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Abstract Two-dimensional flow of Casson fluid toward an

exponentially stretched surface in view of Cattaneo–

Christove flux theory is discoursed in current communi-

cation. Flow pattern within boundary layer under the

effectiveness of magnetic field is also contemplated in the

communication. Non-dimensionalized governing expres-

sions are attained through transformation procedure. To

anticipate the fascinating features of present work, solution

of resulted nonlinear differential system is computed with

the collaborated help of shooting scheme and Runge–Kutta

method. The influence of involved variables on velocity

and temperature fields is scrutinized. Contribution of

thermal relaxation is explicitly pointed out. Evaluation of

convective heat transfer and friction factor in the fluid flow

is visualized through graphs and tables. Additionally, the

assurance of present work is affirmed by developing

comparison with previous findings in the literature which

sets a trade mark for the implementation of numerical

approach. It is inferred from the thorough examination of

the analysis that present formulation reduces to classical

Fourier’s problem by considering K ¼ 0. Furthermore,

decreasing pattern in temperature distribution is depicted in

the presence of Cattaneo–Christove flux law as compared

to heat transfer due to the Fourier’s law.

Keywords Cattaneo–Christove heat flux model �
Casson fluid model � Exponentially stretching sheet �
Shooting method

1 Introduction

Recent advancement in modern technology has fascinated

the attention of researchers toward the study of heat

transfer phenomenons. Therefore, the investigation of heat

transfer characteristics in various imperative situations has

gained admirable physical significance due to their valu-

able utility in energy production, nuclear reactor cooling,

biomedical applications, etc. Fourier did inaugural work by

presenting parabolic equations for the description of tem-

perature of flow field and has draw back that these para-

bolic equations describes the small disturbance throughout

the medium. Therefore, many researchers tried their best to

amend the classical Fourier’s law. Among these research-

ers, Cattaneo [1] successfully modified the law by

encompassing material invariant derivative. In their

tremendous theoretic exploration, they introduced thermal

relaxation time which makes the nature of temperature

equation to be hyperbolic and more realistic in describing

the temperature of fluid. Tibullo and Zampoli [2] described

the significance of such type of heat transportation phe-

nomenon. They addressed that such transportation has

remarkable physical prominence in many processes

expanding its span from nanotechnology to the modeling of

skin burn injury. Christov [3] replaced time derivative in

Maxwell–Cattaneo law by Oldryod upper convected

derivative. Convective heat transport by considering

energy equation of Cattaneo type was evaluated by

Straughan [4]. Straughan [5] presented the impact of

velocity slip on coupled flow for newly proposed Cattaneo

heat flux equation. They reported that thermal relaxation

time reduces the temperature of fluid flow.

The flow transit problems arisen due to stretching sheets

have superficial role in daily life phenomenons and utilized

pervasively in various engineering processes. Specifically,

& S. Bilal

smbilal@math.qau.edu.pk

1 Department of Mathematics, Quaid-i-Azam University,

Islamabad 44000, Pakistan

123

Neural Comput & Applic (2018) 30:2749–2758

https://doi.org/10.1007/s00521-016-2832-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2832-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2832-4&amp;domain=pdf
https://doi.org/10.1007/s00521-016-2832-4


these are useful in synthetic architect such as paper pro-

duction, aerodynamic extrusion of sheets, drawing of

plastics, cooling of metallic sheets in baths and many

others. Currently, researchers have anticipated through

several experimental studies that desired output from

industrial objects can be attained by varying velocity in

different ways. After deep surveys, they came up with the

decision that velocity may be sinusoidal, exponential or

nonlinear. In the process of annealing and thinning of

copper wires, we achieve excellent quality of product by

considering exponential velocity distributions. Thus, the

analyst and engineers at present have paid remarkable

attention toward the mechanics of boundary layer flow with

exponential velocity distribution. For this purpose, several

thought provoking studies have conducted by researchers,

but for sake of brevity we have mentioned few. Magyari

and Keller [6] did phenomenal work by scrutinizing

thermo-physical aspects of viscous fluid over an expo-

nentially stretched surface. They adopted numerical and

analytical procedure to interpret the exponential variation

in temperature distribution. Bhattacharrya and Vejrav-

elu [7] addressed the steady boundary layer flow of viscous

fluid with reactive mass transfer over an exponentially

varying stretched surface. They conducted computational

analysis of problem by employing Rk-5 method. He con-

cluded that mass transfer rate increments for mounting

values of stretching ratio parameter. Elbashbeshy et al. [8]

probed numerical solution for description of heat and flow

pattern in an ambient medium driven by an exponential

surface. Mukhopaday [9] considered thermally stratified

flow of Newtonian fluid toward an exponential surface. He

explored that heat transfer rate increases in thermally

stratified medium. Bidin [10] incorporated radiative heat

flux in Newtonian fluid induced by exponentially variable

sheet. They extracted results from their investigation that

radiation causes inclination in thermal transfer of fluid and

Prandtl number tends to decline the temperature of flow.

El-Aziz [11] studied the contribution of buoyancy forces in

attendance of dissipative effects on micropolar flow over

an exponentially stretching configuration. Ishak et al. [12]

reconnoitered the influence of magnetic and radiation

effects on viscous flow over an exponential stretching

sheet. He recommended that coefficient of heat transfer

tends to decrease for increasing values of radiation and

magnetic parameter.

It is noted that investigators have shown remarkable

interest toward the analysis of non-Newtonian mechanics

because of their eminence in daily life processes, chemical

processes and industrial processes. Due to such exemplary

importance, non-Newtonian fluids are divided in to shear

thinning, shear thickening and viscoelastic fluids. Among

these, non-Newtonian fluids describing the characteristics

of viscoelastic fluids grade two, grade three and power law

fluid models are proposed. However, Casson fluid model is

one of the fittest model which describes the properties of

viscoelastic fluid model in more realistic way than other

models. Due to overwhelming valuability of viscoelastic

materials, researchers have proposed numerous studies

regarding Casson fluid model. Paramanik [13] inspected

the behavior of non-Newtonian fluids by considering

Casson fluid along with effects of radiation. During his

investigation, he assimilated the effects of suction and

blowing on fluid flow. He perceived during the study that

Casson fluid enhances the temperature of fluid flow. He

also noticed that thermal radiation increases the thermal

diffusivity of fluid which enhances the temperature of fluid

flow. The inaugural work on this rheological model was

done by Casson [14]. He developed flow equation for

pigment oil-suspensions of printing ink. Nadeem et al. [15]

investigated Casson fluid flow over exponentially shrinking

sheet. They found that by increasing Casson fluid param-

eter velocity distribution of fluid flow increases and similar

behavior is observed for increasing value of shrinking

parameter. Animasuan et al. [16] parametrically studied

the influence of variable thermo-physical properties on

Casson fluid over exponentially stretching sheet. They

revealed through their investigation that variable plastic

dynamic viscosity parameter of Casson fluid corresponds to

an increase in the velocity profiles and decline behavior is

analyzed in temperature throughout the boundary layer.

Nadeem et al. [17] probed solution of Casson fluid flow

over three-dimensional stretching surface. They showed

through their study that Casson fluid parameter suppresses

velocity in both lateral directions. Malik et al. [18] inves-

tigated hyperbolic tangent fluid flow over stretching

cylinder in the presence of magnetic field. They imple-

mented Keller box scheme to attain desired results.

Nadeem et al. [19] inspected the effects of magnetic field

on Casson fluid flow over an exponentially shrinking sur-

face. They computed numerical solution of the problem by

using shooting method. They found that magnitude of

velocity and boundary layer thickness reduces for

increasing values of Casson fluid parameter. Blood flow

analysis of Prandtl fluid through tapered stenosed arteries

surrounded by permeable walls was discussed by Ellahi

et al. [20]. They computed approximate solution by

implementing perturbation technique and sketched stream

lines to interpret the flow behavior. Effects of Hall and ion

slip on magnetohydrodynamic flow of Jeffery fluid

enclosed by non-uniform rectangular-shaped duct were

probed by Ellahi et al. [21]. They performed analysis on

peristaltic transport under the constraints of low magnetic

Reynold’s number and long wavelength assumptions. The

steady boundary layer flow of Burger fluid near stagnation

point toward linear stretching surface was anticipated by

Hayat et al. [22]. The influential role of Newtonian heating
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on stagnant flow of Burger fluid was done by Hayat

et al. [23]. In order to interpret the pattern of fluid flow,

analytical solution was presented via Homotopy analysis

method. Hayat et al. [24] conducted comparative study to

explore the effects of heat generation/absorption and

Newtonian heating on Powell Eyring fluid. Alsaedi

et al. [25] carried out analysis to investigate mass transfer

in Burger fluid flow in the attendance of first-order chem-

ical reaction. They instituted that retardation time in Bur-

ger’s fluid enhances the magnitude of flow. Thermo-

physical characteristics of Burger fluid in the presence of

Joule heating and magnetic field was manifested by Awais

et al. [26].

Electrically conducting flows, which respond to impo-

sition of magnetic fields, have received relatively signifi-

cant considerations. The study of magnetohydrodynamic

(MHD) flow is of valuable interest in modern metallurgical

and metal working processes. Some important applications

include MHD accelerators, power generators systems and

cooling of nuclear reactors. Malik et al. [27] studied MHD

flow of tangent hyperbolic fluid over stretching cylinder.

They addressed that the velocity profile and skin friction is

decreasing function of Hartmann number. Akbar et al. [28]

investigated Eyring Powell fluid flow over stretching sheet

with magnetic field effects. They reported that Eyring

Powell parameter decreases for increasing values of

intensity of magnetic parameter. Mabood et al. [29]

inspected nanofluid flow over stretching sheet with mag-

netic effects. They explored through their inspection that

velocity suppresses and temperature enhances for increas-

ing values of magnetic parameter. Salahuddin et al. [30]

manipulated their investigation to study the impact of

magnetic field and variable thermal conductivity on tangent

hyperbolic fluid flow with exponentially varying viscosity.

They found that for increasing values of magnetic param-

eter, skin friction increases and velocity of fluid flow

decreases. Malik et al. [31] examined numerical solution of

MHD stagnation point flow of Williamson fluid. During

their exploration, they instituted that Weissenberg number

We and magnetic parameter M cause declination in fluid

velocity. On the one hand, the mentioned parameters tend

to increase the thermal transport. Malik et al. [32] expli-

cated their findings on mixed convection flow of MHD

Eyring Powell fluid over a stretching sheet. They explored

that velocity profile enhances by increasing curvature

parameter and fluid parameter whereas it decays for

increasing value of magnetic parameter. Haq et al. [33]

anticipated the influence of magnetic field on stagnant

boundary layer flow of viscous nanofluid in the attendance

of thermal radiation and slip effects. Numerical solution of

bionic peristaltic flow of pseudoplastic fluid enclosed by

asymmetric channel was addressed by Khan et al. [34].

Zeeshan et al. [35] illuminated the effects of magnetic

dipole on the flow of ferromagnetic fluid toward stretching

surface. They formulated momentum and energy expres-

sions involving the role of ferromagnetic particles. After-

ward, they attained numerical solution of the constructed

problem to investigate the effects of involved parameters.

Rashidi et al. [36] worked on the impact of transversely

applied magnetic field on two-dimensional fluid flow. They

considered diamond-shaped obstacle to investigate heat

transfer characteristics in the fluid domain. They estab-

lished that effects of transverse magnetic field are more

significant as to the application of streamwise magnetic

field. Enhancement in heat and mass transfer features of

peristaltic flow with the inclusion of carbon nanoparticles

under the effects of magnetic field was elucidated by Akbar

et al. [37]. They measured increasing trend in current

density for mounting values of magnetic Reynold’s num-

ber. Collaborated effects of ferrohydrodynamic and mag-

netohydrodynamic fields on nanofluid surrounded by vessel

were elaborated by Akbar et al. [38]. They adopted

Boltzmann procedure to highlight the effect of pertinent

parameters on flow field. Their attained results show that

magnetic field considerably decreases the velocity, whereas

enhances the skin friction factor. Kandelousi and

Ellahi [39] evaluated peristaltic flow with the implication

four different types of nanoparticles. They concluded that

mass flux in the fluid flow escalates by utilizing various

natured nanoparticles. Nadeem et al. [40] studied mass

transport in three-dimensional water-based nanofluid dri-

ven by exponentially stretched surface and adopted

numerical procedure to depict the variation in flow fields

within related boundary layers. Nadeem et al. [41]

addressed boundary layer flow of viscous fluid due to

unsteady shrinking surface. Adomian method was utilized

to obtain the solution of requisite differential equations.

The purpose of present study is to explore the results for

Casson fluid flow over exponentially stretching sheet with

Cattaneo–Christov heat flux model. During the investigation,

focus is made on modified energy equation proposed by Cat-

taneo which is modified form of Fourier’s law of heat con-

duction. Effects of pertinent parameters involved in energy

equation including fluid relaxation time are also presented

graphically andnumerically.To thebestofourknowledge, this

is totally new examination because no one has considered

Cattaneo fluxmodelwith Casson fluid. In this article, behavior

of viscoelastic fluidmodelwith thermal relaxation time effects

are deliberated through graphs and tables.

2 Mathematical formulation

Consider two-dimensional steady incompressible boundary

layer flow of Casson fluid over a exponentially stretching

sheet. The fluid flow is confined to y[ 0: Two equal forces
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are applied along x-axis, so that wall is stretched keeping

origin fixed as shown in Fig. 1.

The rheological equation for Casson fluid problem is as

follows

sij ¼ 2 lb þ
py
ffiffiffiffiffiffi

2p
p

� �

eij p[ pc; ð1Þ

sij ¼ 2 lb þ
py
ffiffiffiffiffiffiffi

2pc
p

� �

eij p\pc; ð2Þ

where p ¼ eijeij and eij are the (i, j)th component of defor-

mation rate, p is product of component of deformation with

itself, pc is critical value of this product based on the non-

Newtonian model, lb is dynamic viscosity of the non-New-

tonianfluidmodel and py is yield stress of fluid flow.The sheet

is stretched in its own plane with velocity UwðxÞ ¼ Uoe
x
L and

variable surface temperature of the form Tw ¼ T1 þ Toe
Ax
2L;

where To denotes the heating/cooling reference temperature.

HereUo is constant and L is reference length. It is important to

mention that exponential velocity at wall is Uoe
x
L is valid for

x � L. It is found that when x� L the effect of exponential

velocity on wall is shy rocket.

After utilizing boundary layer approximations continu-

ity, momentum and energy equations are described as

follows

ou

ox
þ ov

oy
¼ 0; ð3Þ

u
ou

ox
þ v

ou

oy
¼ m 1þ 1

b

� �

o2u

oy2
� rB2

q
u; ð4Þ

qcp u
oT

ox
þ v

oT

oy

� �

¼ �r � q; ð5Þ

where u and v are velocity components along x- and y-

directions, m is kinematic viscosity, b ¼ lb
ffiffiffiffiffi

2pc
p

py
is Casson

fluid parameter, T is temperature of local fluid and q is heat

flux satisfies relation [5].

qþ k
oq

ot
þ V � rq� q � rV þ ðr � VÞ � q

� �

¼ �krT ; ð6Þ

in which k is relaxation time for heat flux, V is velocity

vector, k is thermal conductivity and defined as the prop-

erty of a material to conduct heat. It is evaluated primarily

in terms of Fourier’s Law for heat conduction and mathe-

matically expressed as aqcp ¼ k; where a is thermal dif-

fusivity, q is density of fluid and cp is specific heat at

constant pressure. Eliminating q from Eqs. (4) and (5), we

get the relation,

u
oT

ox
þ v

oT

oy
þ k u

ou

ox
þ v

ou

oy

� �

oT

ox
þ u

ov

ox
þ v

ov

oy

� ��

oT

oy
þ u2

o2T

ox2
þ v2

o2T

oy2
þ 2uv

o2T

oxoy

�

¼ a
o2T

oy2
: ð7Þ

By introducing the following transformations.

g ¼
ffiffiffiffiffiffi

U0

2lm

r

e
x
2Ly;

u ¼ Uoe
x
Lf 0; v ¼ �

ffiffiffiffiffiffiffiffi

mU0

2l

r

e
x
2L f þ gf 0ð Þ;

hðgÞ ¼ T � T1
Tw � T1

: ð8Þ

Equation (3) is satisfied, whereas the Eqs. (4)–(7)

reduces to:

1þ 1

b

� �

f 000 þ ff 00 � 2f 02 �Mf 0 ¼ 0; ð9Þ

1

Pr
h00 þ fh0 � Af 0hþ K

2
Aff 00h� Að2þ AÞf 02h
�

þð1þ 2AÞff 0h0 � f 2h00
�

¼ 0; ð10Þ

under transformed boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1;

f 0ð1Þ ! 0; hð1Þ ! 0:
ð11Þ

Fig. 1 Physical interpretation

of geometry
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where K ¼ kUoe
x
L

L
is non-dimensional thermal relaxation

time parameter, Pr ¼ m
k
is the Prandtl number, M ¼ 2rB2L

qUo
is

magnetic parameter and A is temperature exponent

parameter. It is important to mention that K ¼ 0 corre-

sponds to classical Fourier law of heat conduction. If we

substitute K ¼ 0 in Eq. (10), we get the temperature

equation describing Fourier law of heat conduction.

The physical quantities skin friction coefficient and local

Nusselt number are defined as

Cf ¼
sw

q Uo exp
x
2L

	 
	 
2
; Nux ¼

xqw

k Tw � T1ð Þ ; ð12Þ

where sw is known as shear stress or skin friction along

stretching sheet

sw ¼ lb 1þ 1

b

� �

ou

oy

� �

y¼0

;

qw ¼ � k
oT

oy

� �

y¼0

: ð13Þ

qw is known as a heat flux from sheet.

The skin friction coefficient and local Nusselt number in

dimensionless form are

ffiffiffi

2
p

CfRe
1=2
x ¼ 1þ 1

b

� �

f 00ð0Þ;

NuxRe
�1=2
x ¼ � h0ð0Þ: ð14Þ

where Re1=2x ¼ UoL
m :

3 Numerical scheme

In the present analysis, boundary layer flow of Casson

fluid accompanied by heat transfer toward an exponen-

tially stretched surface has been developed. The

constructed nonlinear partial differential equations are

metamorphosed in to ordinary differential equations by

employing similarity transformations. Since the locally

similar coupled ordinary differential equations are

highly nonlinear so for better analysis of solution

shooting technique with Runge–Kutta method is

applied. The variations in model for different values of

influential parameter are also discussed. To solve any

differential equation by Runge–Kutta–Fehlberg method,

there are some elementary steps. Initial step is to

transform the nonlinear ordinary differential Eqs. (9)

and (10) along with boundary condition in Eq. (11) in to

the system of first-order equations by utilizing substi-

tutions ðy1; y2; y3; y4; y5Þ ¼ ðf ; f 0; f 00; h; h0Þ. This substi-

tution yields.

y1ð0Þ
y2ð0Þ
y2ð1Þ
y4ð0Þ
y4ð1Þ

¼

0

1

0

1

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð16Þ

Now, for better physical interpretation of problem, we

require five initial conditions corresponding to Eq. (15).

But Eq. (16) has only three initial conditions. Thus, for

further proceeding, we have to find missing conditions.

For this purpose, we select y3ð0Þ ¼ 1; y5ð0Þ ¼ �1 and

found that the approximation is excellent for physical

insight of problem. Now, solution process is started for

computation of fluid velocity and temperature. The pro-

cess of solution is terminated if absolute difference

between given and computed boundary conditions, i.e.,

y2ð1Þ and y4ð1Þ is less than tolerance error. But on the

other hand, if this difference is larger than tolerance error

the initial guesses are refined through Newton

method (Fig. 2).

y01
y02
y03
y04
y05

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

y2

y3

y03 ¼
2y22 � yð1Þy3 þMy2

1þ 1

b

� �

y5

�y1y5 þ Ay2y4 �
K
2

Ay1y3y4 � Að2þ AÞy22y4 þ ð1þ 2AÞy1y2y5
	 


� �

1

Pr
� K

2
x21

� �

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: ð15Þ
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4 Results and discussion

This section is presented to captivate the focus of

researchers by exploring the impact of adopted parameters

on transport equations. Firstly, the requisite partial differ-

ential equations under the frame work of Bousiqueness

approximation are transmuted into nonlinear ordinary dif-

ferential equation by implementing appropriate transfor-

mations. These developed equations are solved

computationally by applying shooting method. The influ-

ence of emerging dimensionless variables on momentum,

thermal fields, the skin friction factor and convective heat

transfer is exhibited in graphical manner. The accuracy of

present results is tested with existing literature and an

excellent agreement is found (Fig. 3).

Table 1 is presented to investigate the fluctuation in the

behavior of Nusselt number for increasing values of ther-

mal relaxation parameter K, exponential stretching

parameter A and Prandtl number Pr on Nusselt number. It

Fig. 2 Schematic diagram of shooting method

Fig. 3 Effects of A and K on hðgÞ
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is exhibited that Nusselt number increases for increasing

values of temperature exponent parameter A. The reason

behind the increment in the values of Nusselt number is

due to the fact that temperature exponent parameter A

increases the motion of fluid molecules which increases

thermal energy of fluid particles; as a consequence, heat

energy is transferred from the surface. It is also manifested

in the table that for increasing values of thermal relaxation

parameter K; coefficient of convective heat transfer

increases. It can be justified physically by the fact that

increments in the values of temperature exponent param-

eter A increase the slope of wall temperature, thus the heat

transfer from the surface increases. Effect of Prandtl

number Pr on heat transfer coefficient is also explored. It is

noticed that thermal boundary layer thickness reduces with

an increase in Prandtl number Pr.

Table 2 describes the influence of magnetic parameter

M and Casson fluid parameter b on skin friction coefficient.

It is instituted that increase in both parameters tends to

increase in skin friction coefficient for fluid flow. Magnetic

parameter M causes inclination in skin friction coefficient

due to the fact that it enhances the resistive force which

lessens the velocity of fluid flow; as a result, skin friction

forces become dominant. It is also observed that Casson

fluid parameter b suppresses the velocity of fluid. This

variation is true physically because by increasing Casson

parameter b yield stress falls and consequently momentum

boundary layer thickness increases.

Table 3 is presented for the accuracy of numerical results

for Nusselt number with previous literature survey presented

by Magyari and Keller [6], Bidin [10], El-Aziz [11], Ishak

et al. [12] and Paramanik [13]. Similar behavior is found for

increasing values of Prandtl number Pr on heat transfer

coefficient as displayed in previous literature survey. It is

also originated that along with similarity in behavior, results

are also in total agreement with each other.

Figure 3 displays the impact of temperature exponent

parameter A and thermal relaxation parameter K on tem-

perature profile. It is found that temperature distribution is

a decreasing function of both mentioned parameters. For

negative values of temperature exponent, reverse heat flow

is expected in vicinity of surface, whereas with an increase

in values of temperature exponent A wall slope of tem-

perature function increases sharply. Similarly, temperature

inversely relates to thermal relaxation parameter K, so it

declines the temperature of fluid flow. For K ¼ 0 the

Cattaneo–Christov law is reduced to Fourier law of heat

conduction.

Effects of Casson fluid parameter b on velocity profile

for M ¼ 0 (hydrodynamic case) and M 6¼ 0 (magnetohy-

drodynamic) are exhibited in Fig. 4. It is depicted through

the displayed figure that for increasing values of magnetic

parameter M and Casson fluid parameter b velocity of fluid

distribution decreases. This effect physically happens due

to the fact that transverse magnetic field induces drag in

terms of Lorentz force which opposes motion of fluid and

rate of transport is considerably reduced. Casson fluid

parameter b suppresses the velocity of fluid as demon-

strated. The cause for declination in velocity is due to the

reason that by enhancing Casson fluid parameter b yield

stresses falls due to fall down of yield stress fluid particle

after deformation cannot retain their original position; as a

result, velocity of fluid particle reduces. It is also worth

mentioning fact that present problem reduces to Newtonian

fluid flow for b ¼ 1:

Table 1 Numerical variation of

K, A and Pr on �h0ð0Þ K A Pr �h0ð0Þ

2 0.94411

0.5 0.5 3 1.28730

4 1.61625

0.2 0.94411

0.5 0.4 2 1.11950

0.6 1.2939

0.2 1.07150

0.4 0.5 0.2 1.16140

0.6 1.2540

Table 2 Numerical variation of

M and b on CfRe
1
2
x

M b � 1þ 1
b

� �

f 00ð0Þ

1 0.9451

2 0.5 1.1044

3 1.2464

0.5 0.9451

1 1 1.1523

2 1.3303

Table 3 Comparison of Nusselt number with variation in Pr

Pr Magyari and Keller [6] Bidin [10] El-Aziz [11] Ishak et al. [12] Pramanik [13] Present results

1 0.9458 0.9547 0.9458 0.9458 0.9547 0.9531

2 – 1.4147 – 1.4715 1.4714 1.4624

3 1.8961 1.8961 1.8961 1.8961 1.8961 1.8959

4 2.5001 – 2.5001 2.5001 2.5001 2.5001
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Figure 5 illustrates the sway of Prandtl number Pr and

temperature exponent parameter A on temperature profile

and it is found that by increasing Prandtl number Pr,

temperature of fluid flow decreases. The reason for the

behavior is that Prandtl number Pr signifies the ratio of

viscous diffusion to thermal diffusion, so by increasing

Prandtl number Pr viscous diffusion increases as result

temperature of fluid decreases.

Figure 6 shows the behavior of Prandtl number Pr,

temperature exponent parameter A and thermal relaxation

parameter K on Nusselt number. Nusselt number is found

to be increasing function of temperature exponent param-

eter A. As values of temperature exponent increase, more

kinetic energy is transferred to fluid molecules which

enhances the heat transfer rate. It is also explored that by

enhancing values of thermal relaxation parameter K heat

transfer rate increases. This inclination is caused due to the

statistics that as thermal relaxation K inversely relates to

temperature of fluid which results in decrease in thermal

boundary layer thickness. In response to this behavior, heat

transfer rate increases in order to maintain the temperature

of fluid flow. The impact of Prandtl number on heat transfer

coefficient is also depicted. It is found that coefficient of

convective heat transfer increases for increasing values of

Prandtl number Pr. It holds practically since Pr is the ratio

of momentum to thermal diffusivity. Thus, by increasing

Pr, momentum transport accelerates which enhances con-

vective heat transfer and declines conductive heat transfer.

5 Conclusions

A theoretical investigation of Casson fluid flow with Cat-

taneo–Christov heat flux model is executed. The resulting

partial differential equations were transformed to a set of

coupled ordinary differential equations and solved numer-

ically by utilizing shooting technique. Graphical and tab-

ular mode of computed results is presented to illustrate the

details of the heat transfer characteristics and their

dependence on physical parameters appearing in the for-

mulated problem.

The present work leads to the following specific

conclusion.

• Temperature profile decreases for increasing values of

thermal relaxation parameter K and temperature expo-

nent parameter A.

Fig. 4 Effects of b and M on f 0ðgÞ

Fig. 5 Effects of Pr and K on hðgÞ

Fig. 6 Effects of Pr and K on �h0ð0Þ
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• For higher values of Casson fluid parameter b and

magnetic parameter M, the velocity profile reduces.

• Wall temperature gradient decreases for increasing

values of thermal relaxation parameter K whereas

opposite behavior is depicted for temperature exponent

parameter A and Prandtl number Pr.

• Skin friction is higher for larger values of Casson

parameter b and magnetic parameter M.

• Coefficient of convective heat transfer depreciates in

the presence of Cattaneo–Christove heat law due to the

inclusion of thermal relaxation parameter.
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