Skip to main content

Advertisement

Log in

Predicting ocean surface currents using numerical weather prediction model and Kohonen neural network: a northern Adriatic study

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper documents a concept of ocean forecasting system for ocean surface currents based on self-organizing map (SOM) trained by high-resolution numerical weather prediction (NWP) model and high-frequency (HF) radar data. Wind and surface currents data from the northern Adriatic coastal area were used in a 6-month long training phase to obtain SOM patterns. Very high correlation between current and joined current and wind SOM patterns indicated the strong relationship between winds and currents and allowed for creation of a prediction system. Increasing SOM dimensions did not increase reliability of the forecasting system, being limited by the amount of the data used for training and achieving the lowest errors for 4 × 4 SOM matrix. As the HF radars and high-resolution NWP models are strongly expanding in coastal oceans, providing reliable and long-term datasets, the applicability of the proposed SOM-based forecasting system is expected to be high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abascal AJ, Castanedo S, Medina R, Losada IJ, Alvarez-Fanjul E (2009) Application of HF radar currents to oil spill modeling. Mar Pollut Bull 58:238–248

    Article  Google Scholar 

  2. Abascal AJ, Castanedo S, Fernandez V, Medina R (2012) Backtracking drifting objects using surface currents from high-frequency (HF) radar technology. Ocean Dyn 62:1073–1089

    Article  Google Scholar 

  3. Abbot J, Marohasy J (2012) Application of artificial neural networks to rainfall forecasting in Queensland. Aust Adv Atmos Sci 29(4):717–730

    Article  Google Scholar 

  4. Abdul-Rahman A, Pilouk M (2008) Spatial data modelling for 3D GIS. Springer, New York

    Google Scholar 

  5. Aladin International Team (1997) The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bull 46:317–324

    Google Scholar 

  6. Allard R, Rogers E, Martin P, Jensen T, Chu P, Campbell T, Dykes J, Smith T, Choi J, Gravois U (2014) The US Navy coupled ocean-wave prediction system. Oceanography 27:92–103

    Article  Google Scholar 

  7. Barreto GA (2007) Time series prediction with the self-organizing map: a review. Perspect Neural-Symb Integr 77:135–158

    Article  Google Scholar 

  8. Corchado JM, Lees B (2001) A hybrid case-based model for forecasting. Appl Artif Intell 15:105–127

    Article  Google Scholar 

  9. Corchado JM, Aiken J (2002) Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans Syst Man Cybern C 32(4):307–313

    Article  Google Scholar 

  10. Cosoli S, Mazzoldi A, Gačić M (2010) Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars. J Atmos Ocean Technol 27:908–919

    Article  Google Scholar 

  11. Cosoli S, Bolzon G, Mazzoldi A (2012) A real-time and offline quality control methodology for SeaSonde high-frequency radar currents. J Atmos Ocean Technol 29:1313–1328

    Article  Google Scholar 

  12. Cosoli S, Licer M, Vodopivec M, Malačič V (2013) Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J Geophys Res 118:6183–6200

    Article  Google Scholar 

  13. Crombie DD (1955) Doppler spectrum of sea echo at 13.56 Mc/s. Nature 175:681–682

    Article  Google Scholar 

  14. Dorffner G (1996) Neural networks for time series processing. Neural Netw World 6:447–468

    Google Scholar 

  15. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  16. Faraway J, Chatfield C (1998) Time series forecasting with neural networks: a comparative study using the airline data. J R Stat Soc Ser C (Appl Stat) 47:231–250

    Article  Google Scholar 

  17. Fdez-Riverola F, Corchado JM (2002) A hybrid CBR model for forecasting in complex domains. Adv Artif Intell 2527:101–110

    MATH  Google Scholar 

  18. Geleyn JF (1988) Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A:347–351

    Article  Google Scholar 

  19. Harlan J, Terrill E, Hazard L, Keen C, Barrick D, Whelan C, Howden S, Kohut J (2010) The integrated ocean observing system high-frequency radar network: status and local, regional, and national applications. Mar Technol Soc J 44:122–132

    Article  Google Scholar 

  20. Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull Am Meteorol Soc 79:1855–1870

    Article  Google Scholar 

  21. Ivatek-Šahdan S, Tudor M (2004) Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol Z 13:99–108

    Article  Google Scholar 

  22. Kalinić H, Mihanović H, Cosoli S, Vilibić I (2015) Sensitivity of self-organizing map surface current patterns to the use of radial versus Cartesian input vectors measured by high-frequency radars. Comput Geosci 84:29–36

    Article  Google Scholar 

  23. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  24. Krasnopolsky VM (2007) Neural network emulations for complex multidimensional geophysical mappings: applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev Geophys 45:3009

    Article  Google Scholar 

  25. Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6(2):238–242

    Article  Google Scholar 

  26. Liu Y, Weisberg RH, He R (2006) Sea surface temperature patterns on the West Florida shelf using growing hierarchical self-organizing maps. J Atmos Ocean Technol 23:325–338

    Article  Google Scholar 

  27. Liu Y, MacCready P, Hickey BM, Dever EP, Kosro PM, Banas NS (2009) Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. J Geophys Res 114:C00B04. doi:10.1029/2008JC004929

    Article  Google Scholar 

  28. Liu Y, Weisberg RH, Hu C, Zheng L (2011) Tracking the deepwater horizon oil spill: a modeling perspective. EOS Trans AGU 92(6):45

    Article  Google Scholar 

  29. Liu Y, Kerkering H, Weisberg R (2015) Coastal ocean observing systems, 1st edn. Academic Press, London

    Google Scholar 

  30. Lermusiaux PFJ (2006) Uncertainty estimation and prediction for interdisciplinary ocean dynamics. J Comput Phys 217:176–199

    Article  MathSciNet  MATH  Google Scholar 

  31. Martinetz TM, Berkovitsch SG, Schulten KJ (1993) ‘Neural-Gas’ network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4:558–569

    Article  Google Scholar 

  32. Mihanović H, Cosoli S, Vilibić I, Ivanković D, Dadić V, Gačić M (2011) Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J Geophys Res 116:C08033

    Google Scholar 

  33. van der Merwe R, Leen TK, Lu Z, Frolov S, Baptista AM (2007) Fast neural network surrogates for very high dimensional physics-based models in computational oceanography. Neural Netw 20:462–478

    Article  Google Scholar 

  34. Paduan JD, Washburn L (2013) High-frequency radar observations of ocean surface currents. Annu Rev Mar Sci 5:115–136

    Article  Google Scholar 

  35. Prtenjak MT, Grisogono B (2007) Sea/land breeze climatological characteristics along the northern Croatian Adriatic coast. Theor Appl Climatol 90:201–215

    Article  Google Scholar 

  36. Rako N, Vilibić I, Mihanović H (2013) Mapping underwater sound noise and assessing its sources by using a self-organizing maps method. J Acoust Soc Am 133:1368–1376

    Article  Google Scholar 

  37. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  38. Rozier D, Birol F, Cosme E, Brasseur R, Brankart JM, Verron J (2007) A reduced-order Kalman filter for data assimilation in physical oceanography. SIAM Rev 49:449–465

    Article  MathSciNet  MATH  Google Scholar 

  39. Saylor JH, Miller GS (1988) Observation of Ekman veering at the bottom of Lake Michigan. J Great Lakes Res 14(1):94–100

    Article  Google Scholar 

  40. Stanev EV, Ziemer F, Schulz-Stellenfleth J, Seemann J, Staneva J, Gurgel K-W (2014) Blending surface currents from HF radar observations and numerical modeling: tidal hindcasts and forecasts. J Atmos Ocean Technol 32(2):256–281

    Article  Google Scholar 

  41. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  42. Thomson RE, Emery WJ (2014) Data analysis methods in physical oceanography. Elsevier, Amsterdam

    Google Scholar 

  43. Tudor M, Ivatek-Šahdan S (2010) The case study of bura of 1st and 3rd February 2007. Meteorol Z 19:453–466

    Article  Google Scholar 

  44. Vilibić I, Mihanović H, Šepić J, Matijević S (2011) Using Self-Organising Maps to investigate long-term changes in deep Adriatic water patterns. Cont Shelf Res 31:695–711

    Article  Google Scholar 

  45. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133:97–178

    MATH  Google Scholar 

  46. Wahle K, Stanev EV (2011) Consistency and complementarity of different coastal ocean observations: a neural network-based analysis for the German Bight. Geophys Res Lett 38(10):1–4. doi:10.1029/2011GL047070

    Article  Google Scholar 

  47. Wehrens E, Buydens LMC (2007) Self- and super-organizing maps in R: the Kohonen package. J Stat Softw 21:1–19

    Article  Google Scholar 

  48. Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work on this paper was supported by the UKF project NEURAL (www.izor.hr/neural) and the IPA CBC project HAZADR (www.hazadr.eu). The SOM Toolbox version 2.0 for MATLAB was developed by E. Alhoniemi, J. Himberg, J. Parhankangas, and J. Vesanto at the Helsinki University of Technology, Finland, and is available at http://www.cis.hut.fi/projects/somtoolbox. Comments raised by anonymous reviewers are appreciated as greatly improving quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrvoje Kalinić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinić, H., Mihanović, H., Cosoli, S. et al. Predicting ocean surface currents using numerical weather prediction model and Kohonen neural network: a northern Adriatic study. Neural Comput & Applic 28 (Suppl 1), 611–620 (2017). https://doi.org/10.1007/s00521-016-2395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2395-4

Keywords

Navigation