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Abstract The paper is focused on improving the perfor-

mance of neuro-endocrine models with considering the

interaction of glands. Comparing to conventional neuro-

endocrine models, the concentration of hormone of one

gland is modulated by those of others, and the weights of

cells are modulated by the improved endocrine system. The

interacted equation among all glands is designed and the

parameters of them are chosen with theory analysis. Because

all the parameters of the model are constants when the system

reaches the equilibrium state, particle swarm optimization

algorithm is utilized to search the optimal parameters of the

model. The theory analysis indicates that the performance of

neuro-endocrine model is better than or at least equal to that

of corresponding artificial neural network. To indicate the

effectiveness of the proposed model, some time series from

different research fields, which are used in some literatures,

are tested with the proposed model, the results indicate that

the proposed model has some good performance.

Keywords Neuro-endocrine model � Neural network �
Particle swarm optimization (PSO) � Time series prediction

1 Introduction

A time series is a sequence of regularly sampled quantities

out of an observed system, a reliable time series prediction

method can help researchers model the system and forecast

its behaviors [1]. In recent years, many prediction methods

have been proposed to solve time series prediction prob-

lems. Among those methods, artificial neural networks

(ANNs) have played a very important role since they can

model both nonlinear and linear time series. The reviews of

ANNs for time series prediction before 2006 are introduced

in [2], and some other methods are added in this paper.

Different recurrent neural networks are presented for time

series prediction in [3]. Radial basis function (RBF) neural

networks are utilized for time series prediction in [4–6]. To

improve the global performance of neural network,

recently, neuron models with simple structure and lower

computational complexity are proposed for time series

prediction [7, 8], and some efficient results are derived. In

addition, simulating with interaction between neural sys-

tem and endocrine system in biology, neuro-endocrine

model is proposed recently to improve the performance of

artificial neural network. Neuro-endocrine model in terms

of biological inspiration is developed for simple seeking

problem [9], and the ideas of glands by introducing a ‘‘pool

and release’’ mechanism for the glands are extended in

[10]. Several potential advantages of a neuro-endocrine

controller over other modulation techniques intended for

ANNs are introduced in [11]. Neural, immune, and endo-

crine systems are introduced and the method of how to

modify weights of neural network by hormones is descri-

bed though the testing example is not given [12]. An

artificial neuro-endocrine kinematics network is designed

to aid avoiding obstacle in legged robot [13], and an

adaptive artificial neural-endocrine (AANE) system is

proposed to help robotic leaning online and exploiting

environmental data according to sensor data and actions

[14]. Many applications of neural-endocrine model are

almost centered in robotic fields, and there are few
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applications of neural-endocrine model for time series

prediction so far. In addition, the engineering model of

interaction between different glands is not been formed

though the phenomenon is common exist in biology. The

main motivation of the paper is to study the interaction

mechanism of different glands and how the neural network

is regulated by the improved neuro-endocrine model.

Moreover, how to improve the predictive accuracy of time

series is also studied.

The rest of the paper is arranged as follows. The basic

concept of time series prediction is described in Sect. 2.

In Sect. 3, the improved neuro-endocrine model based on

feed-forward neural network with considering the interac-

tions of different glands is introduced. LDWPSO for the

improved neuro-endocrine model is introduced in Sect. 4.

In Sect. 5, some applications and results are introduced.

Some conclusions and future works are described in

Sect. 6.

2 Time series prediction

A time series is a sequence of vectors, x(t), t = 0,1,…,

where t represents elapsed time. In general, x might be a

value which varies continuously with time t. In practice,

x will be a sample of discrete data points, equally spaced in

time, for a given physical system with a fixed sampling

rate. The sampling rate at which samples are taken dictates

the maximum resolution of the model, but it is not always

the case that model with the highest resolution has the best

predictive power [15].

Time series prediction by neural network is to forecast

future developments of the time series from value of x in

the current time or before. It can be described as finding a

appropriate function f : RN ! R to obtain an estimate of x

at time t ? k from the N time steps back from time t. It can

be described as follows.

xðt þ kÞ ¼ f ðxðtÞ; xðt � 1Þ; . . .; xðt � N þ 1Þ ð1Þ

Because time series prediction problem is complex, it is

often used to check the effectiveness of intelligent

algorithm.

3 The improved neuro-endocrine model (INEM)

In the neuro-endocrine model, the outputs of cells are

caused by outside stimuli. Neural cells express receptors

for cytokines, hormones, and neurotransmitters. The

endocrine system’s function is to secrete hormones into the

blood and other body fluids, with the aim to regulate the

behavior of neurons. There are a large number of compo-

nents that make up the system, including glands such as the

thyroid, the pineal, and the thymus. Hormones provide

feedback to the brain affect neural processing. The neruo-

endocrine model, without interaction between glands,

based on feed-forward neural network is shown in Fig. 1.

Figure 1 shows that the model is based on the traditional

feed-forward neural network, and the glands are responsi-

ble for producing the hormones according to certain stim-

uli. These hormones then modulate the behavior of the

neural network by modifying its weights. Each cell has a

sensitivity and a match to each hormone, the output of cell

is shown in Eqs. (2), (3) and (4).

u ¼
Xnx

i¼1

wixi

Yng

j¼1

CjSijMij � b ð2Þ

Mij ¼
1

1þ disði; jÞ ð3Þ

fo ¼
1

1þ e�u
ð4Þ

where, xi is the input for the cell, wi is the weight of ith

input for the cell, nx is the number of inputs, ng is the

number of glands in the system, Cj is the concentration of

hormone of jth gland, Sij is the sensitivity of the connection

of receptor i to hormone j, Mij is the match between the

receptor i and hormone j which is defined in Eq. (3), dis is

the distance measure function. b is the threshold of the cell.

For a model with N cell in hidden layer and one cell in

output layer, there are ng glands for hidden layer and no

glands for output layer. It is obviously in Eq. (2), the

interaction (which common existed in biology) between

glands is not considered.

Considering the interaction between different glands, an

improved neruo-endocrine model with feed-forward neural

network is presented. The structure of the model is shown

in Fig. 2.

Figure 2 shows that concentration of hormone of one

gland is modulated by those of others, and the next task is

to build an appropriate equation to represent the interac-

tions of all glands. The basic principle is that if a gland

releases more hormone it will affect the hormones of other

glands in large degree. The interaction coefficient of ith

gland caused by other glands can be shown in Eqs. (5)

and (6).

AFi ¼
K

1þ e�MOi
ð5Þ

MOi ¼
Yng

h¼1;h6¼i

Ch ð6Þ

where, AFi is the interaction coefficient of ith gland, Ch is

the concentration of hormone of hth gland. In general, the

interaction coefficient is less than or equal to one. In

addition, Eq. (2) shows that if the parameters such as Cj,
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Sij, Mij are equal to one, the performance of neuro-

endocrine model as shown in Fig. 1 will be the same as

general feed-forward neural network. This might be

explained as that the neuro-endocrine model at least has

the same performance as general feed-forward neural

network; if the parameter is appropriate, the performance

of neuro-endocrine model might better than that of general

feed-forward neural network. To ensure the basic

performance of the improved model, K is chosen as

shown in Eq. (7).

K ¼ 1:0

1þ eð�1Þ ¼ 0:7311 ð7Þ

With this analysis, the outputs of the cells in Fig. 2 are

displayed in Eqs. (8) and (9).

u ¼
Xnx

i¼1

wixi

Yng

j¼1

CjSijMijAFj � b ð8Þ

fo ¼
1

1þ e�u
ð9Þ

The parameters in Eqs. (8) and (9) are the same as in

Eqs. (2), (3), (4), and (5). The Eqs. (5) and (6) are fitted for

cells in hidden layer and output layer. In this model, the

interaction of other glands for jth gland is determined by

the multiply of concentration of hormone of other glands.

For a model with N cell in hidden layer and one cell in

output layer, there are ng glands for hidden layer and no

glands for output layer, the number of parameters is the

same as it in Fig. 1. For the operator in the improved model

is more complex than the model of Fig. 1, the computation

cost in one iteration is large than that in Fig. 1, but if the

prediction accuracy or the convergent velocity is better

than the models in Fig. 1, the improved model will be an

efficient method for time series prediction. The number of

glands for cells in hidden layer and output layer is

determined by trail and error method. Firstly, the number

of glands is one, then it will be increased gradually till the

accuracy of the system is not changed obviously.

4 LDWPSO for the improved neuro-endocrine model

4.1 LDWPSO algorithm

PSO is an evolutionary algorithm paradigm which imitates

the movement of birds or fish schooling looking for food. It

is reported by Kennedy and Eberhart in 1995 [16]. In the

method, each particle has a position variable (Pi) and a

velocity variable (Vi). Each particle adjusts its position and

velocity according to the best position in current generation

(gbest) and the position which it has been achieved so far

(pbesti). The updating equations of the velocity and posi-

tion of the particles are displayed as follows:

Viðt þ 1Þ ¼ wViðtÞ þ c1r1ðPpbestiðtÞ � PiðtÞÞ
þ c2r2ðPgbestðtÞ � PiðtÞÞ ð10Þ

Piðt þ 1Þ ¼ PiðtÞ þ Viðt þ 1Þ ð11Þ

In Eqs. (10) and (11), c1 and c2 are often set to be

constant value 2, r1 and r2 are two random uniformly

distributed values in domain [0,1]. w is inertia weight, large

inertial weight benefits for global search, a small one

facilitates local search. To improve the performance of

standard PSO, inertia weight decreasing linearly from a

relative large value to a small one is used [17]. It can be

shown in Eq. (12).

w ¼ wmax � gen � wmax � wmin

genmax

ð12Þ

where, wmax = 0.9, wmin = 0.4 are the maximum and

minimum values of inertia weight, respectively. gen is the

current generation, genmax is the maximum evolutionary

generation. The initial value of w is relative large. The

swarm has good global search ability in the beginning and

has good local search ability at the end of evolution.

Equations (10) and (11) show that the new positions of

particles are determined by the best solutions (gbest) of

current generation and the best positions (pbesti) which the

particles have been achieved so far. The pseudocode of

LDWPSO algorithm is shown in Fig. 3.

Where, vmax is the allowable maximum velocity of

particles, Pmax;Pmin are the high and low bounds of

positions.

4.2 Optimizing the parameters of the improved model

neuro-endocrine model with LDWPSO

1. Parameters representation

The representation of parameters for ith individual is dis-

played in Fig. 4. P with subscript suffix is the position of

individual and V with subscript suffix is the velocity of

individual.

2. The steps of algorithm

The basic steps of the algorithm are shown as follows.

Step 1. Set initial parameters c1 = c2 = 2, the maxi-

mum and minimum values of inertia weight wmax = 0.9,

wmin = 0.4, the maximum evolutionary generation genmax,

the allowable maximum velocity vmax, allowable maximum

position and minimum position Pmax;Pmin.

Step 2. Initialize the positions and velocities of the

particles randomly according to the structure of Fig. 4.

Step 3. Execute the operators as follows.
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1. Calculates inertia weight in current generation accord-

ing to Eq. (12).

2. Calculates the outputs of the models according to Eqs.

(8) and (9).

3. Calculates the mean squared error (MSE) between the

real samples and outputs of model of each particle

according to Eq. (13)

MSE ¼ 1

Nsample

XNsample

i¼1

ðOsðiÞ � ysðiÞÞ2 ð13Þ

where, MSE(i) is the mean squared error function,

Nsample is the number of samples, OsðiÞ and ysðiÞ are the

real output and output of current models.

4. Calculates the fitness value of all particles according to

Eq. (13).

fitðiÞ ¼ 1:0

MSE
ð14Þ

In Eq. (14), fit(i) is fitness value of ith particle.

5. Calculates the best position Pgbest and the best position

which the particle has been achieved so far.

6. Modify the position of all particles according to Eqs.

(10) and (11), all the position and velocity should

abide the follow rules.

if viðt þ 1Þ[ vmax then viðt þ 1Þ
¼ vmax; else if viðt þ 1Þ\� vmax then viðt þ 1Þ
¼ �vmax

ð15Þ

if xiðtþ 1Þ[ xmax then xiðtþ 1Þ
¼ xmax; else if xiðtþ 1Þ\xmin then xiðtþ 1Þ ¼ xmin

ð16Þ

7. If the maximum generation does not arrive, go to (1),

else the evolutionary processing is ended.

Step 4. Compare the optimal model and real model

according to testing samples.

5 Applications and results

5.1 Experiments setting

To test the effectiveness of the proposed models, 5 time

series come from different research fields are utilized to

evaluate the methods, and these series are used in some

other papers to evaluate the artificial model. These time

series are named Mackey–Glass (MG) [18], Box–Jenkins

(BJ) [12], Electroencephalogram (EEG) data [8], IBM

common stock closing prices [19], and Canadian Lynx data

[20]. Neural network model and neuro-endocrine model

without interaction of glands are also simulated, and the

results of some existed model are cited to compare to the

improved model. The training parameters of the models are

set as follows.

The maximum training generation is 5000, c1 = c2 = 2,

wmax = 0.9, wmin = 0.5, Pmax ¼ 30;Pmin ¼ �30, the pop-

ulation size is 20. The number of glands for cells in hidden

layer is 3 and it is 2 for cells in output layer . The other

parameters of the five series are given in their simulation

experiments. All the data sets are normalized between 0.1

and 0.9. The initial positions and velocities are generated

randomly between 0 and 30. All the experiments are sim-

ulated 30 runs with Matlab 7.1 on Pentium VI computer.

5.2 Mackey–glass time series (MG)

The chaotic Mackey–Glass differential delay equation is

recognized as a benchmark problem that has been used and

reported by a number of researchers for comparing the

learning and generalization ability of different models. The

series is a chaotic time series generated from the following

time-delay ordinary differential equation.

Initialize population 

 For gen=1:maxgen 

Calculate inertia weight accord to equation 16
For i=1:population size 

  If f( ix )<f( pbestix ) then pbestix = ix

min( )gbest neighborsp p=

end 

  for d=1:Dimension 

2211( 1) ( ) ( ( ) ( )) (.)( ( ) ( ))id id pbestid id gbestd idv t wv t cr x t x t c r x t x t+ = + − + −

if max( 1)idv t v+ >  then max( 1)idv t v+ =

else if max( 1)idv t v+ < −  then max( 1)idv t v+ = −

end 
( 1) ( ) ( 1)id id idx t x t v t+ = + +

if max( 1)idx t x+ >  then max( 1)idx t x+ =

else if min( 1)idx t x+ <  then min( 1)idx t x+ =

end 

end 

end 

Fig. 3 Pseudocode of LDWPSO algorithm

wP bP CP SP MP wV bV CV SV MVith individual: 

Fig. 4 The representation of parameters for ith individual
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dyðtÞ
dt
¼ ayðt � sÞ

1þ y10ðt � sÞ � byðtÞ ð17Þ

where, s = 17, a = 0.2, and b = 0.1. The goal of this

model is using the earlier points y(t), y(t-6), y(t-12),

y(t-18) to predict y(t ? 1). The training is performed on

480 samples, and the 500 samples are used for testing the

generalization ability of the model. The number of cells in

hidden layer is 3. This problem is often adopted as a

benchmark to evaluate the performance of artificial model

[21–24]. The best, the average, and the standard deviations

of MSEs for training and testing are shown in Table 1, the

average convergent times of CPU with a given threshold

within the bracket are also displayed in the table. RMSE is

usually used to compare the performance of intelligent

models in some literatures, and it is also used in this paper

for comparing the performance. The comparison results of

the prediction error of different models are shown in

Table 2. The prediction results of the improved model of

training and testing are displayed in Fig. 5.

Table 1 shows that the mean MSEs for training and

testing data of the improved neuro-endocrine model are

better than those of the other two methods. The two neuro-

endocrine models are all converged to the optimal solution,

and the mean time of CPU with ANN cannot be given

because the successful ratio of ANN is 83.3 %. The mean

time of CPU with the improved method is less than neuro-

endocrine model without interaction of glands when the

threshold of solution is 0.001. The standard deviation of the

improved method is the smallest of the three models.

Table 2 displays that the RMSE of the improved model is

almost better than the other models except that it of

PG-RBF network [22] and WNN with hybrid models [24].

Figure 5 shows the improved model follows the dynamic

behavior with small deviations.

5.3 Box–Jenkins gas furnace time series (BJ)

The Box–Jenkins gas furnace data set was recorded from a

combustion process of a methane–air mixture [8]. There

are 296 pairs data y(t), u(t), from t = 1 to t = 296. y(t) is

the output CO2 concentration and u(t) is the input gas

flowing rate. To test the performance of the improved model

for high dimension system, u(t-1), u(t-2),…, u(t-6),

y(t-1), y(t-2), y(t-3), y(t-4) are utilized to predict y(t).

The training is performed on 148 samples and the model is

tested on 150 samples. The number of cells in hidden layer

is 4. The best, the average, and the standard deviations of

MSEs for training and testing are shown in Table 3, and the

CPU time and the successful ratio of the models are also

given in it. Some comparison results of the prediction error

of different models are shown in Table 4 [25–32]. The

Table 1 The training and testing performance for predicting the MG

time series with three models

Neural

model

Neuro-endocrine

model without

interaction of

glands

Improved

model

Training

Mean 0.9122 2.0758e-004 8.4494e-005

Std 1.4680 1.3380e-004 3.0569e-005

Best 5.4702e-005 5.2127e-005 4.0670e-005

CPU time

(0.001)

42.7660s 36.9530s

Successful ratio 83.3 % 100 % 100 %

Testing

Mean 1.0366 2.1038e-004 8.6815e-005

Std 1.6627 1.4536e-004 3.3291e-005

Best 5.2078e-005 5.5016e-005 4.1827e-005

Bold values indicate the best results

Table 2 Comparison results of the prediction error of different

models for Mackey–Glass Time Series

Methods RMSE

Auto-regressive model [31] 0.19

Cascade correlation NN [31] 0.06

Sixth-order polynomial 0.04

Linear predication method 0.55

Wang and Mendel [23] Product T-norm 0.0907

GA and Fuzzy system [21] 0.049

PG-RBF network [22] 0.0028

WNN ? hybrid [31] 0.0059

Feed-forward neural model with PSO 1.0181

Neuro-endocrine model without interaction of glands 0.0145

Improved model 0.0093

Bold value indicates the best result
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Fig. 5 The prediction results of the MG time series using the

improved model
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prediction results of the improved model for BJ datasheet

are shown in Fig. 6.

Table 3 displays that the best and the mean MSEs of the

improved model for training and testing samples are

smaller than those of the other two models, and the MSE of

neuro-endocrine model without interaction of glands is a

little better than ANN model. The standard deviation of

neuro-endocrine model without interaction of glands is

smaller than the other two models, and the improved

method has the largest standard deviation. The CPU cost of

the improved model is longer than the other two models

under condition that the threshold of solution is 0.001, and

the time cost of ANN is the smallest. The table also shows

that the successful ratios of all models are 100 %. Table 4

shows that the improved model has the smallest RMSE, but

the number of inputs is larger then some other models. The

larger number of inputs might increase the computation

cost of training, but the convergent accuracy is improved.

Figure 6 indicates that the testing error of the model is

larger than the training model.

5.4 Electroencephalogram (EEG) data

Electroencephalogram (EEG) data utilized in this paper

was taken from http://www.cs.colostate.edu. It was recor-

ded by Aak Keirn at Purdue university in the Electrical

Engineering Department at Purdue. This problem is

intentionally selected in the paper since it is observed that

it cannot be predicted by linear models, and it is also used

to test the effectiveness of intelligent model [8]. The goal

of the model is using y(t-1), y(t-2), y(t-4), and y(t-8) to

predict y(t). 150 samples are used as training data, and the

other 159 data are chosen as testing samples. The number

of cells in hidden layer is 2. The MSEs of the best, the

average, and the standard deviations are displayed in

Table 5, and the CPU time and the successful ratio of the

models are also included. Comparison results of the pre-

diction error of different models are shown in Table 6. The

prediction results of the improved model for EEG are

shown in Fig. 7 with MSE is 0.0076.

Table 5 displays that the best and mean MESs of

training and testing samples of the improved method are a

little better than those of the other two models, and the

standard deviation is also the smallest among the three

models. The three models can converge to the optimal

solution when the successful threshold is set as 0.01. The

computation cost of the improved model is larger than that

of other models. Compare to the models in the table, the

prediction error of the improved model is a little better than

it of some other models except that it is derived by neuro-

endocrine model without interaction of glands.

5.5 IBM common stock closing prices model

(IBMCSCP)

This time series is a real series of the daily data from May

17, 1961 to November 2, 1962. The IBM share prices show

a break in the last third of the series and no obvious trend

or seasonality. In the paper, y(t-1) and u(t-4) are utilized

to predict y(t). 240 pair samples are chosen for training, and

the other 169 samples are used for testing. Some perfor-

mances of three models are displayed in Table 7, and the

comparison results are shown in Table 8. Table 7 shows

that the best and average MESs of the improved model are

the best among the three models, and the standard devia-

tion of it is also the smallest. The CPU time of ANN is

smaller than that of other models when the threshold is

Table 3 The training and testing performance for predicting the

Box–Jenkins gas furnace dataset with three models

Neural

model

Neuro-

endocrine

model without

interaction of

glands

Improved

model

Training

Mean 2.0565e-004 2.4100e-004 1.4412e-004

Std 7.0618e-005 1.1757e-006 2.7320e-005

Best 1.0985e-004 1.0721e-004 8.6327e-005

CPU time (0.001) 12.1710s 30.2618s 38.2810s

Successful ratio 100 % 100 % 100 %

Testing

Mean 2.3148e-004 2.6012e-004 1.6027e-004

Std 7.2019e-005 1.3281e-006 3.0143e-005

Best 1.2311e-004 1.1694e-004 9.0217e-005

Bold values indicate the best results

Table 4 Comparison results of the prediction error of different

models for Box–Jenkins gas furnace dataset

Method name Inputs RMSE

ARMA [26] 5 0.843

Tong’s model [29] 2 0.685

Pedrycz’s model [30] 2 0.566

Xu’s model [25] 2 0.573

Surmann’s model [27] 2 0.400

Lee’s model [32] 2 0.638

ANFIS model [28] 2 0.085

Neural tree model [31] 2 0.026

WNN ? hybrid [31] 2 0.081

Feed-forward neural model with PSO 10 0.0152

Neuro-endocrine model without interaction

of glands

10 0.0161

Improved model 10 0.0127

Bold value indicates the best result
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0.001, and it of the improved model is the longest. Table 8

shows that the RMES of the improved model is smaller

than those of other models except SVM model. The pre-

diction result of the improved model with MSE equal to

2.4138e-004 is shown in Fig. 8. The figure indicates that

the improved model can approximate the real series in high

accuracy.

5.6 Canadian Lynx data (CLYNX)

This classic time series contains annual records of the

numbers of Canadian lynx trapped in the MacKenzie river

district of North-West Canada for the period 1821–1934

[33]. It is reported by Elton and Nicholson firstly (1942).

And Moran (1953) was first to analyze the data statisti-

cally. Then it is studied by some other authors [34–36].

Following Moran [37], as well as succeeding studies and

to make the series more symmetric, the original series is

transformed by log10 first, and this method is also in this

paper. Similar to some other models [38], y(t-1), y(t-2),

y(t-3), y(t-4), y(t-9), y(t-11), and y(t-12) are used to

predict y(t). 100 samples from the datasheet are utilized

for training, and the other 14 samples are used for testing.

The number of cells in hidden layer is 3. Some perfor-

mances of the three models are displayed in Table 9, and

the comparison results of prediction are shown in

Table 10. The actual and prediction data are shown in

Fig. 9.

Table 9 shows that the best and the mean MESs of the

improved model are smaller than those of other two

models. The standard deviation of the improved model is

same as that of neuro-endocrine model without interaction

of glands, and it less than that of ANN model. The CPU
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Fig. 6 The prediction results

of the BJ time series using the

improved model

Table 5 The training and testing performance for predicting the EEG

dataset with three models

Neural

model

Neuro-endocrine model

without interaction

of glands

Improved

model

Training

Mean 0.0078 0.0076 0.0076

Std 4.6530e-004 1.1524e-004 1.0648e-004

Best 0.0076 0.0075 0.0074

CPU time

(0.001)

0.2030s 6.8942s 8.750s

Successful

ratio

100 % 100 % 100 %

Testing

Mean 0.0076 0.0075 0.0075

Std 4.7310e-004 1.2712e-004 1.1086e-004

Best 0.0075 0.0074 0.0070

Bold values indicate the best results

Table 6 Comparison results of the prediction error of different

models for EEG dataset

Method name MSE

Single multiplicative neuron model with BP [8] 0.0142

Single multiplicative neuron model with PSO [8] 0.0080

Single multiplicative neuron model with GA [8] 0.0081

Single multiplicative neuron model with CRPSO [8] 0.0081

Feed-forward neural model with PSO 0.0076

Neuro-endocrine model without interaction of glands 0.0075

Improved model 0.0075

Bold values indicate the best results
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time of the improved model is the longest among the three

models. Table shows that the prediction error of the

improved model is larger than the ones in SBL and GP

methods, and it is less than those of other methods in the

table. Figure 9 indicates that the improved model can

predict the data in high accuracy.

5.7 Comparisons using t test

For a thorough comparison, the t test [39, 40] has also been

carried out. Table 11 presents the t values and the P values

on every datasheets of this two-tailed test with a signifi-

cance level of 0.05 between the improved model and the

other two models. The number of datasheets that the

improved model performs significantly better than, almost
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Fig. 7 The prediction results of the EEG time series using the improved model

Table 7 The training and testing performance for predicting the

IBMCSCP dataset with three models

Neural

model

Neuro-endocrine model

without interaction

of glands

Improved

model

Training

Mean 2.4115e-004 2.4106e-004 2.4101e-004

Std 1.3324e-006 1.3554e-006 1.1075e-006

Best 2.3956e-004 2.3851e-004 2.3820e-004

CPU time

(0.001)

2.1034s 4.3866s 5.2190s

Successful

ratio

100 % 100 % 100 %

Testing

Mean 2.5618e-004 2.5433e-004 2.4712e-004

Std 1.5541e-006 1.4718e-006 1.0176e-006

Best 2.4819e-004 2.4781e-004 2.4022e-004

Bold values indicate the best results

Table 8 Comparison results of the prediction error of different

models for IBMCSCP dataset

Models Inputs RMSE

SVM [19] 4 0.0129

ANN [19] 6 0.0158

Feed-forward neural model with PSO 2 0.0160

Neuro-endocrine model without interaction of

glands

2 0.0159

Improved model 2 0.0157

Bold value indicates the best result
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Fig. 8 The prediction results of the IBMCSCP time series using the

improved model
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the same as, and significantly worse than the compared

model is also displayed in the table. The table shows the

improved model outperforms the other models for most

datasheets.

6 Conclusion and future works

In this paper, the interaction between glands is designed to

improve the performance of neuro-endocrine model, the

interaction equation for concentration of hormone of one

gland is modulated by the others is formed, and the

parameter of the equation is given. With training of

LDWPSO, three models is simulated, the results indicate

that the accuracy of the improved model is better than the

others. According no free lunch theory, the computation

cost of the improved model is longer than the other two

models for some datasheets. This is also the shortcoming of

the model. The future works for the improved model are to

design new method to decrease the computation cost and

Table 9 The training and testing performance for predicting the

Canadian Lynx Data dataset with three models

Neural

model

Neuro-endocrine model

without interaction of glands

Improved

model

Training

Mean 0.0360 0.0357 0.0334

Std 0.0025 0.0022 0.0019

Best 0.0315 0.0316 0.0290

CPU time

(0.04)

30.8600s 42.6538s 48.5780s

Successful

ratio

100 % 100 % 100 %

Testing

Mean 0.0379 0.0368 0.0354

Std 0.0057 0.0068 0.0074

Best 0.0361 0.0388 0.0358

Bold values indicate the best results

Table 10 Comparison results of the prediction error of different

models for Canadian Lynx Data dataset

Models MSE

PADD [20] 0.046

SETAR1 [34] 0.042

FAR [20] 0.036

SAR [20] 0.038

SETAR2 [38] 0.042

SBL [20] 0.022

GP [20] 0.028

Feed-forward neural model with PSO 0.0360

Neuro-endocrine model without interaction of glands 0.0357

Improved model 0.0334

Bold value indicates the best result
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Fig. 9 The prediction results of the Lynx time series using the

improved model

Table 11 Comparisons between the improved method and other two

models on t test

Datasheet ANN Neuro-endocrine

model without

interaction of glands

MG Training t value 3.4033 4.9121

P value 0.001213 0.000008

Testing t value 3.4145 4.5385

P value 0.001172 0.000029

BJ Training t value 4.4509 19.4049

P value 0.000039 0.00000

Testing t value 4.9958 18.1260

P value 0.000006 0.00000

EEG Training t value 2.2950 0.0000

P value 0.02537 1.00000

Testing t value 1.1272 0.0000

P value 0.2643 1.00000

IBMCSCP Training t value 0.4426 0.1565

P value 0.659701 0.876182

Testing t value 26.7136 22.0701

P value 0.0000 0.000000

Lynx Training t value 4.5352 4.3337

P value 0.000029 0.000059

Testing t value 1.4659 0.7630

P value 0.148076 0.448556

Better 7 6

Same 3 4

Worse 0 0

Bold values indicate that the performance of the improved model is

better than the others with t test
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find the new method to determine the optimal number of

glands in different layers.
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