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Abstract
In recent years, air pollution has been a major concern for its implications on human health. Specifically, ozone (O3)

pollution is causing common respiratory diseases. In this paper, we illustrate the process of modeling and prediction hourly

O3 pollution measurements using wavelet transforms. We split the time series of O3 in daily intervals and estimate scale

and wavelet coefficients for each interval by the discrete wavelet transform (DWT) with Haar filter. Subsequently we apply

cumulated autoregressive integrated moving average (ARIMA) to estimate the coefficients and forecast their evolution in

future intervals. Then the inverse discrete wavelet transform is implemented for the reconstruction of the time series and

the forecast in the near future. In order to assess the performance of the proposed methodology, we compare the predictions

obtained by the DWT–ARIMA with those obtained by the ARIMA model. Several theoretical results are shown through a

simulation study.

Keywords Ozone (O3) � Discrete wavelet transform (DWT) � Haar wavelet � Autoregressive integrated moving average

(ARIMA)

Mathematics Subject Classification 62M10 � 42C40 � 91B76

1 Introduction

The atmospheric pollution is a great concern for many

countries of the world, as a result of studies that have

verified the negative effects on human health. Santiago de

Chile is one of the most polluted cities in the world due to

its geographical location and emission sources.

In particular, the ozone O3 is a highly reactive gas that

can irritate lungs and also cause eye, nose and throat irri-

tation. Long exposure to ozone pollutant can seriously

worsen these effects. In Chile, the O3 concentrations are

continuously recorded by the national air quality informa-

tion system (SINCA) in order to check the critical levels

and take preventive measures. For this reason, it is very

important to develop methods which can provide a good

predictions.

Many approaches have been proposed in the literature;

most of these are based on the use of neural networks and

ARIMA models. Duenas et al. [1] propose ARIMA models

for estimating the ground-level ozone concentrations in air

at an urban and rural sampling points in Southeastern

Spain, [2] analyzes hourly ozone concentrations with
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multiple regression and multilayer perceptron models on

observations of an urban area of the east coast of the Ibe-

rian Peninsula and [3] use ARIMA models for forecasting

daily maximum surface ozone concentrations at the airport

in Brunei Darussalam. A neural network approach has been

used by [4–8] for predicting the intraday ozone concen-

trations. A comparison of neural network models with

ARIMA and regression models has been provided by [9]

for prediction of Houston’s daily maximum ozone

concentrations.

In this work, we propose a new methodology for pre-

dicting the ozone concentrations in Santiago de Chile given

by the combination of the wavelet analysis with the accu-

mulated ARIMA approach. In particular, we apply the

wavelet transform using the Haar cumulated wavelet

function to the original time series; then, we estimate an

ARIMA model using the transformed series. Finally, the

inverse wavelet transform is applied to the predicted

wavelet coefficients obtained by the estimated ARIMA

model. Thus the reconstructed time series should represent

the future cumulated behavior of the ozone pollutant.

Wavelet analysis is a recent tool which allows to

decompose a time series into time–frequency space (see

[10]). The multiresolution analysis for discrete wavelet

transform proposed by [11] permits to reconstruct a signal

until a certain level of resolution. Although the wavelet

analysis is a very efficient tool that can be used in several

applications (time series analysis, signal processing, image

processing, etc.), few works deal with time series fore-

casting. Soltani [12] proposed to combine the wavelet

approach with the artificial neural networks (ANN) for

predicting the sun spot and MacKey–Glass time series.

Mabrouk et al. [13] used the autoregressive models and the

wavelet decomposition for forecasting the sun spot time

series. The idea of the latter works is to predict time series

by applying linear (ARMAX) or nonlinear (ANN) models

on simplified signal given by the reconstructed time series

in each level of resolution. From the point of view of this

approach, our work is novel since we propose to apply

linear models to the scaling and wavelet coefficients

obtained by the discrete wavelet decomposition using the

wavelet Haar filter.

The paper is organized as follows. First we introduce

some basic concepts about the Haar wavelet and the dis-

crete wavelet transform (Sect. 2); then, we show theoretical

results about the AR(1) process and the wavelet coeffi-

cients (Sect. 3). A simulation study is implemented in Sect.

4 to show the ability of the wavelet approach to estimate

the AR(1) parameters. Results and conclusions are reported

in Sects. 5 and 6, respectively.

2 Haar wavelet and discrete wavelet
transform

2.1 Haar wavelet

The development of wavelets connects with the work of

Alfred Haar in the early twentieth century. According to

[14], the Haar mother wavelet is a mathematical function

defined by

wðxÞ ¼

1; x 2 0;
1

2

� �
;

�1; x 2 1

2
; 1

� �
;

0; otherwise:

8>>>>><
>>>>>:

ð1Þ

Two relevant characteristics are the oscillation (the Haar

wavelet ‘‘goes up and down’’; more mathematically this

can be expressed by the condition that
R1
�1 wðxÞdx ¼ 0, a

property shared by all wavelets) and the compact support

(not all wavelets have compact support, but they must

decay to zero rapidly). Hence, wavelets are objects that

oscillate but decay fast and hence are ‘‘little.’’ Haar

wavelets are defined over the [0, 1] interval, but we will

consider their shifted versions on the intervals ½i� 1; i�,
i ¼ 1; . . .;M. The application of the Haar wavelets in

modeling continuous functions stems from the result that

any continuous function f 2 Cð½0; 1�Þ can be approximated

as

f ðxÞ � fnðxÞ ¼ hn0; f in0ðxÞ þ hn1; f in1ðxÞ
þ � � � þ hnn; f innðxÞ;

ð2Þ

with hni; f i ¼
R
niðxÞf ðxÞdx,

n0ðxÞ ¼ 1f0� x� 1g ð3Þ
n1ðxÞ ¼ 1f0� x� 1=2g � 1f1=2� x� 1g ð4Þ

n2ðxÞ ¼
ffiffiffi
2

p
½1f0� x� 1=4g � 1f1=4� x� 1=2g� ð5Þ

..

.

nnðxÞ ¼ 2j=2½1Ik � 1Jk�
ð6Þ

where Ik :¼fk2�j�x�ðkþ1=2Þ2�jg;Jk :¼fðkþ1=2Þ2�j

�x�ðkþ1Þ2�jg: We take n¼2jþk, j�0;0�k�2j�1 and

it can be seen that nnðxÞ¼njkðxÞ¼2j=2n1ð2jx�kÞ. In this

paper, we will use nnðxÞ for simplicity of notation. It is

worth observing that n0ðxÞ (scaling function) describes the

average behavior of the function f(x), whereas the functions

nnðxÞ;n[0 represent the details of f(x). The function n1ðxÞ
is the wavelet.
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We consider the interval ½i� 1; iÞ, 1� i�M and the

Haar wavelets up to the ðN � 1Þth level. Here we use j ¼ 0

to denote the scaling function, whereas j ¼ 1; . . .;N

denotes the wavelet function at level j� 1. Given any

x 2 ½i� 1; iÞ, there is just one wavelet at each level of

containing point x. Therefore, we can write

f ðxÞ ¼
XN
j¼0

d
ðiÞ
j ðxÞIðiÞj ðxÞ; ð7Þ

where d
ðiÞ
0 ðxÞ is the coefficient of the scaling function,

I
ðiÞ
0 ðxÞ is the set function of ½i� 1; iÞ, IðiÞj ðxÞ, j ¼ 1; . . .;M, is

the set function of the interval x belongs to, at the ðj� 1Þth
level, and d

ðiÞ
j ðxÞ is the corresponding wavelet coefficient

multiplied by 2ðj�1Þ=2 (here we have considered this factor,

part of the definition of the wavelet at ðj� 1Þth level,

within the coefficient).

2.2 Haar Discrete Wavelet Transformation
(HDWT)

For more details about general discrete wavelet theory, see

[15]. Here we look for two vectors u and v such that the set

of their translates by even integers forms an orthonormal

basis.

Definition 21 Suppose N is an even integer, say N ¼ 2M

for some M 2 N. An orthonormal basis for ‘2ðZNÞ of the
form H ¼ fR2kugM�1

k¼0 [ fR2kvgM�1
k¼0 for some u; v 2 ‘2ðZNÞ

is called a first-stage wavelet basis for ‘2ðZNÞ. We call

u and v the generators of the first-stage wavelet basis. We

sometimes also call u the father wavelet and v the mother

wavelet.

There is a simple condition in terms of the DFT that

characterizes orthonormal bases; see [15]. Here

ŵn :¼
PN�1

m¼0 wm e�
2pmn
N :

Lemma 21 Let w 2 ‘2ðZNÞ. Then fRkwgN�1
k¼0 is an

orthonormal basis for ‘2ðZNÞ if and only if jŵnj ¼ 1 for all

n 2 ZN :

3 Estimation and transformation of AR(1)
models

Suppose that the data are observed at discrete time points ti
and are corrupted by noise, so that the observed data follow

AR(1) model,1 i.e.,

xt ¼ u xt�1 þ et; ð8Þ

where ‘‘near zero’’ x0 is given, et is a Gaussian white noise

process with diagonal variances r2e and u is a parameter,

which has to be estimated. Notice that we admit only such

u for which juj\1 holds (it implies that xt is stationary

and ergodic). It is well known that E½xt� ¼ 0 and

Var½xt� ¼ r2e
1�u2 :

Let

u ¼ 1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0; 0; . . .; 0

� �
and v ¼ 1ffiffiffi

2
p ;� 1ffiffiffi

2
p ; 0; 0; . . .; 0

� �
:

Then, the first-stage Haar basis for ‘2ðZNÞ isH and one can

trivially check (one can simply verify Lemma 21) that this

wavelet basis is an orthonormal basis. Define the Haar

transform matrix as H2N as

ðHjkÞ ¼
ðR2juÞk; j ¼ 0; . . .;N � 1

ðR2jvÞk; j ¼ N; . . .; 2N � 1

�
ð9Þ

Suppose that observations x 2 Z2Nþ1 follow model (8).

The Haar matrix is in fact of 2N � 2N order with the

shortened form

H2N ¼ 1ffiffiffi
2

p
IN 	 ½1; 1�
IN 	 ½1;�1�

� �
; ð10Þ

where IN is the identity matrix and 	 denotes Kronecker

product. After obtaining the measurements x for model (8),

we transform the data by HDWT

y ¼ H2N x: ð11Þ

Notice that we can shift N in both directions sufficiently

far.

Lemma 31 HDWT (11) transforms model (8) into

yt ¼ u2 yt�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
et ð12Þ

with E½yt� ¼ 0 and Var½yt� ¼ r2e
1�u2 :

Proof First of all, it is well known that an affine trans-

formation of x 
Nðl;RÞ; i.e., y ¼ cþ Bx has a multi-

variate normal distribution with expected value cþ Bl and

variance BRBT. Therefore, H2Ne
0
2N has a multivariate

normal distribution with expected value 0 and variance

H2Nðr2e I2NÞHT
2N ¼ r2e I2N due to orthogonality of H2N . Thus

it is sufficient to transform values xt. One can see that

yt ¼

uffiffiffi
2

p ðx2t�2 þ x2t�1Þ þ et; for t ¼ 1; . . .;N;

uffiffiffi
2

p ðx2t�2 � x2t�1Þ þ et; for t ¼ N þ 1; . . .; 2N:

8><
>:

ð13Þ

From (8), we have

1 The well-known Ornstein–Uhlenbeck process can also be consid-

ered as the continuous-time analogue of the discrete-time AR(1)

process.
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yt ¼

uffiffiffi
2

p ðu x2t�3 þ e2t�2 þ u x2t�2 þ e2t�1Þ þ et; for t ¼ 1; . . .;N;

uffiffiffi
2

p ðu x2t�3 þ e2t�2 � u x2t�2 � e2t�1Þ þ et; for t ¼ N þ 1; . . .; 2N;

8><
>:

ð14Þ

On the other hand, we know from (11) that

yt�1 ¼

uffiffiffi
2

p ðx2t�3 þ x2t�2Þ; for t ¼ 2; . . .;N;

uffiffiffi
2

p ðx2t�3 � x2t�2Þ; for t ¼ N þ 1; . . .; 2N;

8><
>:

ð15Þ

which implies

yt ¼
u2 yt�1 þ

uffiffiffi
2

p ðe2t�2 þ e2t�1Þ þ et; for t ¼ 2; . . .;N;

u2 yt�1 þ
uffiffiffi
2

p ðe2t�2 � e2t�1Þ þ et; for t ¼ N þ 1; . . .; 2N:

8><
>:

ð16Þ

Thus (12) is proved.

Now, since u2\1 one can show that fytg is stationary

and ergodic. Therefore, E½yt� ¼ 0 and from yt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ðet þ u2et�1 þ u2et�2 þ . . .Þ we have

Var½yt� ¼ E½y2t � ¼ ð1þ u2ÞE½ðet þ u2et�1 þ u4et�2. . .Þ2� ¼
1þ u2

1� u4
re:

The proof is complete. h

Notice that we do not know whether the distributions of

xt and yt coincide. We only know that first two moments

are equal and we can assume that errors stay unchanged in

the sense of the next model. Therefore, we also assume

model

yt ¼ u2 yt�1 þ et ð17Þ

(conditional) MLE estimation of u for model (8) with t 2
f1; . . .;Ng is

û ¼
PN

t¼2 xt�1 xtPT
t¼2 x

2
t�1

(notice here that the conditional MLE of u is also the OLS

estimator of u, but this does not hold for the exact MLE).

This implies that for model (12) with t 2 f1; . . .;Ng we

have

û2 ¼
PN

t¼2 yt�1 ytPT
t¼2 y

2
t�1

if we neglect the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� 1. It is important to note

that for a sample of size N in order to estimate an AR(1)

process by conditional MLE, we will use only N � 1

observations of this sample.

Then, we transform the data ŷ given by model (12) with

estimated û back by IHDWT to obtain

x̂ ¼ H�1
2N ŷ ¼ HT

2N ŷ;

since matrix H2N is orthogonal. The following diagram

summarizes the main idea (Fig. 1).

Here we define the MSE of an estimator ĥ with respect

to an unknown parameter h in a standard way as

MSEðĥÞ ¼ E ðĥ� hÞ2
h i

.

These theoretical results can be extended to other linear

processes such as the ARMA (p,q) and ARIMA (p,d,q) (see

[16] for details on the autocorrelation functions, estimation

and forecasting of such models).

4 Simulation study

We have calculated estimates for different parameter val-

ues / and x0 (for fixed value of re) for data generated by

model (8) in the following way. For each realization, we

have computed (conditional) MLE for the original data

(here we have used fixed times t 2 f1; . . .;Ng;N ¼ 100),

which has been repeated K times. Afterward average value

ûx and estimation of MSEðûÞ as average value of

ðû� uÞ2
h i

were computed (i.e., computing empirical

version of MSEðûÞ). The same procedure has been done

using transformed data y.

Here we have used the assumption that errors stay

unchanged. Therefore, we have used (conditional) MLE for

model (17). We have obtained estimates ûy. Tables 1, 2, 3

and 4 show achieved results.

From the results, it is obvious that for large number2 of

repetitions the estimate ûx is better in average than the

estimate ûy. Nevertheless, when the number of repetitions,

e.g., K ¼ 20 in our case, is small, the (conditional) MLE

estimation ûy has better behavior; see Tables 3,4 and

values of ‘‘average’’ MSE. This results suggest that in

practice might be helpful to use transformed data in order

to obtain an estimation of specific parameter, especially

when we realize that we have typically only one realization

measured.

On the other hand, if x̂ is a vector of predictions, and x is

the vector of observed values corresponding to the inputs to

the function which generated the predictions, then the MSE

of the predictor can be estimated by

MSE ¼ 1
n

Pn
t¼1ðx̂t � xtÞ2. We have used the mean squared

Fig. 1 Transformations and estimation

2 We have used K ¼ 1000, but probably smaller value could be

eligible.

4334 Neural Computing and Applications (2019) 31:4331–4340

123



prediction error, which measures the expected squared

distance between what our predictor predicts for a specific

value and what the true value is:

MSPEðLÞ ¼ E
Pn

i¼1 xi � x̂ið Þ2
h i

. See results in Tables 5, 6,

where two types of errors were computed. Clearly the

inversion of H2N complicates whole situation. Neverthe-

less, we have computed mean variances for specific models

(8), (12) and (17); see Table 7. Surprisingly the nearest

estimation has model (17).

5 Application to Ozone data

In this section, we apply the HDWT to the ozone time

series; then, we estimate ARIMA model on the resulting

coefficients (detail and scaling coefficients); finally, we

apply the IHDWT on the predicted coefficients by

ARIMA models in order to reconstruct the future

behavior of the considered cumulated time series.

Description of used models follows in the next

subsection.

5.1 Models

5.1.1 Autoregressive AR(p)

According to [17], an autoregressive model of order p,

abbreviated AR(p), has the form

xt ¼ /1xt�1 þ /2xt�2 þ . . .þ /pxt�p þ et; ð18Þ

where xt is stationary, and /0;/1;/2; . . .;/p are constants

ð/p 6¼ 0Þ. Although it is not necessary, we assume for the

sake of simplicity that et is a Gaussian white noise with

zero mean and variance r2w, unless otherwise stated.

Table 1 Estimation of parameter u, re ¼ 1;K ¼ 1000;N ¼ 100; x0 ¼ 1

x0 ¼ 1 u ¼ 0:99 MSE u ¼ 0:8 MSE u ¼ 0:7 MSE

Average ûx 0.969821 1.5819 0.786203 4.3048 0.687516 5.6160

Average ûy 0.954043 2.5735 0.775157 5.6511 0.676731 7.7051

Table 2 Estimation of parameter u, re ¼ 1;K ¼ 1000;N ¼ 100; x0 ¼ 0:1

x0 ¼ 0:1 u ¼ 0:99 MSE u ¼ 0:8 MSE u ¼ 0:7 MSE

Average ûx 0.971516 1.4638 0.782047 4.2449 0.687871 5.3416

Average ûy 0.955874 2.3352 0.772372 5.4061 0.679346 7.5531

Table 3 Estimation of parameter u, re ¼ 1;K ¼ 20;N ¼ 100; x0 ¼ 1

x0 ¼ 1 u ¼ 0:99 MSE u ¼ 0:8 MSE u ¼ 0:7 MSE

Average ûx 0.968205 0.0368 0.803024 0.0741 0.672014 0.1725

Average ûy 0.960740 0.0396 0.802245 0.0729 0.675860 0.15026

Table 4 Estimation of parameter u, re ¼ 1;K ¼ 20;N ¼ 100; x0 ¼ 0:1

x0 ¼ 0:1 u ¼ 0:99 MSE u ¼ 0:8 MSE u ¼ 0:7 MSE

Average ûx 0.969563 0.0174 0.794335 0.0658 0.699146 0.0858

Average ûy 0.960106 0.0289 0.788669 0.0827 0.700260 0.0693
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5.1.2 Moving average model MA(q)

According to [17], a moving average model of order q,

abbreviated MA(q), has the form

xt ¼ wt þ h1wt�1 þ h2wt�2 þ . . .þ hqwt�q; ð19Þ

where there are q lags in the moving average and

h1; h2; . . .hq ðhq 6¼ 0Þ are parameters. Although it is not

necessary yet, we assume that wt is a Gaussian white noise

series with mean zero and variance r2t , unless otherwise

stated.

5.1.3 Autoregressive integrated moving average
ARIMA(p,d,q)

According to [18], in order to make a time series stationary,

one must differentiate it d times and then apply an ARMA

(p,q) model. Thus the original series is ARIMA (p,d,q),

where p denotes the number of autoregressive terms, d is

the number of times the series must be differentiated and

q is the number of terms of the invertible moving average.

The ARIMA model is given by

Xd
t ¼ cþ /1X

d
t�1;þ. . .;/pX

d
t�p þ et

þ h1e
d
t�1; . . .; hqe

d
t�q þ edt

ð20Þ

Expressed in terms of the backshift operator, we have

/ðLÞð1� LÞdXt ¼ cþ hLet ð21Þ

where Xd
t is the series of differences of order d, edt is a

white noise process, and c;/0;/1;/2; . . .;/p; h1; h2; . . .; hq
are the parameters of the model.

In the present article, we use ARMA and ARIMA

models on the different vectors of scale coefficients and

wavelets of the DWT.

5.2 Data analysis

The data used in this work have been recorded by the

SINCA (Chile). In particular, we consider the hourly ozone

concentrations (O3) gathered in the providence monitoring

station of the Metropolitan Region of Santiago, Chile,

during the period from October, 1, 2002, to December 19,

2002.

The methodology is illustrated in Fig. 2. Firstly the

time series from SINCA database are transformed by the

DWT using the Haar filter; then, an AR or ARIMA

model is identified through the partial and total auto-

correlation coefficients (ACF and PACF) for each

sequence of wavelet coefficients corresponding to each

level of resolution. Then we apply the ARIMA models to

the resulting coefficients in order to predict the future

coefficients, namely 1, 2, 3, 7 and 9 levels. Finally we

implemented the IHDWT on the predicted wavelet

coefficients in order to obtain the future concentrations

of the O3 pollutant.

Since the wavelet algorithm works on time series which

length is power of two, we extracted 16 hours for each day

(from 6:00 to 21:00) (see Fig. 3).

The determination of the level of decomposition is

fundamental since it provides the number of vectors with

scaling coefficients and wavelets. For example, if we use

three levels of decomposition, we obtain three vectors of

scale coefficients and three vectors of wavelet coeffi-

cients, where the vectors of wavelet coefficients repre-

sent the detail of the series (see Fig. 4). For the

reconstruction of the original series, the detailed vectors

and the first scale in correspondence with the level of

decomposition are used.

Table 5 MSPE for re ¼ 1;K ¼
20;N ¼ 100 and ‘2 error

‘2 error u ¼ 0:7 x0 MSPE (8) MSPE (17) MSPE (12)

ûx ¼ 0:699146 ûy ¼ 0:700260 1 0.0007 319.2027 383.8687

ûx ¼ 0:672014 ûy ¼ 0:675860 0.1 0.7611 319.3887 376.3713

Table 6 MSPE for re ¼ 1;K ¼
20;N ¼ 100 and ‘1 error

‘1 error u ¼ 0:7 x0 MSPE (8) MSPE (17) MSPE (12)

ûx ¼ 0:699146 ûy ¼ 0:700260 1 0.0067 4.9695 5.4833

ûx ¼ 0:672014 ûy ¼ 0:675860 0.1 0.2129 4.8487 5.2666

Table 7 Estimation of variance for re ¼ 1;K ¼ 1000;N ¼ 100

Var½xt� ¼ r2e
1�u2

est. for (8) est. for (17) est. for (12)

1.9607 1.8192 1.9182 1.2874
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Different levels of resolution have been used in the

reconstruction step. In particular, to reconstruct the series

two levels of the DWT have been applied.

With respect to the two levels, we used the prediction of

the coefficients in a cumulative way, that is, step by step,

updating the time series and obtaining the predicted values

with the ARIMA model in correspondence with the

appropriate time interval.

In Figs. 5 and 6, we show the time series with the

HDWT for a number of nine and two levels of decompo-

sition, respectively. The first sequence of coefficients rep-

resents the scaling coefficients and the others the detailed

coefficients of the HDWT. The original time series is at the

bottom of Figs. 5 and 6.

Then we performed the prediction of the wavelet coef-

ficients and the reconstruction of the ozone time series for

the next 10 days, that is, from December 20, 2002, to

December 29, 2002. By using three and seven levels of

decomposition, we obtain the prediction represented in

Fig. 7.

We did not observe the significant difference between

the two reconstructed series. Now let us consider one level

Fig. 3 Hourly Ozone concentrations from October, 1, 2002 to

December 19, 2002, from 6:00 to 21:00

Fig. 4 Wavelet decomposition

Fig. 2 Methodology
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Fig. 5 Nine levels of

decomposition

Fig. 6 Two levels of

decomposition
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in cumulative way, i.e., performing the prediction one step

ahead and updating the data at each step. Figure 8 shows

that the prediction is much better when using only one

accumulated level of resolution.

Figure 9 compares the ozone prediction obtained by

applying the ARIMA models on the transformed series

(with two and three levels of resolutions) cumulated on

the original ozone series. Differently to the classical

application of the ARIMA models, the wavelet

approach allows to predict the extreme events in

cumulated ozone time series. Such extremes are very

important from environmental and population health

points of view.

Figure 10 plots the reconstructed time series with level 2

of accumulated reconstruction accompanied with the upper

and lower limits of the 95 % confidence interval. Such

confidence interval is important for further statistical

analysis of the series.

6 Conclusion

We shown in this paper that the predictions obtained by

proper combination of HDWT and ARIMA models are

better than those obtained by the simple application of the

ARIMA models to the original data. This is mainly because

of complexity and non-linearity intrinsically present in

ozone pollution data. Moreover the 95% confidence inter-

val contains all the points of the reconstructed series. Thus

the proposed methodology provides a new tool for

improving the prediction of the ozone concentrations

which could allow the competent authorities to take cor-

rective and preventive actions in order to decrease the

0

25

50

75

100

1280 1320 1360 1400

Time

po
llu

tio
n

series

Reconst. level 1 cumulated 

Original 

Fig. 8 Ozone prediction using one cumulated level of resolution
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Fig. 9 Application of ARIMA models on original and transformed

time series: The purple line illustrates the original time series, the

pink line the prediction using two cumulated levels of resolution, the

line green using 3 cumulated levels of resolution, and the blue line is

the resulting of the ARIMA prediction without the application of the

HDWT (color figure online)
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Fig. 7 Ozone prediction using seven and three levels of resolution
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pollutant levels and consequently reduce the negative

impact on the human health.
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