction–diffusion

terms and S-type distributed delays, inequality with infi-

nite delay is derived for the synchronization criteria in

Hilbert space.

Remark 4 In most of existing works about distributed

time delays [2, 4, 18, 19, 48], a Lyapunov–Krasovskii

functional candidate with distributed term is usually con-

structed. In contrast, as the infinite delays here are handled

by a generalized Halanay inequality and truncation

method, the criteria in this paper are obtained by con-

structing a simple Lyapunov–Krasovskii functional candi-

date without the distributed terms.

4 Numerical examples

In this section, some numerical examples are given to

illustrate the effectiveness of the obtained results.

Example 1 Consider a 2-D SCDN with mixed time delays

whose parameters are taken as follows: ~D ¼ 0,

M ¼ f1; 2g,

~A1 ¼
1:1 0

0 1:2

� �

; ~A2 ¼
1:2 0

0 1:5

� �

; ~B11 ¼
1:2 � 1:5

�1:7 1:2

� �

;

~B12 ¼
0:6 � 0:1

�0:1 0:2

� �

; ~B21 ¼
0:5 0

0 0:5

� �

; ~B22 ¼
0:8 0

0 0:8

� �

;

~B31 ¼
1:1 0:5

0:5 0:8

� �

; ~B32 ¼
0:8 0:2

0:2 0:3

� �

; ~G1 ¼
1 � 0:5

0:5 1

� �

;

~G2 ¼
0:1 0:05

0:05 0:1

� �

:

The delay and activation functions are taken as

fð11Þ ¼
1

2
ðj11 þ 1j þ j11 � 1jÞ; ~gð11; 12; 13Þ ¼ tanhð13Þ;

IðtÞ ¼ ½e�t cosðtÞ; sinðtÞ�T ;

M1ðsÞ ¼ s t � 1

2
j sinðtÞj; x

� �

;

M2ðsÞ ¼
Z 0

�1
ehsðt þ h; xÞdh:

The response system consists of 10 coupled identical nodes

with structure shown in Fig. 1a. The initial conditions are

chosen as sðhÞ ¼ ½1:5; 0:5�T for drive system and proper

negative constants for 10 nodes of the response system for

h 2 ½�1; 0�. From Corollary 1, the drive-response systems

with adaptive controller (7) are exponentially synchronous.

Figure 2 depicts the time trajectory of drive-response sys-

tem and the error system (node 6) without control. From

Fig. 2, we see that the drive signal (red line in Fig. 2a) and

the response signal (blue line in Fig. 2a) have different

dynamical behaviors and the error signal (green line in

Fig. 2b) does not evolve toward zero. Thus, the uncon-

trolled system is not synchronous. In contrast, Fig. 3

illustrates the controlled systems with adaptive controller.

Obviously, the drive and response signals in Fig. 3a share

the same patterns and the error signal in Fig. 3b becomes

zero after 8. Therefore, the system with the adaptive con-

troller is synchronous, which corresponds to the theoretical

analysis.

Example 2 Then, we consider a 1-D SCDN with reaction–

diffusion terms and time delays. The parameters and

functions are taken as D ¼ 0:1, M ¼ f1; 2g, A1 ¼ 0:05,

A2 ¼ 0:1, B11 ¼ 0:4, B12 ¼ 0:35, B21 ¼ 0:3, B22 ¼ 0:4,

G1 ¼ 1, G2 ¼ 0:1, f ð11Þ ¼ tanhð11Þ, gð11; 12Þ ¼ f ð11 þ 12Þ,
IðtÞ ¼ sinðtÞ, SðsÞ ¼ sðt � sðtÞ; xÞ and sðtÞ ¼ et

etþ1
. The

response system consists of 5 identical nodes with structure

shown in Fig. 1b. From Theorem 1, we know that the

drive-response system with adaptive controller (7) can be

exponentially synchronous. The dynamical behaviors of

uncontrolled error system and controlled one (node 5) are

shown in Fig. 4.

(a) (b)

Fig. 1 The network topologies in Example 1 (left) and 2 (right)
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Remark 5 Examples 1 and 2 illustrate the effectiveness of

the obtained results for SCDNs with different types of time

delays, network topologies and reaction–diffusion terms.

From the contrast of the uncontrolled and controlled sys-

tems in Figs. 2, 3 and 4, we see that adaptive controller is a

practical tool to synchronize the networks.

5 Application to image encryption

In this section, we will apply the adaptive synchronization

of a 2-D SCDN to image encryption based on the spa-

tiotemporal cryptosystem proposed in [4]. The parameters

of the drive-response system are taken as follows:

M ¼ f1g, O ¼ ½�10; 10�, N ¼ 1, ~D ¼ 10�4I, ~A ¼ I,
~B3 ¼ 0, IðtÞ ¼ 0, ~fð1Þ ¼ tanhð1Þ, sðtÞ ¼ et

1þet
, fðtÞ ¼ 0,

~gð11; 12; 13Þ ¼ 11,

~B1 ¼
2 � 0:1

�5 4:5

� �

; ~B2 ¼
�1:5 � 0:1

�0:2 � 4

� �

:

The initial conditions are chosen as

s1ðh; xÞ ¼ sin2ðxp
2
Þ; s2ðh; xÞ ¼ cos2ðxp

2
Þ; x 2 O;

and

u1ðh; xÞ ¼ 1; x 2 Ok; u2ðh; xÞ ¼ �1; x 2 COOk;

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

t

s(t)
u(t)

(a)

0 5 10 15 20 25
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

v(
t)

(b)

Fig. 2 Time trajectory of the uncontrolled system (node 6) in Example 1. a The drive signal (red line) and response signal (blue line). b The error

signal

0 5 10 15 20 25
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−2

0
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6
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s(t)
u(t)

(a)

0 5 10 15 20 25
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−4

−2

0

2

4

6

8

t

v(
t)

0 10 20

−2

0

2

U
(t)

(b)

Fig. 3 Time trajectory of the controlled system (node 6) in Example 1. a The drive signal (red line) and response signal (blue line). b The error

signal (green line) and control input (blue line)
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where �1� h� 0 and Ok ¼ ½�10 þ 0:2k;�9:9 þ 0:2k�
(k 2 N), otherwise, s1ðh; xÞ ¼ s2ðh; xÞ ¼ u1ðh; xÞ
¼ u2ðh; xÞ ¼ 0. The dynamical behavior of the uncon-

trolled error system can be found in Fig. 5, which is

obviously unstable. Then, the adaptive control input (7) is

added into the error system. According to Corollary 1, the

controlled system is synchronous as shown in Fig. 6.

Next, we apply the adaptive synchronization results

derived above to image cryptosystem proposed in [4],

whose flowchart is shown in Fig. 7. We replace the drive

system and response system by the aforementioned 2-D

SCDN. To demonstrate the security and effectiveness, we

use four different images including Lena (gray 512 � 512),

Lady (color 256 � 256), Pepper (color 512 � 512), and

SanDiego (color 1024 � 1024), as shown in Fig. 8. Then,

the cryptosystem is evaluated by key space analysis and

statistical analysis as follows.

5.1 Key space analysis

The used encryption algorithm includes the following keys:

the parameters of the spatiotemporal chaotic neural net-

works, the sampling spatial points, and synchronous time.

As stated in [4], the key space is large enough in theory to

resist the brute-force attack. In addition, the drive-response

system considered here is stochastic chaotic system. The

stochastic Brownian motion wðtÞ can also be treated as the

secret key, which is irreproducible. Thus, the uncertainty of

Brownian motion has also improved the security of the

encryption algorithm.

5.2 Statistical analysis

To demonstrate the robustness of cryptosystem, we per-

form analysis of histogram, mean square error, peak signal-

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

t

v 5
(t,
x)

0 5 10 15 20 25 30 35 40 45 50

−2

−1

0

1

2

3

4

5

t

v 5
(t,
x)

0 20 40
−1

−0.5

0

0.5

U
5(
t,x

)

(a) (b)

Fig. 4 The error signals of uncontrolled (left) and controlled system (right) in Example 2

Fig. 5 The error signals of uncontrolled system in Sect. 5
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to-noise ratio, entropy, and correlation of the plain images

and ciphered images. The ciphered images should process

certain random properties, which means the decrease in

variance of histogram, the low peak signal-to-noise ratio,

closeness of entropy to 8, and small correlation of plain

images and ciphered images and of two adjacent pixels in

ciphered images. Figures 9 and 10 illustrate the plain

images, ciphered images, decrypted images, and the cor-

responding histograms. It can be observed that the ciphered

images are quite different from the plain images whereas

the decrypted images are identical with the plain images.

Figures 11, 12 and 13 depict the correlation distribution of

two adjacent pixels in horizontal, vertical, and diagonal

directions. The significant reduction in correlation indicates

that the correlation of adjacent pixels in the plain images

has been removed.

The quantification of the ciphered results is presented in

Table 1, 2 and 3, including variance of histogram [42],

mean square error (MSE), peak signal-to-noise ratio

(PSNR) [9], entropy, and correlation of the plain images

and ciphered images (CPC), and correlations of two adja-

cent pixels [4]. From Figs. 9, 10, and Table 1, we see that

the variances of histograms of ciphered images signifi-

cantly decrease compared with those of plain images. The

uniformity of the histograms of the ciphered images makes

statistic attacks difficult. As a result, the proposed method

is able to resist chosen-plaintext or known-plaintext

attacks. From Table 2, the average PSNR 7.96 of Lady,

Pepper, SanDiego is smaller than the value 7.99 in [9] and

the entropy 7.9993 of Lena is closer to 8 than value 7.9941

in [4]. The correlations of two adjacent pixels in Table 3

corresponds to the description of Figs. 11, 12 and 13,

which also implies the random-like appearances of the

ciphered images.

The complexity of the used encryption scheme is per-

formed compared with schemes in [4] and [9]. The time-

consuming part here lies in the construction of spatiotem-

poral chaotic sequences generated by the above SCDN.

The time complexity is Hð4 �M � NÞ, which is same as

Chen’s algorithm [4], because we exactly use Chen’s

frame. The main difference is that the Brownian motion is

pre-generated before construction of chaotic sequences,

Fig. 6 The error signals of controlled system in Sect. 5

Fig. 7 Flowchart of chaotic secure communication system based on

adaptive synchronization

Fig. 8 Four standard images for encryption process
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which hardly causes extra time consume. In contrast to

Lakshmanan’s scheme [9], the used scheme has lower

computational cost, because the scheme only depends on

the diffusion operation. But implementing the permutation

operation in encryption scheme may improve the perfor-

mance and may not cause significant computational cost.

Hence, the future work of encryption scheme will focus on

the permutation operation.

Fig. 9 Images (top) and corresponding histograms (bottom). a Lena image. b Ciphered image. c Decrypted image

Fig. 10 Images (top) and corresponding histograms (bottom). a Lady image. b Ciphered image. c Decrypted image
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6 Conclusion

In this paper, we develop some criteria of exponential

synchronization for SCDNs with reaction–diffusion terms

and S-type distributed delays. First, we introduce a gen-

eralized Halanay inequality to handle the S-type distributed

delays. Then, adaptive control and adaptive pinning control

strategies of exponential synchronization are established by

utilizing Poincaré inequality and constructing simple

Lyapunov–Krasovskii functional candidate without the

distributed terms. Finally, we present two numerical

examples and apply a 2-D SCDN to a spatiotemporal

cryptosystem proposed in [4]. Experimental results,

including decrease in variance of histogram decreases, low

PSNR, closeness of entropy to 8, and small correlation

between plain images and ciphered images, show effective

application of the obtained theoretical results. The future

Fig. 11 Correlation of adjacent pixels in plain image (top) and ciphered image (bottom) in horizontal direction

Fig. 12 Correlation of adjacent pixels in plain image (top) and ciphered image (bottom) in vertical direction

Fig. 13 Correlation of adjacent pixels in plain image (top) and ciphered image (bottom) in diagonal direction

Table 1 Variance of histogram

Lena Lady Pepper SanDiego

Original 6.3701e5 9.0885e5 5.3031e6 9.3502e7

Ciphered 987.7969 698.625 2.6876e3 1.2082e4

Decrypted 6.3701e5 9.0885e5 5.3031e6 9.3502e7

Table 2 Comparison of MSE, PSNR, ENTROPY and CPC of dif-

ferent images

Image MSE PSNR ENTROPY CPC

Lena 7861.4 9.1758 7.9993 - 0.0035

Lady 12236.7 7.2914 7.9973 0.0014

Pepper 10198.5 8.0956 7.9993 0.0038

SanDiego 9282.5 8.4955 7.9998 0.00047

Table 3 Correlations of two adjacent pixels in horizontal, vertical,

and diagonal directions

Image Horizontal Vertical Diagonal Average

Lena Original 0.9726 0.9863 0.9596 0.9728

Ciphered 0.0044 0.0028 - 0.0016 0.0029

Lady Original 0.9677 0.9596 0.9453 0.9575

Ciphered 0.0064 0.0030 0.0028 0.0041

Pepper Original 0.9704 0.9715 0.9576 0.9665

Ciphered 0.0028 0.0040 0.0011 0.0026

SanDiego Original 0.9173 0.9143 0.8946 0.9087

Ciphered 0.00082 0.00065 0.00052 0.00066
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work will focus on implementing the permutation opera-

tion in encryption scheme, since NPCR (number of pixels

change rate) and UACI (unified average changing inten-

sity) cannot reach desired performance and the permutation

operation hopefully overcomes the issues.
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