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Abstract
The ‘‘boost-diffusion’’ low-pressure nitriding used to low-frictional coatings manufacturing of aircraft engines’ piston rings

is a nonsteady-state process; therefore, designing and prediction of the process’ kinetics by analytical solutions of Fick’s

equations or numerical methods of diffusion are difficult, due to the nonlinear relationship between the diffusion coefficient

and the rate of diffusion as well as nonsteady-state boundary conditions. The best solution in this case, as the practice and

theory indicate, is computer-aided design based on neural networks. The paper describes neural network model and its

training procedures based on data mining in the application to the monitoring and control of low-pressure nitriding process

for creation of low-frictional coatings on gray irons and steels used for the piston rings manufacturing. The goal was to

study the usefulness of the multilayer feed-forward perceptrons and radial basis function of neural networks for modeling

of multiphase kinetic diffusion for low-pressure nitriding. As it was shown, the use of specialist networks that designate

single features gives more accurate prediction results than the use of general networks that design several features at the

same time. It has been proved that it is possible to construct an industrial application of the low-pressure nitriding based on

artificial neural networks. The results of the research will be the basis for the development of innovative, specialized

software supporting the design of gradient low-friction layers based on the FineLPN low-pressure nitriding and conse-

quently the design of intelligent supervision over their manufacturing technology.
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1 Introduction

In recent years, dynamic development of small aircrafts has

been observed globally. The planes are mainly intended for

recreation purposes as air taxis, agricultural planes and as

small cargo aircrafts. Considering the power necessary to

drive the planes, piston engines are used. The costs of

purchasing and using piston engines constitute another

aspect that determines their use, as the costs are lower than

in the case of turbine engines. The cost of fuel is the main

cost component related to using combustion engines. Some

tests revealed that the majority of mechanical losses in a

piston engine are caused by friction in the piston–cylinder

assembly, while the most of these losses result from the

piston rings rubbing against the cylinder–bearing surface. It

impacts the engine life and determines its service life

between overhauls. Piston rings, which also remove heat

from the piston to the cylinder, make the essential sealing

from the point of view of friction and lubrication [1, 2].

The friction force between the surface of the piston and

the cylinder–bearing surface depends on the material of the

piston and bearing surface, as well as on the lubrication

conditions and value of the normal force pressing the pis-

ton to the cylinder–bearing surface. The friction between

the piston and the bearing surface is not a stabilized fluent

friction but occurs partly under boundary conditions. The

piston works with the bearing surface at an elevated tem-

perature, which reduces oil viscosity and causes further

deterioration of the friction conditions [3, 4].
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Materials used for piston rings have to meet a number of

requirements that tend to be contradictory. A material for

piston rings should have a low coefficient of friction when

sliding on the cylinder–bearing surface material, whereby

the working surface of the ring should maintain high

smoothness. Some additional requirements include resis-

tance to high load within the entire range of temperatures

occurring in the engine at very limited lubrication and low

tendency to seizing under boundary friction conditions that

may occur in the engine. A continuous surface with high

smoothness should be formed on the ring surface under

normal working conditions of the engine (quick wear-in).

The resulting smooth surface should demonstrate high oil-

wettability and should hold oil well. The material should

also reveal a certain degree of self-lubrication. No large-

sized particles should be separated as the material is sub-

jected to wear. Moreover, the material should have suffi-

cient bending and compression strength and high elasticity,

with no plastic strain. Due to the presence of corrosive

factors in the fuel and suctioned air, the material should

reveal corrosion resistance within the entire range of the

engine working temperatures [5–8].

At present, there is no material that would perfectly

meet all these requirements. Cast iron is the most popular

material used for piston rings, as well as alloy steel is also

used for making rings by cold-rolling of steel tape. In order

to improve cooperation between the piston ring and the

cylinder sleeve, coatings are applied. They include chro-

mium and/or chromium–molybdenum galvanic coats as

well as flame or plasma sprayed and CVD ones [9–14]. The

nitriding process is also used for surface treatment of rings

made mainly of steel [15–18]. Chromium-based coats are

most common; however, they are also the most dangerous

ones for the natural environment, as Cr6? is used [19–21].

The alternative, innovative solution to the coatings

mentioned above is low-frictional coatings on piston rings

obtained in the hybrid process that combines simultaneous

sintering nanoparticles MoS2, reduced graphene oxides

(rGO) with iron nitrides with the low-pressure nitriding

FineLPN. Layered inclusions of nanoparticles in such

coating together with the self-lubrication by hydrogen

phenomenon offer the decreasing the dry friction coeffi-

cient even twice [22–25]. The use of low-pressure nitriding

as the dominating thermal process protects the nanoparti-

cles against thermochemical degradations during manu-

facturing as well as helps to harden the top coat to the

required depth and enables reaching the controlled spec-

trum of compressive residual stresses that is of key

importance from the point of view of fatigue strength and

resistance to hydrogen wear [26, 27].

FineLPN low-pressure nitriding is a nonequilibrium

process, thus Fick’s diffusion law, which describes the

transport of nitrogen atoms needed to create a favorable

surface structure through analytical equations or numerical

methods, is difficult due to the nonlinear relationship

between the diffusion coefficient and the diffusion rate as

well as nonsteady boundary conditions. The problem is

additionally complicated by a large variety of steel and cast

iron grades (different chemical alloying), which strongly

influence the diffusion rate and phase transformations. The

best solution in this case, as the practice and theory indi-

cate, is a computer-aided design based on neural networks.

The assumptions to the neural network model and its

applications to the low-pressure nitriding of tools have

been presented in several former papers [28–31]. The

knowledge analysis in the field shows that the use of neural

networks to predict the resulting properties of the techno-

logical surface layer of steel and low-pressure-nitrided iron

(LPN) for aerospace applications has not been considered

so far. Despite the wide use of neural networks in the

material science [32, 33], including heat treatment [34–36],

in nitriding they were mainly used in gas and ion nitriding

(plasma) [37–41]. There is no information on the models of

low-pressure nitriding in the literature. The difficulty of the

problem results from both the nonstationary boundary

conditions (nonstationary boundary conditions also

excludes the use of analytical models based on conven-

tional mathematical equations) as well as the huge multi-

parametry of the phenomenon (process temperature,

segmentation, segment times, numerous alloy additions,

etc.). The present paper describes a neural network model

and its training procedures based on data mining in the

application to the monitoring and control of low-pressure

nitriding process for creation of low-frictional coatings on

gray irons and steels used for the piston rings manufac-

turing. These types of materials have so far not been the

subject of optimization of the FineLPN low-pressure

nitriding process. They are also not classic materials ded-

icated to the nitriding process, and hence the kinetics of

nitrogen profile development and structural structure of

these layers have not been studied yet. The aim of the work

is to confirm the hypothesis that it is possible to construct

an industrial application of low-pressure nitriding based on

artificial neural networks and in particular to investigate the

suitability of specific neural network architectures: multi-

layer perceptron networks (MLPs) and radial basis-based

networks (RBF) for modeling of multiphase diffusion

kinetics in low-pressure nitriding.

2 Materials and methods

2.1 Field experiment

The principal phases that form during the nitriding of iron

base materials (steels) are first a solid solution of alpha-iron
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(a), which has a maximum solid solubility of about 0.11%

nitrogen. The next phase that forms is gamma-prime (c0).
This is a phase field that has a solubility range of about

5.1–6.1% nitrogen and is usually represented by the

chemical formula Fe4N (Fig. 1). The third phase for con-

sideration is epsilon (e) Fe3–2N, and it may have equilib-

rium nitrogen contents of 7 to 8% nitrogen, depending on

the temperature at which it forms. There may be a ‘‘white

layer,’’ that appears microscopically, on the surface of the

nitrided material, which is composed of e and/or c0. These

phases in the white layer may have desirable or undesirable

characteristics depending on the intended application [26].

Therefore, it is important to be able to control the nitriding

process to produce the desired structure in terms of the

composition of the white layer, and if a white layer is to be

present or not.

2.2 Data

The data for experiments were collected from the nitrided

layers obtained after thermochemical treatment of struc-

tural steels and cast iron EN 41CrAlMo7 (1.8509), EN

42CrMo4 (1.7225), 50HS (1.5026), PENTHOR 854, S14,

L11, XTB samples. The chemical composition of the

materials has been summarized in the table (Table 1). The

nitriding process parameters under reduced pressure are

shown in the table (Table 2). The nitrided layers were

tested for the following properties: surface hardness [HV],

diffusion layer thickness (a) [lm], nitride phase thickness

Fe4N (c0) [lm].

2.3 Data preprocessing

Both the process parameters and the characteristics of the

nitrided material determine the kinetics of the nitrided

layer growth. In addition, both these groups determine the

resulting (exploitation) properties of nitrided steels and cast

irons. A number of scientists point out that the critical

parameters of the nitriding process include temperature,

process organization in the boost-diffusion segments and

the times of these segments [26, 28, 42, 43]. In addition,

Filetin et al. [44] pointed out that at the current state of

knowledge, the choice of nitriding parameters is largely

based on the experimenter’s experience. Due to construc-

tion and technological reasons, certain parameters of the

LPN process (pressure, flow) are fixed. Hence, the inclu-

sion in the model is not justified (values are constant for all

processes).

Alloy additions are important for the nitriding process,

causing the nitriding kinetics of each material to run

individually. Structural steels from which the rings are

produced contain the alloying elements in quantities such

as: (C: 0.3–0.6%, Mn: 0.4–0.7%, Si: 0.2–1.4%) while the

cast iron contain additives in quantities (C[ 2.11%, Mn:

0.6–1.3%, Si: 1.95–2.6%). Thus, these materials differ

from each other significantly. Khalaj in his work on pren-

itrided steels such as 1.2210, 1.2510, 1.2344, 1.3343,

1.2080 shows a significant influence of their alloy addi-

tions: C, Mn, Si, S, P, Cr, Ni, Mo, V, W, and the effec-

tiveness of these steel [45]. In case of steels and cast irons

described in this paper (1.8509, 1.7225, 1.5026, PEN-

THOR 854, S14, L11, XTB), nitriding for aerospace

applications has so far not been attempted. Therefore, the

assumption concerning alloy additives was adopted, anal-

ogous to the assumption of the work [45]. Because the

effectiveness of these materials is determined by the con-

tent of elements C, Mn, Si, Cr, Ni, Mo, Al, V, W, Ti, hence

they were classified as network parameters. In the case of

cast irons, it was observed that the carbon was mainly

concentrated in graphite formations and therefore not rel-

evant to the nitriding process. Nevertheless, the carbon

content of the material is crucial for identifying the mate-

rial as steel or cast iron. A knowledge base for building

neural networks has been divided into two parts:

1. The data containing test results for EN 41CrAlMo7

(1.8509), EN 42CrMo4 (1.7225), 50HS (1.5026) and

PENTHOR 854 steels have been used to design the

nitriding simulation of structural steels.

Fig. 1 View of the nitrided layer formed on 41CrAlMo7 steel

(1.8509) in order to obtain a low friction coating on the piston rings of

the aircraft engines. As one can observe: a the hardened diffusion

zone (a), responsible for surface pressure and fatigue strength;

b nitride zone (c0); c nitride zone (c0 ? e) reinforced with low-friction

MoS2 and rGO particles. Prepared in Jasc Paint Shop Pro. No

published
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2. The data containing test results for S14, L11, XTB cast

irons have been designed to design a simulation

algorithm of the cast iron nitriding processes.

3 Artificial neural networks

ANN are inspired from the human nervous system and are

widely used toward nonlinear modeling [46, 47]. They are

part of computational intelligence. The basic cell of arti-

ficial neural networks is the neuron, which refers to the

structure of the living neuron. Each neuron accepts a set of

numerical inputs from various sources and base on their

information. Neuron stimulation is transformed by a fixed

activation function (neuron transition function), and its

value is the final output value (output signal) of the neuron.

An artificial neural network maps even very complex

functions, and its typical task is to approximate the func-

tions of many variable functions in order to map the set of

input variables to a set of output variables [48, 49]. The

ways of connecting neurons between themselves and their

mutual interactions resulted in creating different types of

networks.

3.1 Multilayer feed-forward (MLFF) ANN

The multilayer perceptron (MLP) is composed of percep-

tron neurons. In combination with the backpropagation

algorithm [50], it is one of the most popular artificial neural

network models used and can be used to approximate

almost every mapping. In rare occasions, there are two or

more hidden layers in it, for one hidden layer is sufficient

for mapping of each continuous function [48, 51] and of

data classification [52–54]. The characteristic feature of

single-layered unidirectional network is the ability to dis-

tinguish their three parts: an input layer that accepts input

signals, hidden layers (one or more), and an output layer

that provides a network response (output signal). Data

signals are transmitted from layer to layer and transformed

at each stage. Multilayered networks often use the non-

linear function of sigmoidal activation, and thus constitute

Rosenblatt’s generalization of the perceptron [52, 55]. In

practice, the input and hidden layer neurons comprise the

sigmoid function and the output neurons have a linear

function.

3.2 RBF network

The radial basis function (RBF) is similar in structure to the

MLP network. The distinctive feature between the per-

ceptron neutron and the radial neuron is the activation

function [56]. Radial neuron performs a radial change

function around the selected center, assuming nonzero

values only around this center. Thanks to this, radial net-

works are complementary to sigmoidal networks [57].

Since there is no mathematical model of multiphase

diffusion equations occurring during low-pressure nitrid-

ing, and the nature of functions describing these

Table 1 Materials used for nitriding in lower pressure research (wt%)

Material C (%) Mn (%) Si (%) Cr (%) Ni (%) Mo (%) Al (%) Mg (%) V (%) W (%) Ti (%)

EN 41CrAlMo7 (1.8509) 0.39 0.45 0.27 1.50 0.25 0.20 0.90 0.00 0.00 0.00 0.00

EN 42CrMo4 (1.7225) 0.42 0.55 0.27 1.05 0.30 0.20 0.00 0.00 0.00 0.00 0.00

50HS (1.5026) 0.5 0.45 1.00 1.05 0.40 0.00 0.00 0.00 0.00 0.00 0.00

PENTHOR 854 0.55 0.70 1.40 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S14 3.5 0.60 2.55 0.30 1.20 0.50 0.00 0.05 0.00 0.00 0.00

L11 2.8 1.00 2.20 1.08 0.50 0.65 0.00 0.00 0.00 0.00 0.00

XTB 3.05 1.25 1.95 0.55 0.40 0.00 0.00 0.00 0.00 0.75 0.23

Table 2 Parameters of nitriding processes in reduced pressure

Process no. Temperature (oC) Process organization

1 540 6A

2 540 6A/2D

3 540 8A/2D

4 540 4A/2D/4A

5 510 6A

6 560 6A/2D

7 560 4A/2D

8 560 2A/2D/2A

10 540 12A

11 560 9A

12 510 12A

A, saturation (ammonia dosing); D, annealing (no ammonia dosing,

nitrogen dosing). The number before the letter indicates the number

of hours per process
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dependencies was also not well-researched, this study has

investigated the suitability of both MLP and RBF

architectures.

4 ANN training algorithms

4.1 Algorithm of backpropagation method

The momentum backpropagation method (MBP) is a basic

method of training multilayer neural networks

[50, 58–61]. Although not being one of the fastest known

training algorithms, it has advantages that determine its

popularity. In this paper, it was used in an iterative way.

During the training process, a number of training sets

were presented and on the basis of the network response,

the weight values were corrected so that, ultimately, the

error made by the network was smaller than the value set

before. Correction of the network weight vector is based

on the minimization of the error measure function (SSE),

which has been defined as the sum of the squared dif-

ferences on the outputs of the network. The network

weights were modified using the rule of the fastest decline

according to the formulae:

e kð Þ
i nð Þ ¼ f xð Þ

¼ e Lð Þ
i nð Þ; k ¼ L
PNiþ1

m¼0 d
kþ1ð Þ
m nð Þ � d kþ1ð Þ

mi nð Þ; k ¼ 1 . . . L� 1

(

ð1Þ

e Lð Þ
i nð Þ ¼ d

Lð Þ
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Lð Þ
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d kð Þ
i nð Þ ¼ e kð Þ

i nð Þ � f 0 s
kð Þ
i nð Þ

� �
ð3Þ

w
kð Þ
ij nþ 1ð Þ ¼ w

kð Þ
ij nð Þ þ 2le kð Þ

i nð Þ � f 0 s
kð Þ
i nð Þ

� �
� x kð Þ

j nð Þ

þ a w
kð Þ
ij nð Þ � w

kð Þ
ij n� 1ð Þ

� �

ð4Þ

where e Lð Þ
i —error on the i-th network output, e kð Þ

i —error on

output of i-th neuron in the k layer, w
kð Þ
ij —ij weight value in

the k layer, s
kð Þ
i —activation function of i-th neuron in the k

layer, l—training coefficient, x
kð Þ
j —entry of the j-th neuron

into the k layer, d
Lð Þ
i —expected response on the i-th net-

work output, y
Lð Þ
i —the real answer on the i-th network

output, a 2 0; 1ð �—momentum coefficient.

4.2 Broyden–Fletcher–Goldfarb–Shanno’s
method

The Broyden–Fletcher–Goldfarb–Shanno’s (BFGS)

method uses Newton’s method [60], however, with some

modifications. Both methods are based on defining an error

gradient. Yet, the Newton’s method requires the calcula-

tion of Hessian matrix, while the BFGS method is based on

an approximation of Hessian matrix inverse rather than its

exact value. This is a great advantage in case of training

large networks since the calculating Hessian matrix is a

highly time-consuming operation. Training neural network

according to this method has been carried out according to

the formulae:

Vt ¼ Vt�1 þ 1 þ rtð ÞT
Vt�1r

t

stð ÞT
rt

 !
st stð ÞT

strt

� st rtð ÞT
Vt�1 þ Vt�1r

t stð ÞT

stð ÞT
rt

ð5Þ

where

rt ¼ rE wtð Þ � rE wt�1
� �

ð6Þ

st ¼ wt � wt�1 ð7Þ

wt ¼ wt�1 � gVtrE wt�1
� �

ð8Þ

The value of cross-entropy, in accordance with the

formulae (9) and (10), was taken as the error function in the

steel assessment networks.

bH ¼
XN

i¼1

pi � log
1

yi

� �

ð9Þ

y1 þ y2 þ � � � þ yN ¼ 1 ð10Þ

where pi—the actual probability of realization of the i-th

value, and yi—output values of the network.

5 Experiments

5.1 ANN for predicting the properties of nitrided
layers

Data for the training base were obtained from tests of

nitrided layers obtained after thermochemical treatment on

samples of structural steel and cast iron, the chemical

composition of which is summarized in the table (Table 1).

Standardized input values: structural steels chemical

composition (C, Mn, Si, Cr, Ni, Mo, Al, V, W, Ti) [%],

process temperature T [�C], and process segmentation

(times of two saturation segments A1 [h], A2 [h] and one

segment of annealing D1 [h]). For V, W, Ti data for

structural steels, no variability was observed and discarded

from further work. Data output left unchanged: surface

hardness H [HV], diffusion layer thickness ECD [lm], and

c0 phase thickness G [lm].

Patterns were randomly divided into training, testing

and validation sets: 70%—set of training patterns, 15%—
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set of test patterns, 15%—set of validating patterns. The set

of training patterns has been designed to train the network

directly and adjust the weights of the network accordingly.

At the same time as training, progress in training was

checked on the test set of the validation set, on the basis of

which the weights were not corrected. If the test error

began to rise after the initial period of decrease, the training

process termination was considered. Ultimately, the quality

of the trained network was assessed on the basis of its

response to input from the validation set that did not par-

ticipate in the training or testing process.

The separate neural networks or networks were devel-

oped using analytics software (Statistica, Tibco Software

Inc.) [62] to determine the value of the surface hardness,

the diffusion layer thickness and c0 phase thickness. In

order to find the optimal neural network for each of the

properties of nitrided layers, from 2000 up to 6000 ran-

domly generated MLP and RBF structured networks with

different activation functions have been trained. The fol-

lowing training algorithms were used: the backpropagation

method and BFGS algorithm. Parameters of training

method and quality for individual properties are presented

in the table (Table 3). Network quality is the linear cor-

relation coefficient between the values measured experi-

mentally and theoretical values (calculated using the

model) and its value is within the range [0,1]. In other

words, the closer the network quality to 1, the network

responses are closer to the expected values.

The input values for cast iron and structural steels have

been standardized alike. For data on Al and V, no vari-

ability was observed and thus they have been discarded

from further work. The output data were left unchanged. In

order to find an optimal solution for each of the properties

of the nitrided layer, 2000–10,000 randomly generated

MLP and RBF networks with different activation functions

have been trained. The following training algorithms were

used: backpropagation of errors and BFGS algorithm.

Parameters of training method and quality for individual

properties have been presented in the table (Table 4).

5.2 Neural networks for determining process
segmentation based on the technological
requirements of the surface layer

The same experimental data were used to construct the

network determining the process segmentation based on

the expected technological properties of the top layer. The

input values were all the data taken from the collections,

except for the process time data, which in this case were

the output data. The values of all input data have been

standardized. The output data were left unchanged. The

neural networks were created to determine: the values of

the time of the segment first nitriding, the time of the

segment annealing segment and the time of the segment

second nitriding. In order to find the optimal neural net-

work, 20,000 randomly MLP and RBF networks have been

generated. Subsequently, the best of them was chosen as a

quality criterion, adopting the quality indicators for train-

ing, test and validation sets. The training results for

structural steels and cast irons have been shown in the

tables (Tables 5, 6).

6 Results

The results (Table 7) show the training results of neural

networks for predicting surface hardness of structural steels

and cast iron after nitriding under reduced pressure.

Tables 8 and 9 show the results of network training to

predict the thickness of diffusion layers and the thickness

of c0 nitrides. The results of neural networks training in

order to determine process segmentation based on the

technological requirements of the top layer are presented in

Table 10.

Table 3 Neural networks parameters for surface hardness determination, diffusion layer thickness (a), thickness of nitrides phase (c0) in

construction steels

Nitrided layer

properties

Network

architecture

Training

quality

Testing

quality

Validation

quality

Training algorithm

(iterations)

Error

function

Hidden neurons

activation

Output neurons

activation

H MLP 11-9-1 0.9996 0.9979 0.8746 BFGS 82 SOS Tanh Linear

ECD MLP 11-4-

1A

0.9732 0.9885 0.9662 BFGS 41 SOS Exponential Logistic

MLP 11-4-

1B

0.9707 0.9862 0.9739 BFGS 45 SOS Exponential Logistic

G MLP 11-12-1 0.9575 0.9916 0.8945 BFGS 21 SOS Tanh Linear

MLP 11-4-1 0.9569 0.9981 0.9982 BFGS 29 SOS Tanh Tanh

H, surface hardness; ECD, diffusion layer thickness; G, thickness of nitrides phase; SOS, the sum of least squares; tanh, tangent curve
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7 Discussion

Based on research data from EN 41CrAlMo7 (1.8509), EN

42CrMo4 (1.7225), 50HS (1.5026) and PENTHOR 854

steels, the neural network calculation algorithms have been

developed to predict the nitriding processes in structural

steels. The training results of these networks are charac-

terized by high training rates (training, testing and valida-

tion quality in Tables 3, 4), which gives the high

probability of the nontraining outcomes to be appropriate.

The validation quality of networks for constructional steels

(Table 3) was lower than training and testing quality.

According to the literature [60, 61, 63], it is the normal

situation because during validation the networks gave

answers for patterns which they never trained. Therefore, a

larger validation error is not a disturbing phenomenon. This

situation was not observed for networks to the cast iron

nitriding predicting (Table 4). Based on data from the

research on the S14, L11, XTB cast irons, the calculation

algorithms based on neutron networks have been developed

to predict the nitriding processes in cast iron. The training

Table 4 Neural networks parameters for surface hardness determination, diffusion layer thickness (a), nitrides phase thickness (c0) in cast iron

NHitrided layer

properties

Network

architecture

Training

quality

Testing

quality

Validation

quality

Training algorithm

(iterations)

Error

function

Hidden neurons

activation

Output neurons

activation

H MLP 11-4-1 0.9993 0.9047 0.9998 BFGS 65 SOS Tanh Tanh

ECD MLP 11-4-1 0.9792 1.0000 1.0000 BFGS 32 SOS Tanh Linear

G MLP 11-4-1 0.7810 0.9842 1.0000 BFGS 9 SOS Logistic Exponential

H, surface hardness; ECD, diffusion layer thickness; G, thickness of nitrides phase; SOS, the sum of least squares; tanh, tangent curve

Table 5 Parameters of the neural networks in order to determine nitride segmentation in construction steels

Network name Training

quality

Testing quality Validation

quality

Training

algorithm

(iterations)

Error function Hidden neurons

activation

Output neurons

activation

MLP 11-4-3A 0.9092 0.6260 0.6484 BFGS 84 SOS Logistic Linear

MLP 11-4-3B 0.8944 0.6232 0.6516 BFGS 56 SOS Logistic Linear

Table 6 Parameters of the neural networks in order to determine nitride segmentation in cast irons

Network

name

Training

quality

Testing

quality

Validation

quality

Training

algorithm

(iterations)

Error

function

Hidden neurons

activation

Output neurons

activation

MLP 11-4-3 0.9028 0.6228 1.0000 BFGS 102 SOS Logistic Tanh

MLP 11-8-3 0.8812 0.6220 1.0000 BFGS 1050 SOS Tanh Logistic

Table 7 Table of surface hardness (H) prediction after low-pressure

nitriding for selected cases of structural steels and cast irons

Layer thickness H (HV)

Construction steels Cast irons

Real ANN Abs. difference Real ANN Abs. difference

1 996 998 2 345.6 344.0 1.6

2 439 442 3 375.6 378.2 2.6

3 549 545 3 344.4 342.6 1.8

4 695 696 1 338.8 338.5 0.3

5 436 437 1 300.2 301.0 0.8

6 320 320 0 330.0 327.0 3.0

7 821 806 15 398.0 398.4 0.4

8 838 844 5 384.2 392.8 8.6

9 506 607 101 372.4 372.8 0.4

10 683 684 0 399.8 409.9 10.1
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results of these networks were high. The relative errors for

hardness predictions were 2% (constructional steels) and

1% (cast iron) and, respectively, 1% and 4% for predictions

of effective layer thicknesses. In the case of networks with

a c0 phase thickness, the training parameters were less

precise than in the case of the previous ones (15% and

40%).

Predictions obtained from the MLP artificial neural

network model were subjected to a sensitivity analysis. The

resolution of the control system for temperature was ±

1 �C, and the time of segment was ± 1 min. The global

sensitivity analysis carried out in the Statistica [62] pro-

gram showed that the most important parameters of the

model are the temperature (T) and the time of the segment

of endurance (segment of annealing) (D1). The effect of

the altered values on the accuracy of the prediction of the

hardness and the effective case depth were examined. The

maximum percentage error on the validation set was found

to be 7.2% and 5.5%, respectively, whereas the maximum

percentage error on validation set using the actual (not

altered) values was 7.3% and 5.6%. No significant varia-

tion was found.

In addition, the algorithms determining the segmenta-

tion of the nitriding process based on the surface layer

guidelines have been developed parallel. The training

results of these networks are clearly weaker than the net-

works destined for determining individual properties. The

reason for this is probably insufficient network training.

With the same number of patterns that were used in

training of the single-output networks, three-output net-

works were trained here (the network generated times of

three segments of the process), which probably impeded

the development of the dependence between the input and

output values. In the case of training sets (based on

experimental data), it is possible to significantly improve

the quality of their prediction by rounding the segments’

forecast periods into full hours. However, this step has not

been implemented, since in the authors’ estimation this will

cause a significant deterioration of the network predictions

for nontraining cases. Similar results were obtained by

Table 8 Predictive table of

diffusion layer (ECD) after low-

pressure nitriding for selected

cases of structural steels and

cast irons

Diffusion layer thickness (a) ECD (lm)

Construction steels Cast irons

Real ANN1 ANN2 ANN group Abs. difference Real ANN Abs. difference

1 140 156 167 161 21 45.0 44.8 0.2

2 100 72 75 74 26 40.0 40.1 0.1

3 70 78 86 82 12 50.0 42.8 7.2

4 90 92 92 92 2 45.0 47.0 2.0

5 90 96 94 95 5 50.0 50.5 0.5

6 80 85 82 84 4 55.0 56.6 1.6

7 170 166 171 168 2 65.0 61.4 3.6

8 220 184 181 182 38 40.0 41.3 1.3

9 110 53 68 60 50 50.0 49.9 0.1

10 170 172 173 173 3 40.0 37.9 2.1

Table 9 Table of thickness

predictions in c0 phase (G) after

low-pressure nitriding for

structural steels in selected

cases

Nitride phase thickness (c0) G (lm)

Construction steels Cast irons

Real ANN1 ANN2 ANN group Abs. difference Real ANN Abs. difference

1 8.0 8.0 7.2 7.6 0.4 3.4 3.0 0.4

2 1.0 2.3 1.0 1.6 0.6 0.6 0.5 0.1

3 3.0 3.3 2.5 2.9 0.1 0.6 0.5 0.1

4 4.0 3.4 3.4 3.4 0.6 1.7 4.0 2.3

5 0.5 1.6 2.0 1.8 1.3 0.6 0.5 0.1

6 2.0 0.6 1.4 1.0 1.0 3.1 5.0 1.9

7 8.0 7.7 7.8 7.7 0.3 3.9 3.0 0.9

8 10.0 10.8 10.3 10.6 0.6 2.3 2.0 0.3

9 1.0 2.7 2.6 2.6 1.6 2.5 4.0 1.5

10 10.0 9.6 9.3 9.5 0.5 0.5 0.5 0.0
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Afzaal [64] who investigated the relationship between

hardness and thickness of the nitrided layer and process

parameters for gas nitriding. He suggests that the results of

reverse modeling have high percentage error because the

data points used for training are not unique.

In the literature, no reports were found on modeling of

nitriding under reduced pressure. Genel [37] used a back-

propagation (BP) algorithm to train a multilayer feed-forward,

a neural network for modeling of complex linear and non-

linear relationships between ion nitrided case depth with

chromium content as well as process time. Since the nature of

the ion nitriding process is different from nitriding under

reduced pressure, a qualitative comparison of both models is

difficult. Zhecheva et al. [38] confirmed that ANN models can

be created and used to correlate between processing param-

eters of nitriding and hardness of titanium alloys as well as it

can also be used to optimize the processing parameters and

alloy composition in order to achieve desired properties for

various applications, but their experiments are based on gas

nitriding what makes comparison impossible.

Guo et al. [65] used a BP algorithm to training model to

modeling the correlation between processing parameters and

properties of maraging steels. He reports a general observa-

tion that the training time increases dramatically when the

number of outputs increases. This is convergent with obser-

vations taken during the creation of the above models.

Table 10 Table of nitriding segmentation prediction for selected cases of construction steels and cast irons

Construction steels Cast irons

Real ANN1 ANN2 ANN group Abs. difference Real ANN1 ANN2 ANN group Abs. difference

First saturation segment time A1 (h)

1 6.0 9.2 9.2 9.2 3.2 6.0 9.0 4.0 6.5 0.5

2 6.0 6.8 6.2 6.5 0.5 6.0 6.0 6.0 6.0 0.0

3 8.0 6.8 6.2 6.5 1.5 8.0 8.0 8.0 8.0 0.0

4 4.0 3.7 2.9 3.3 0.7 4.0 4.0 4.0 4.0 0.0

5 6.0 5.3 6.2 5.8 0.2 6.0 6.0 6.0 6.0 0.0

6 2.0 5.4 6.2 5.8 3.8 12.0 9.0 12.0 10.5 1.5

7 12.0 9.2 9.2 9.2 2.8 9.0 9.0 4.0 6.5 2.5

8 9.0 9.2 9.2 9.2 0.2 12.0 9.0 12.0 10.5 1.5

9 12.0 48.5 103.0 75.7 63.7 6.0 9.0 4.0 6.5 0.5

10 6.0 9.3 9.2 9.3 3.3 6.0 6.0 4.0 5.0 1.0

Annealing segment time D1 (h)

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 2.0 1.7 1.9 1.8 0.2 2.0 2.0 2.0 2.0 0.0

3 2.0 1.7 1.9 1.8 0.2 2.0 2.0 2.0 2.0 0.0

4 2.0 2.2 2.5 2.4 0.4 2.0 2.0 2.0 2.0 0.0

5 2.0 2.2 1.9 2.0 0.0 2.0 2.0 2.0 2.0 0.0

6 2.0 2.2 1.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 - 10.2 - 22.6 - 16.4 16.4 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 0.0

Second saturation segment time A2 (h)

1 0.0 - 0.1 - 0.1 - 0.1 0.1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.5 0.3 0.3 0.0 0.0 0.0 0.0 0.0

3 0.0 0.1 0.5 0.3 0.3 0.0 0.0 0.0 0.0 0.0

4 4.0 3.7 3.3 3.5 0.5 4.0 4.0 4.0 4.0 0.0

5 0.0 0.9 0.5 0.7 0.7 0.0 0.0 0.0 0.0 0.0

6 2.0 0.9 0.5 0.7 1.3 0.0 0.0 0.0 0.0 0.0

7 0.0 - 0.2 - 0.1 - 0.1 0.1 0.0 0.0 0.0 0.0 0.0

8 0.0 - 0.2 - 0.1 - 0.1 0.1 0.0 0.0 0.0 0.0 0.0

9 0.0 - 23.7 - 52.5 - 38.1 38.1 0.0 0.0 0.0 0.0 0.0

10 0.0 - 0.1 - 0.1 - 0.1 0.1 0.0 0.0 0.0 0.0 0.0
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Therefore, setting up a series of ANN models where each

model deals with only one output value significantly simpli-

fies and speeds up the training of the ANN model.

8 Conclusion

The neural network model and its training procedures based

on data mining in the application to the monitoring and

control of low-pressure nitriding process for creation of low-

frictional coatings on gray irons and steels used for the piston

rings manufacturing were studied. On the basis of the real

low-pressure nitriding processes of structural, tool and cast

steels, a training base was built, and a model of the nitriding

process under reduced pressure was created. The properties of

nitrided layers after nitriding processes were analyzed: sur-

face hardness, diffusion layer thickness as well as c0 phase

thickness depending on the material and chemical composi-

tion and parameters of the process: temperature and process

segmentation. The hypothesis was confirmed that it is possi-

ble to construct an industrial application of low-pressure

nitriding based on artificial neural networks, and in particular

to investigate the suitability of specific neural network

architectures: multilayer perceptron networks (MLP) and

radial baseline (RBF) based networks for multiphase diffusion

kinetics in low-pressure nitriding. In addition, it has been

shown that constructing networks that determine single end

properties of a material (constructing specialized networks)

gives more accurate forecasting results than the use of general

networks that simultaneously predict several material fea-

tures. Additionally, it has been demonstrated that the per-

ceptrons with nonlinear sigmoidal activation functions (MLP)

map better the mathematical relationships of kinetic multi-

phase diffusion than radial neurons with Gaussian activation

functions (RBF).
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