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Abstract In the present paper, the completely innovative

architecture of artificial neural network based on Hopfield

structure for solving a stereo-matching problem—hybrid

neural network, consisting of the classical analog Hopfield

neural network and the Maximum Neural Network—is

described. The application of this kind of structure as a part of

assistive device for visually impaired individuals is consid-

ered. The role of the analog Hopfield network is to find the

attraction area of the global minimum, whereas Maximum

Neural Network is finding accurate location of this minimum.

The network presented here is characterized by an extremely

high rate of work performance with the same accuracy as a

classical Hopfield-like network, which makes it possible to

use this kind of structure as a part of systems working in real

time. The network considered here underwent experimental

tests with the use of real stereo pictures as well as simulated

stereo images. This enables error calculation and direct

comparison with the classic analog Hopfield neural network

as well as other networks proposed in the literature.

Keywords Hopfield � Stereovision � Neural network �
Hybrid network � Depth analysis

1 Introduction

The use of stereovision is a natural way of determining the

distance by the humans. This idea is not new. The simplified

model of human sight can be presented as two parallel

cameras, and this model (named parallel stereovision system)

will be considered in this. The above-mentioned systems

have been widely applied in numerous fields such as car-

tography, psychology, neurophysiology, visually impaired

support, a vehicle driving support, robots navigation, and a

lot of others. This wide application of the stereovision sys-

tems is due to its unquestionable advantages: do not emit any

radiation, like microwave, any physical contact with envi-

ronment is necessary, like in the case of white cane, and is

easy to apply. Figure 1 illustrates the geometry of a parallel

stereovision system [1]. As can be seen, the system is com-

posed of two cameras. In a parallel stereovision, the optical

axes of cameras are located parallelly and perpendicularly to

the baseline, connecting the centers of the cameras. As can

be clearly seen, the image of the observed point W with

coordinates (x, y, z) has different positions in planes of left

and right cameras. It is easy to notice that the difference in

positions of images of point W is the smaller, the further

point W is located from the point of (0,0,0) (point of

reference (0,0,0) is located between lens centers). The

expressions on real coordinates can be written as (1).

x ¼ dðx0
l
�x0rÞ

2ðx0
l
�x0rÞ

y ¼ dðy0
l
�y0rÞ

2ðx0
l
�x0rÞ

z ¼ df
x0

l
�x0r

8
>>>><

>>>>:

ð1Þ

As can be clearly seen, the distance to the observed point

is inversely proportional to the difference in position of the

image of this point on plane left and right (disparity). While

looking at the Eq. (1), it seems possible to determine the

distance to each point at an observed scene (depth analysis

[2–4]). The problem seems to be trivial and it is trivial up to

a point. The real scene contains large numbers of points.

The main problem lies in finding the corresponding points

in left and right pictures. Finding the points in the left and
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the right images which correspond to the same physical

point in space is called the stereo correspondence problem.

The complexity of the correspondence problem depends on

the complexity of the scene. This is a very difficult problem

to solve. In theory, general solution may not exist, given the

ambiguity which results from textureless regions, occlu-

sion, specularities, and the like. From a computational

standpoint, trying to match each of the pixels in one image

to each of the pixels in the other image is extremely diffi-

cult, given the massive number of comparisons. There are

constraints and schemes that can help reduce the number of

false matches, but many unsolved problems still exist in

stereo matching [5–7]. The main problems include the

following: occlusion, discontinuity of depth, discontinuity

of periphery, regularity, and repetitivity. For this reason, the

stereo-matching problem is one of the most complex

problems in the computer vision, and it is of vital impor-

tance to search a new and efficient way to solve this task.

This paper proposes using a novel neural structure based

on Hopfield neural network—Hybrid-Maximum Neural

Network (HMNN). The short introduction to this kind of

structure can be found in [8]. This design is novel and had

not been used in the literature before. This kind of structure

can also be used for other optimization problems. The main

advantage of HMNN is its speed and accuracy (the number

of network’s iteration decreases at least down to 0,7 of

epochs number of the analog Hopfield-like network).

Another advantage is a simplification of energy function

(which caused the decrease in the number of local energy

minima) and automatic upkeep of uniqueness in certain

optimization problems (N-queens, stereo correspondence).

Also, the energy function for stereo correspondence prob-

lem presented in the article is novel. The formula for the

energy of network, proposed by the author, seems much

more appropriate for stereo matching, than other formulas

available in the literature (see Sect. 3).

The aim of this paper is to describe and test the Hopfield

neural network—Hybrid-Maximum Neural Network in

stereo-matching problem. The architecture, energy func-

tions (the energy of network forms changes in the course of

the network’s work), and working algorithm are presented

here. Also, the tests results, based on testing real images,

are included in comparison with some other Hopfield-based

neural networks’ working results. The accuracy of the

solution and the efficiency are discussed. The depth maps,

obtained by each investigated network, are also shown in

the paper.

1.1 Background

In the literature, one can find a few types of algorithms for

solving the stereo correspondence problems [9]. The main

problems are as follows:

– Feature based algorithms [10, 11] which establish

correspondences between some selected features,

extracted from the images, such as edge pixels, line

segments, or curves [12–19].

– Phase based algorithms based on the Fourier phase

information which can be considered as a sort of

gradient-based optical flow method, with time deriva-

tive approximated by the difference between the left

and right Fourier phase images [20–22]. This idea

became really applicable with the introduction of

localized frequency filters called Gabor filters. This

method computes the convolution between Gabor

kernels and the left and right image parts. In order

not to get trapped in some local minimum, the

hierarchical methods were used here [23–25].

– Energy based algorithms This kind of approach is

based on the minimization of energy function repre-

senting a given problem (in this case, stereo-matching

problem of course), [26–29]. This one seems to be the

most universal, powerful, and developed out of all the

above-mentioned methods.

– Area-based algorithms [30–32] are based on the

division of the images into subareas, which are fitted.

These methods are well adapted for relatively textured

areas. However, they generally assume that the

observed scene is locally fronto-parallel, which causes

problems for slanted surfaces and, in particular, those

which are near the occluding contours of the objects.

Finally, the matching process does not take into

account the edge information, which is actually very

important and should be used in order to get the reliable

and accurate dense maps.

Nowadays, the algorithms in their original forms, as

described above, are rarely used and their application is

limited only to very basic problems. Scientists are trying to
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Fig. 1 The configuration of a parallel stereovision system
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merge different types of solution in order to take as many

advantages from all types of algorithms as possible and

avoid disadvantages. A very interesting development of the

area-based algorithm was proposed by Sun and coworkers

[33–35]. The authors developed stereo-matching algorithm

that produces a dense disparity (depth) map by means of

cross-correlation, rectangular subregioning (RSR), and 3D

maximum-surface techniques in a coarse-to-fine (pyramid)

scheme. The correlation is achieved by means of the box

filtering technique and by segmenting the stereo images

into rectangular subimages at different levels of the pyra-

mid. The disparity map for the stereo images is found in the

3D correlation coefficient volume by obtaining the global

3D maximum surface, rather than simply choosing the

position that gives the local maximum correlation coeffi-

cient value for each pixel. The 3D maximum surface is

obtained by means of a two-stage dynamic programming

(TSDP) technique. This method seems very promising, but

rectangular segmenting can generate false fitting.

The use of energy method to weekly calibrated stereo

pictures was presented by Alvarez et al. [9]. At first, the

authors found a simplified expression of the disparity that

allows us to estimate it from a stereo pair of images by

means of an energy minimization approach, assuming that

the epipolar geometry is known, and they included this

information in the energy model. The energy function is

minimized by means of a gradient descent method. The

results of the experiments are very promising, but gradient

minimization could work slowly and there is a possibility

of being trapped in local minimum of energy.

The energy can be also minimized by using Hopfield-like

neural nets [36–40]. The ability of the Hopfield network to

solve the optimization problems relies on its steepest des-

cent dynamics and guaranteed convergence to local minima

of the energy landscape. The advantage of Hopfield-like

neural networks over the gradient minimization methods

depends on fast operation. This computational model is

massively parallel, which is very important as far as real-

time working systems are concerned. This kind of system

was used in stereo-matching problem [41–43]. In [44] and

[45], the authors described a driving support system based

on stereoscopy and Hopfield-like analog neural nets.

Unfortunately, the authors did not include any clear depth

map that could result from the application of their system,

so it is difficult to estimate the efficiency of the system.

Also, the form of energy function is unclear. It is worth

noting that the authors decreased the calculation time by the

elimination of a certain number of neurons. This author has

tested the use of continuous Hopfield-based neural network

with the energy function worked out by himself. Results of

simulation were fairly good, which was presented in Sect. 3.

The only disadvantage was the low speed of network’s

computing. A similar system for reconstruction of the third

dimension of scene from stereo pictures with the use of

analog Hopfield-like neural nets was described in [45].

Also, in this case, the authors did not include any reliable

depth map that could allow the judgement of efficiency of

the algorithm. Discrete asynchronous Hopfield neural net,

used for solving stereo-matching problem, was described in

[46] by Sun and al. The authors of [46] presented very good

results of stereo matching by using a Hopfield-like net. The

author of this publication tried to repeat simulations

according to algorithm presented in [47]. Unfortunately, the

attempt to repeat their results came to grief, which was

predictable. The results of these simulations have been

shown in Sect. 3. As far as discreet dynamics Hopfield nets

to optimization problems are concerned, the networks with

continuous activation function should be preferably used. In

[48], the authors obtained good results of liver stereoscopic

visualization, but it should be mentioned that those results

were achieved for moderate complex pictures: Only selec-

ted (characteristic) points on the liver’s pictures were

matched. The author tried using the method described in

[48] neural structure (discreet Hopfield-like network with

continuous activation’s function), but the results were dis-

appointing, which has been presented in Sect. 3.

Despite some imperfections of Hopfield’s network’s

work performance, quoted here, the author claims that such

structures are the best way of solving the stereo-matching

problem. Hopfield’s-like structures enable to express the

problem holistically distinct from classical algorithms,

which focus on one point. The ability of parallel working

of each neuron gives the opportunity for preparing a device

working extremely fast without losing its accuracy. It is

very important in systems demanding the real-time action.

Looking at the state-of-the-art-of stereovision matching

with the use of Hopfield-like networks, one can have an

impression that this domain has been well explored.

However, none of the networks, described in the above-

mentioned articles, work in a way that is efficient enough.

The author tried to use the above-mentioned solution in the

stereo-matching process. Unfortunately, the application of

the above-mentioned solution to the stereo-matching pro-

cess each time resulted in the number of errors of the

network’s work performance exceeding 20 % (the way of

error calculation and experimental conditions were

described in Sect. 3), which practically eliminates those

methods of solving the stereo-matching problem. The

subject presented here is so wide and complicated that it is

still possible to improve the efficiency of such systems, to

work out better architecture of nets and decrease the

number of errors of the stereo-matching process.

As a result of a thorough analysis of neural solution of

stereo-matching problem, presented in the literature, the

author came to a conclusion that the main problem is

trapping the network in local minima of energy. It is not
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possible to write an energy function with only one global

minimum. In this case, a discrete Hopfield-like neural net-

work fails. Much better results can be reached with the help

of an analog Hopfield-like neural network. The disadvan-

tage of this kind of nets is the time of minimum’s reaching.

A lot of stereovision systems demand real-time working.

The author made an attempt to combine the f efficiency of

the analog Hopfield-like network with an extremely high

rate of work performance in case of particular kind of dis-

crete Hopfield-like network. Both the analog Hopfield net-

work and the Maximum Hopfield-based network had been

used in optimization problems before, but the Network

being the combination of both types of network had never

been used before. Also, the energy functions forms, with the

use of neural structures creating a hybrid network, have

been worked out by the author. The author’s research has

resulted in a completely innovative architecture of a net-

work which solves the stereo-matching problem: a hybrid

neural network consisting of the classical analog Hopfield

neural network and the Maximum Neural Network—the

Hybrid-Maximum Neural Network (HMNN). Due to

the use of these two types of networks, described here, the

structure is working much faster than the classical Hopfield

net and its accuracy is not worse. The efficiency of HMNN

was confirmed in tests on real and simulated pictures (which

allowed the error calculation). Following comprehensive

study, there is no doubt that the results obtained with the

help of the HMNN are the same as for continuous Hopfield-

like network, but the time of reaching them was much

shorter than for continuous structure.

2 Architecture

The stereo-matching problem can be referred to as an

optimization task where the energy function, which rep-

resents the constraints on the solution, is to be minimized.

The optimization problem then can be solved by means of

the Hopfield neural network [49, 50]. The most accurate

solution can be obtained by analog network.

The disadvantage of the analog Hopfield neural network

is its long time of computation. The speed of operation is

very important as far as the target system is concerned—it

should work in real time. Much faster is a Maximum

Neural Network [51]. The additional advantage of a max-

imum network is that stereo matching is reciprocally

unique thanks to network’s architecture. Unfortunately, the

accuracy of solution found by the Maximum Neural Net-

work is much worse than in the case of analog Hopfield-

like network.

However, it is possible to combine the precision of work

performance of the analog Hopfield network with the speed

of maximum neural network’s operation. The hybrid neural

network presented here contains both the analog Hopfield

network and the maximum neural network. The architec-

ture of the neural network described here is shown in

Fig. 2.

In the first stage of HMNN’s work performance, the

analog Hopfield neural network is looking for the attraction

area of the global minimum. Having found the attraction

area of global minimum, the network is switched to its

maximum mode thanks to the block of switching function

S (see Fig. 2).The switching follows a given number of

iteration (determined empirically). The switching function

can be defined as follows:

f ðvij; itÞ ¼
vij for it ¼ itmax

0 for it 6¼ itmax

�

; ð2Þ

where it is an iteration number, and itmax is assumed

maximum number of iteration in continuous mode. In

maximum mode, the network is quickly evaluating toward

the global minimum and the term of uniqueness is kept

automatically thanks to the maximum activation function

(all terms are described in the further section).

2.1 The analog Hopfield neural network

for stereo-matching problem

In the first stage, HMNN is working in continuous mode, in

the same way as continuous Hopfield-like neural net [49, 50].

Assuming that both stereo images have the length of n,

the proposed network consists of n 9 n neurons for one

epipolar line in an image. For pictures with the height equal

h, it is easy to note that the target system will consist of

h networks working in a parallel way—each network will

realize a stereo-matching problem for one epipolar line.

Each neuron neuik is responsible for fitting i-point in right

image to k-point in left image. The higher the external

potential of neuik, the better the fitting of points becomes.

In the final configuration, only for corresponding points i in

right image to k in left image, potential neuik will equal 1,

and for the rest of the points, the external potential of

neurons will equal 0. It is very convenient to represent

neurons as a matrix, named fitting matrix (FM), as shown

in Fig. 3.

As can be easily concluded, the one in FM means fitting

of points, and the values between zero and one (for con-

tinuous activation function, used here) can be interpreted as

probability of stereo matching of points.

The Hopfield computational energy H associated with

the network state v is given by (3)

HðtÞ ¼ � 1

2

X

i

X

k

X

j

X

l

tijvikvjl �
X

i

X

k

Iikvik

þ 1

s

X

i

X

k

CðvikÞ; ð3Þ
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where t is the weight matrix, and Ii is the firing threshold of

neuron i, vi being the external state of neuron i. In the

Eq. 3, C is expressed by (4)

CðxÞ ¼
Zx

1
2

g�1ðgÞdg: ð4Þ

In the Eq. (4), s is a positive constant (interpreted as

neuron relaxation time), and g is a continuous activation

function with vi(t) = g(ui(t), ui is internal potential of

neuron i. In the present work, g is a sigmoidal function,

expressed by (5)

gðxÞ ¼ 1

1þ e�ax
; ð5Þ

where the value of a adjusts the slope of the sigmoidal

curve. In the present work, a = 50. It is worth noting that

for the high value of a, (3) can be simplified to the

following expression:

HðtÞ ¼ � 1

2

X

i

X

k

X

j

X

l

tik;jlvikvjl �
X

i

X

k

Iikvik: ð6Þ

The equation of the motion of the Hopfield model is

given as follows:

duik

dt
¼
X

j

X

l

tik;jlvjl þ Iik �
uik

s
: ð7Þ

Because of using of software realization of the network

by CPU, instead of mapping of each neuron into separate

units connected in Hopfield structure, the equation of

dynamics for Hopfield network must be discretized by

means of a numerical method. In this case, the Euler

discretization was used [52–55]:

uikðt þ 1Þ ¼ uikðtÞ þ Dt
X

j

X

l

tik;jlvjlðtÞ þ Iik �
uikðtÞ

s

 !

:

ð8Þ

In (8), Dt is time step. In the presented design, the value

of 10-3 has been chosen, which has been determined to be

small enough for the Euler rule to provide enough accuracy.

2.1.1 The energy function

In the method presented here, crucial for work performance

of both the analog Hopfield-like network and the maximum

network is the energy’s function. Hopfield neural network is

the structure inspired by the spin-glass and, similar to this

system, has a property of energy minimization [56–58].

Network proceeds minimization of this function until the

minimum is found. This means that the solution to the

problem has been found. The energy function is very similar

for both types of component networks. Minimization of the

energy function must secure the following criteria:

Fig. 2 An architecture of Hybrid-Maximum Neural Network
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Fig. 3 The fitting matrix, representing one epipolar line, for Hopfield-

like neural network dedicated to solving stereo-matching problem
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1. For couples of correlated points (i, k) and (j, l) in given

epipolar line, where i and j are numbers of point in

right image, k and l are numbers of point in left image,

correlation coefficient Cik,jl should have as high value

as possible—term of Correlation;

2. Assigning must be reciprocally unique—term of

Uniqueness;

3. The sequence of assigning in areas must be kept—term

of Area Sequence;

4. The continuity of assigning in areas must be kept—

term of Continuity;

5. The global sequence of assigning must be kept—term

of Global Sequence;

A stereo-matching problem is a multicriterion (vectoral)

problem [59, 60]. The energy is treated here as vector and

each criterion, mentioned above, is represented by a com-

ponent. In this case, the energy can be written as:

IEF
�! ¼ IEFð E1

�!
; E2
�!

; E3
�!

; E4
�!

; E5
�!Þ: ð9Þ

The main problem in the case of vectoral problem is

scalarization:

IEF ¼ aE1 þ bE2 þ cE3 þ dE4 þ eE5: ð10Þ

where a, b, c, d, e are weight coefficients of each energy

component. The problem of scalarization reduces finding

weight coefficients in energy expression (10). The problem

is not trivial, not always are the values of energy compo-

nents known, so it is very difficult to find their hierarchy of

importance. In this case, coefficients were found in

empirical way, by means of testing images. Knowing the

depth map for testing pictures, the weight coefficients were

finely tuned toward the error minimization.

The energy components, in the form proposed by the

author, are described below.

The term of Correlation can be written as the following

equation:

E1 ¼ �
X

i

X

k

X

j

X

l

Cik;jlvikvvjl; ð11Þ

where Cik,jl is correlation coefficient for points i in right

image to k in left image, and j in right image to l in left

image. The coefficients are calculated according to the

following equation:

Cik;jl ¼
Xm

x;y¼�m
kILðiþ x; hþ yÞ � IRðk þ x; hþ yÞk
�

þ
X

f
kFL
ðlÞðiþ x; hþ yÞ � FR

ðlÞðk þ x; hþ yÞk
�

þ
Xm

x;y¼�m
kILðjþ x; hþ yÞ � IRðlþ x; hþ yÞk
�

þ
X

f
kFL
ðlÞðjþ x; hþ yÞ � FR

ðlÞðlþ x; hþ yÞk
�

;

ð12Þ

where IL(i, h) and IR(i, h) mean intensity of left and right

image in the point of (i, h), F(f)
R (i, h) and F(f)

L (i, h) is

f-feature of (i, h) point in right and left image. The index m

determines the area of region surrounded by points (the

area of regions was assumed as 9, so m = 4).

It is easy to note that the value of this term will be the

lowest when the high value of potentials vik and vvjl cor-

responds to the high value of correlation coefficient (note

sign of ‘‘minus’’ before the expression).

The term of uniqueness can be reduced on the condition

of the presence of one high potential (equal one) at

the most in every row and, every row and column of FM

[61–63]—see Fig. 3. This term can be written as:

E2 ¼
X

i

X

k

X

l 6¼k

vikvjl þ
X

i

X

k

X

j 6¼i

vikvjl: ð13Þ

The foregoing term reaches the minimum which equals

zero if and only if in each column and each row, one

high potential is present at the most. The lack of high

potential in a row or in a column means lack of

matching, which is normal in the case of stereo-matching

problem (it can come from occlusion and discontinuity of

periphery).

The term of area sequence can be formulated as follows:

for points i and i?1 belonging to the same areas, if the i

point in right image was matched to the k point in left

(reference) image (the state of neuron neuik is high), then to

the point i?1 in right image there can be assigned l point

only if l C k. The area is defined as a part of image between

the edges (determined before by the edge detector). This

can be expressed as the following equation:

E3 ¼
X

i

X

k

X

l� k

vikvðiþ1Þlri;iþ1; ð14Þ

where ri,j is a term determining whether the points i and j

in image belong to the same areas. This can be written as:

ri;j ¼
1 if points i and j belongs to the same areas

0 otherwise

�

:

ð15Þ

As can be easily noticed, the minimum of this term equals

zero. A graphical interpretation of this term was shown in

Fig. 4.

The term of depth continuity can be written in the fol-

lowing way: if neighbouring points i and j in right image

belong to the same areas, the difference in disparity for

these points should be as low as possible. But such for-

mulation can prefer planes perpendicular to optical axe. It

is possible yet assumption permissible the angle between

object’s planes and optical axis. The term of continuity can

be expressed as an equation:
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E4 ¼
X

i

X

k

X

l

vikvðiþ1Þlri;iþ1nik;jl; ð16Þ

where:

nik;jl ¼
ððl� jÞ � ðk � iÞÞ � a for l [ k

n for l� k
:

�

ð17Þ

In (17), n is set to a positive number determining energy

increase if the term is not kept a and to determine an

acceptable angle between objects plane and optical axe.

This term was depicted in Fig. 5. Thanks to the use of

parameters a and n, there is a possibility to ‘‘tune’’ this

term empirically. While looking at the Eq. (17) and Fig. 5,

one can notice that if the point was matched to point k, for

next point j, the most favorable matching, from energetic

point of view, is next to k point l. For this layout of

matching point, the energy of the term E4 is zero (with

disregarding the a parameter). This means that the matched

points creating the surface are perpendicular to the optical

axis. Thanks to the use of a parameter of a, the energy of E4

can be below zero for matching points not only next to the

k position. So, the occurrence of surfaces not perpendicular

to the optical axis is possible. The parameter a can be

treated as a shift of possible matching respecting the

position k (see: Fig. 5).

The term of global sequence stems from the direction of

displacement of the reference camera in relation to the

considered camera. Assuming that right image’s depth map

is determinating, the left image is a reference. The point

i from right image can be matched to point k from left

image only if k [ i— the image of point i cannot occur on

position prior to point i. This reduces to a triangulation of

the FM. It is not necessary for this term to respect this term

in energy function—neurons on the banned positions can

be excluded from the network. This operation will cause

the reduction IN calculating time of network, which is a

great advantage—the considered network is a part of real-

time system. In the Fig. 6, a graphical interpretation of this

restriction can be seen.

Taking all these terms into consideration, the energy

function can be expressed in a form of the equation:

IEF ¼� a
X

i

X

k

X

j

X

l
Cik;jlvikvvjl

þ b
X

i

X

k

X

l 6¼k
vikvjl þ

X

i

X

k

X

j 6¼i
vikvjl

� �

þ c
X

i

X

k

X

l� k
vikvðiþ1Þlri;iþ1

þ d
X

i

X

k

X

l

vikvðiþ1Þlri;iþ1nik;jl ð18Þ

Having the energy function given as (18), the

calculation of interconnection of weights and external

currents is possible. To this end, it is necessary to compare

the expression of the energy function (18) to hamiltonian

function of the Hopfield network (6). The interconnection

of weights and external currents is given the following

equation:
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Fig. 4 Graphical interpretation of the term of area sequence

edge

edge

vik

vjl

k - point in left (reference) image

i-
po

in
t

in
ri

gh
t

im
ag

e

Fig. 5 A graphical interpretation of the term of depth continuity.

a = 2 was assumed. As the green cross pair of assigned points was

marked (vik = 1). At fields, marked in a red color, high potential is

not desirable. At fields, marked in a green color, high potential will

cause the decrease in energy value. The fields marked in a blue color

are neutral
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Fig. 6 Graphical interpretation of the term of global sequence. Only

neurons on fields marked gray can evolve. The remainder of neurons

is excluded from the network
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tik;jl ¼ aCik;jl � bdijð1� dklÞ � bdklð1� dijÞ
�cql\kdðiþ1Þjri;iþ1 � ddðiþ1Þjri;iþ1nik;jl

Iik ¼ 0

8
<

:
; ð19Þ

where dij is Kronecker delta, and sign ql\k is defined by the

following equation:

qi\k ¼
0 for l [ k

1 for l� k

�

: ð20Þ

The values given by (19) are the basis of work

performance of continuous Hopfield-like network.

2.2 The maximum neural network

This type of neural structure was introduced by Takefuji and al

in [51]. The Maximum Neural Network was defined as dis-

crete Hopfield-like network with the specific activation

function: Only the neuron with the highest value of internal

potential (in some group) is activated, whereas the rest of the

neurons have low potential. The maximum activation function

for stereo-matching problem can be formulated as follows:

f ðuijÞ ¼
1 if uij ¼ maxðui1; ui2; :::; uinÞ
0 otherwise

�

i; j ¼ 1; :::; n:

ð21Þ

Taking the discrete nature of this network into

consideration, it is not necessary to use the Euler

discretization, and internal states of neurons can be

calculated by means of the following equation:

uik ¼
X

j

X

l

tik;jlvjl þ Iik: ð22Þ

This kind of neural network found its applications in

optimization problems [64–66]. Unfortunately, in its original

form, the maximum network is not fit to solving the stereo-

matching problem. The reason is the same as for discrete

Hopfield neural network where the stereo-matching problem

is too complex and so the network is trapped in local minima.

A network in given state may only evolve if any of its

neighboring states have a lower energy. Otherwise, the

network does not evolve even when there are other further

states with lower energy. The evolution is also dependent on

the sequence of activated neurons (asynchronous

implementation). The smallest possible movement in the

state space is the distance between two neighboring vertexes.

Thus, starting from the same initial state, possible final states

may be very different, following several activations and

depending on the sequence of activated neurons. This is the

reason why this kind of network is used in association with the

classic analog Hopfield-like network. The energy function of

Maximum Neural Network used as the component of HMNN

is similar to the energy function of the analog Hopfield-like net

(18). The only difference is that there is only one term of

uniqueness, whereas the second is accomplished by the

activation function. Modified expression on interconnection’s

strengths was written as (23).

tik;jl ¼ aCik;jl � bdklð1� dijÞ � cql\kdðiþ1Þjri;iþ1

�ddðiþ1Þjri;iþ1nik;jl

Iik ¼ 0

8
<

:
:

ð23Þ

3 Experimental results

The proposed method was implemented on a personal

computer with Pentium IV –2.80 GHz CPU and 2 GB

SDRAM. The stereovision system was tested on Dtest

environment, written by the author, implemented the use of

the C?? language under a Linux environment, as shown in

Fig. 7. The neurons activity map is helpful to the analysis

of network work performance (can be seen in Fig. 7—

middle graphical window on the right). It can be interpreted

as a graphical form of fitting matrix to the investigated

line—white points mean the neurons with high potentials,

and black points correspond to the neurons with low

potentials. Intermediate colors correspond to the values

between 0 and 1. The neuron activity map is defined for

one epipolar line. Thanks to the neurons activity map, the

dynamics of neural network can be observed (the map is

updated with each iteration). The graphical interpretation

of depth map is as follows: The lighter the point on the

depth map, the nearer the corresponding point in the scene

is. The ideal map of neurons activity for 80 image line (for

better understanding shown with stereo images cut at 80

image line) with a simulated picture and the ideal depth

map of this picture can be seen in Fig. 8. The resolution of

input stereo images is 100 9 100. This resolution is suf-

ficient as far as the imaging of real scene is concerned

(each details can be seen), and a complexity of the problem

can also be accepted for simulation on PC’s. The author did

not find any information in the literature about the pictures

used in other simulations of stereovision systems. For these

reasons (neural algorithms known from articles and

author’s structure), the same images with resolution of

100 9 100 points were used for each test. The images were

calibrated in order to find corresponding lines, before

starting the stereo-matching procedure. This process allows

scanning of pictures line-by-line, which decreases the

complexity of the method.

To verify the efficiency of the proposed method, an

experiment was performed with the use of both simulated

and real images. The use of simulated images enabled the

error calculation. The average relative error seems to be the

most appropriate. Hopfield-like neural networks work in an

indeterministic way, and the solutions, obtained by neural

algorithms, can differ from each other. Thanks to the
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ability of averaging the number of errors for each scan line,

this method of error calculation can give the results char-

acterizing the method of work performance. Thanks to the

use of simulated images, the expected value for each scene

point dik is known. Respecting the percentage notation, the

error of stereo-matching process can be written as the

following equation:

dd ¼ 1

n2

Xn

i

Xn

k

kdik � dikk
dik

 !

100 %: ð24Þ

The error is calculated automatically in Dtest program

after loading the model depth map (for the whole picture)

or after loading the model neuron activity map (for selected

image line).

The important parameter of stereovision neural algo-

rithm was the time of working. As a measure of time, the

number of epochs was taken. As the point of network’s

stabilization was assumed, the iteration in which the

energy’s decreasing value was under the value of e was

determined in tests on artificial images.

In order to verify the efficiency of algorithm, worked out

by the author, a comparison with solutions known from

literature was carried out. Each neural stereovision algo-

rithm was simulated in the same experimental conditions

(the same hardware and input images, the same software -

Dtest program). The output depth map (the error of depth’s

finding) and the time of simulation (the number of epochs)

were taken into consideration. Firstly, the discrete

Hopfield-like neural network was investigated in stereo-

matching problem. Very promising results, shown in [47],

encouraged the author to use this structure. The results of

simulations for simulated images can be seen in Fig. 9. The

Fig. 7 The interface of Dtest environment

Fig. 8 The ideal map of neuron activity with simulated stereo

pictures (a) and ideal depth map (b below) for simulated scene

(b above)
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author used algorithm and energy function described in

[47].

As can be clearly seen in Fig. 9, the result of stereo-

matching process is really poor. The relative error amounts

60,02 %. The time of simulation amounts 87 epochs, but it

must be stressed, that as an epoch the time of 10,000

neurons updating is taken (simulation was asynchronous,

so it is difficult to say about epochs—one random neuron

was updated at the same time). In the author’s opinion, the

main problem resides in the mode of network. Binary

neural net, used in very complex problems, can behave in

an indeterministic way. This is caused by trapping in local

minimum of energy [67]. A network in a state s may only

evolve if any of its n neighboring states has a lower energy.

Otherwise, the network does not evolve even when there

are other further states with lower energy. Only the surface

of the solutions hypercube can be penetrated, and there

is no possibility of the hypercube’s interior penetration

(only discrete values of neuron’s output are possible). The

evolution is also dependent on the sequence of activated

neurons (asynchronous implementation). The smallest

possible movement in the state space is the distance

between two neighboring vertexes. Thus, starting from the

same initial state, the possible final states may be very

different, following several activations and depending on

the sequence of activated neurons. The situation is shown

in Fig. 10.

Another problem in the above-described structure was

the form of energy function. In [47], the authors used the

term of uniqueness in the form of following equation:

E2 ¼
X

i

1�
X

k

vik

 !2

þ
X

k

1�
X

i

vik

 !2

: ð25Þ

This form can be appropriate only for analog networks.

One can notice that the Eq. (25) in one row or a column

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs:

n = 0 n = 5 n = 20 n = 50 n = 87

Fig. 9 The result of stereo-matching process carried out by discrete Hopfield-like neural network

(a) (b)Fig. 10 The representation of

possible states for a Hopfield

neural network with three

neurons (a), the numbers

indicate the energy associated

with each state and possible

evolution trajectories of this

network (b)
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generates exactly one neuron in high state of fitting matrix

and rest in low state. That indicates that each point for left

image must be matched to the points from the right image

and inversely. Such situation is of very rare occurrence in

the case of stereo-matching problem. It is impossible to

have rows or columns with each neuron in low state (which

means lack of matching). It is possible only for continuous

activated neurons (neurons in low, but non-zero states).

Then, t the discreet network, but with continuous

activity function, was investigated. The procedure and the

energy function were taken from [48]. The results of the

simulation can be seen in Fig. 11.

As can be clearly seen, the result of simulation is not

much better than in the case of the discrete-time Hopfield

network with discrete activation function. The relative

error amounts 59,62 %. The time of simulation amounts to

89 epochs. As can be concluded, the main problem is

discrete architecture of network, not the form of activation

function. In this case (continuous activation function), the

form of the term of uniqueness in the form (25) can be

accepted.

The maximum neural network had not t used in stereo-

matching problem before. But it must be stressed that

maximum network is a kind of discrete Hopfield-like

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs:

n = 0 n = 5 n = 20 n = 50 n = 89

Fig. 11 The result of stereo-matching process carried out by discrete Hopfield-like neural network with continuous activation function

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs:

n = 0 n = 5 n = 10 n = 30 n = 54

Fig. 12 The result of stereo-matching process carried out by maximum neural network
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network with specified discrete activation function, so it

can be predictable that this kind of network cannot give

better results than in previous cases. The result of simu-

lation of this kind of structure can be seen in Fig. 12.

Each comment concerning the discrete network which

was first tested is legitimating to maximum network. The

relative error amounts to 68.52 %. The only advantage was

the time of simulations: 54 epochs.

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs:

n = 0 n = 5 n = 20 n = 50 n = 83

Fig. 13 The result of stereo-matching process carried out by continuous Hopfield-like neural network with a sigmoidal activation function

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs of Hybrid Maximum
Network in analogue Hopfield mode:

n = 0 n = 5 n = 10 n = 25 n = 40

Neurons activity maps for 80 scanning line in individual epochs of Hybrid Maximum
Network in maximum mode:

n = 0 n = 5 n = 10 n = 15 n = 20

Fig. 14 The result of stereo-matching process carried out by HMNN for simulated stereo images
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The most appropriate solution to the stereo-matching

problem seems to be the analog neural network, described

in [44–46]. The author used his own energy function 18 to

algorithm. The results of such simulation can be seen in

Fig. 13.

As can be seen, the result is much better than in the

previous cases. The relative error amounts to 19.89 %. It is

much less, than for the previous network. The only prob-

lem is the computing speed—83 epochs. The author tried

to decrease this time without losing the accuracy by means

of the new architecture of network—HMNN.

An operational procedure for solving the stereo-match-

ing problem by HMNN is summarized as follows:

1. Assume number of image epipolar line h = 0;

2. Assume maximum number of iteration itmax enough to

find attraction area of global minimum;

3. IEF mapping into the analog Hopfield network:

(a) Compute external inputs of neurons and their

interconnection strength using (19) (with the

upkeep of symmetrical interconnection strength’s

matrix);

(b) Initialize states of neurons in heuristic way—

assume potentials vik proportional to correlation

coefficients Cik;

4. Continuous Hopfield network updating procedure for

energy minimization (working in continuous Hopfield

mode):

(a) For each neuron, compute the internal potential,

with the use of (8);

(b) For each neuron, compute the external potential

using (5);

(c) If number of iteration is equal itmax, go to (5), else

go to (a);

5. IEF mapping into Maximum Network:

(a) Compute external inputs of neurons and their

interconnection strength using (23) (with keep-

ing of symmetrical interconnection strength’s

matrix);

(b) Assume states of neurons the same as at the end

of working of continuous Hopfield network;

Left image: Right image: Obtained depth map:

Neurons activity maps for 80 scanning line in individual epochs of Hybrid Maximum
Network in analogue Hopfield mode:

n = 0 n = 5 n = 10 n = 25 n = 40

Neurons activity maps for 80 scanning line in individual epochs of Hybrid Maximum
Network in maximum mode:

n = 0 n = 5 n = 10 n = 15 n = 20

Fig. 15 The result of stereo-matching process carried out by HMNN for real stereo images
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6. Maximum Network updating procedure for energy

minimization (working in maximum mode):

(a) For each neuron, compute the internal potential,

with the use of (22);

(b) For each neuron, compute the external potential

using (21);

(c) If changes of internal potentials for each neurons

equal zero, proceed to (7), otherwise, proceed to

(a);

7. If present epipolar line is not the last one, increment

number of line h = h ? 1 and proceed to (2),

otherwise, proceed o to (8);

8. End simulation.

It was assumed that the attraction area of the global

minimum was usually reached after 50 iterations (empiri-

cally confirmed). In maximum mode, a stable state is

reached after at most 20 iterations, and this limit of itera-

tion was assumed in order to have possibility of confir-

mation of results reached for different stereo images.

The results of stereo-matching process, carried out by

HMNN, can be seen below, for simulated images in Fig. 14

and for real images in Fig. 15.

At Figs. 14 and 15 in the first row, stereo pictures, used

for stereo-matching process, were shown. The second row

shows neurons activity maps for 80 scanning line (arbitrary

assumed) in iterations (number of ‘‘n’’) of net working in

analog Hopfield mode. In the next row, the obtained depth

map can be seen. The same sequence was repeated for the

network working in maximum mode.

The error of stereo-matching process can be calculated

only for simulated pictures (possibility of neurons activity

map determination).

The analysis of network working (Figs. 14, 15) shows

that in analog Hopfield mode, fitting is non-uniqueness.

This can be concluded by analyzing the neurons activity

maps. In the case of uniqueness, stereo matching in each

row and each column of fitting matrix (its graphical form is

neurons activity map) should be placed at very most

one non-zero element, whereas in stable state, few non-

vanishing elements can be observed in columns and rows

of fitting matrix. Because of non-uniqueness, it is difficult

to say anything about the sequences in the areas. Also, the

term of depth continuity upkeep in areas cannot be stated.

This mistake can be corrected in maximum working mode.

Maximum activation function involves the meeting of

uniqueness term, which can be seen in iterations of network

in maximum mode. In each line of FM, at the most one

non-zero element can be seen. Stable state is reached very

fast thanks to limitation of possible neuron states’ config-

uration (maximum activation function). Compared with the

analog Hopfield network, the Hybrid-Maximum Network is

working with the same efficiency, but much faster.

The results of the Hybrid-Maximum Network were

presented side to side with the results of stereo-matching

process, performed by some other Hopfield-based networks

The name of network Obtained depth map Error Epochs number

Discrete Hopfield-like
neural network

60,02

Discrete Hopfield-like
neural network with
continuous activation
function

59,62 %

Maximum neural
network

68.52

Analogue Hopfield-like
neural network

19.89

Hybrid Maximum
Network 20.04

% 87

89

% 54

% 83

% 60

Fig. 16 The evaluation of

results of working neural

networks investigated in the

present publication
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and mentioned in the present publication. The evaluation of

obtained depths, errors, and numbers of epochs needed to

reaching stable was depicted in Fig. 16.

As can be clearly seen, it is only the results obtained by

continuous and Hybrid-Maximum Networks that can be

accepted. Almost the same errors were obtained for this

network, but the HMNN was faster—the number of epochs

for this kind of structure amounted to 0.72 of analog net-

work’s epochs. The decrease in time of work performance

is very important, as far as the use in real time is con-

cerned. Taking this into consideration, it must be said that

HMNN is working in the most efficient way among each

investigated neural structures.

4 Conclusion

This study shows the use of an innovative architecture of

Hopfield based on neural network–Hybrid-Maximum Net-

work. The network introduced here has been used in stereo-

matching process. The stereo correspondence problem has

been formulated as an optimization task where an energy

function of network which represents the mapping of all

constraints of the solution, is minimized. The advantage of

using a Hopfield neural network is that a global match is

automatically achieved because all the neurons are inter-

connected in a feedback loop so that the output of one

affects the input of all the others. The convergence into a

stable state is guaranteed for continuous Hopfield-like net-

work with continuous activation function. The parallel

execution capability of this structure is also a powerful

property that should be taken into consideration in terms of

the target system assisting aged and/or visually impaired

people. Additionally, thanks to the use of maximum mode,

the time of computation significantly decreases.

The experimental results indicate significant gains from

using of maximum mode after finding the global mini-

mum’s attraction area. A comparative analysis, performed

with the classical Hopfield network (analog and discrete),

Maximum Network and Hybrid-Maximum Network, indi-

cated a better performance of latter type of network. The

solution to the stereo correspondence problem was similar

to that obtained by the analog Hopfield-like network, but

the number of iterations was much smaller

The computational time is crucial to real-time applica-

tions . Thus, the use of novel Hybrid-Maximal Network is

justified.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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