Skip to main content
Log in

Medication-related osteonecrosis of the jaw: evolving research for multimodality medical management

  • Review
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Medication-related osteonecrosis of the jaw (MRONJ) is a debilitating side effect of antiresorptive and antiangiogenic agents that can lead to progressive bone destruction in the maxillofacial region. Dental surgery, including tooth extractions, commonly trigger the onset of MRONJ. While guidelines suggest avoiding extraction when possible, complete avoidance is not always feasible, as necrosis can develop from dental and periodontal disease without dental procedures. The goal of this article is to provide an update review of current preventive and therapeutic approaches for MRONJ.

Methods

A comprehensive electronic search was conducted on PubMed/MEDLINE, Embase, and Scopus databases. All English articles encompassing randomized controlled trials, systematic reviews, observational studies, and case studies were reviewed. The current medical treatments and adjuvant therapies for managing MRONJ patients were critically assessed and summarized.

Results

Pentoxifylline and alpha tocopherol (PENT-E), teriparatide, photobiomodulation (PBM), photodynamic therapy (PDT), and the use of growth factors have shown to enhance healing in MRONJ patients. Implementing these methods alone or in conjunction with surgical treatment has been linked to reduced discomfort and improved wound healing and increased new bone formation.

Discussion

While several adjuvant treatment modalities exhibit promising results in facilitating the healing process, current clinical practice guidelines predominantly recommend antibiotic therapy as a non-surgical approach, primarily addressing secondary infections in necrotic areas. However, this mainly addresses the potential infectious complication of MRONJ. Medical approaches including PENT-E, teriparatide, PBM, and PDT can result in successful management and should be considered prior to taking a surgical approach. Combined medical management for both preventing and managing MRONJ holds potential for achieving optimal clinical outcomes and avoiding surgical intervention, requiring further validation through larger studies and controlled trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. Ruggiero SL et al (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg 72(10):1938–1956

    Article  PubMed  Google Scholar 

  2. Yarom N et al (2019) Medication-related osteonecrosis of the jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J Clin Oncol 37(25):2270–2290

    Article  PubMed  Google Scholar 

  3. Ruggiero SL et al (2022) American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J Oral Maxillofac Surg 80(5):920–943

    Article  PubMed  Google Scholar 

  4. Li J, Wang W (2020) Positive effect of pentoxifylline on medication-related osteonecrosis of the jaw. J Stomatol Oral Maxillofac Surg 121(3):264–267

    Article  CAS  PubMed  Google Scholar 

  5. Polidoro S et al (2013) Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw. Mutat Res 757(2):104–113

    Article  CAS  PubMed  Google Scholar 

  6. Kizub DA et al (2021) Risk factors for bisphosphonate-associated osteonecrosis of the jaw in the prospective randomized trial of adjuvant bisphosphonates for early-stage breast cancer (SWOG 0307). Support Care Cancer 29(5):2509–2517

    Article  PubMed  Google Scholar 

  7. Fusco V, Campisi G, Bedogni A (2022) One changing and challenging scenario: the treatment of cancer patients with bone metastases by bisphosphonates and denosumab, the cost-benefit evaluation of different options, and the risk of medication-related osteonecrosis of the jaw (MRONJ). Support Care Cancer 30(9):7047–7051

    Article  PubMed  PubMed Central  Google Scholar 

  8. Soutome S et al (2022) Risk factors for developing medication-related osteonecrosis of the jaw when preserving the tooth that can be a source of infection in cancer patients receiving high-dose antiresorptive agents: a retrospective study. Support Care Cancer 30(9):7241–7248

    Article  PubMed  Google Scholar 

  9. Li YY et al (2020) Bisphosphonates and risk of cancers: a systematic review and meta-analysis. Br J Cancer 123(10):1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83(9):1032–1045

    Article  CAS  PubMed  Google Scholar 

  11. Aghaloo T, Hazboun R, Tetradis S (2015) Pathophysiology of osteonecrosis of the jaws. Oral Maxillofac Surg Clin North Am 27(4):489–496

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nogueira D, Caldas IM, Dinis-Oliveira RJ (2023) Bisphosphonates and osteonecrosis of the jaws: clinical and forensic aspects. Arch Oral Biol 155:105792

    Article  CAS  PubMed  Google Scholar 

  13. Miller PD et al (2020) Efficacy and safety of denosumab vs. bisphosphonates in postmenopausal women previously treated with oral bisphosphonates. Osteoporos Int 31(1):181–191

    Article  CAS  PubMed  Google Scholar 

  14. De Santis D et al (2020) New trends in adjunctive treatment and diagnosis in medication-related osteonecrosis of the jaw: a 10-year review. J Biol Regul Homeost Agents 34(6 Suppl. 2):37–48

    PubMed  Google Scholar 

  15. Façanha de Carvalho E et al (2021) Cilostazol and tocopherol in the management of medication-related osteonecrosis of the jaw: new insights from a case report. J. Oral Maxillofac. Surg 79(12):2499–2506

    Article  Google Scholar 

  16. Varoni EM et al (2021) Conservative management of medication-related osteonecrosis of the jaws (MRONJ): a retrospective cohort study. Antibiotics 10(2):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melián Rivas AN, Rojas Donaire JA (2021) Conservative treatment of refractory medication-related osteonecrosis of the jaw using the PENTO protocol: a case reportOdontoestomatología 23(38):e406

  18. Seo MH et al (2020) The effects of pentoxifylline and tocopherol in jaw osteomyelitis. J Korean Assoc Oral Maxillofac Surg 46(1):19–27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Owosho AA et al (2016) Pentoxifylline and tocopherol in the management of cancer patients with medication-related osteonecrosis of the jaw: an observational retrospective study of initial case series. Oral Surg Oral Med Oral Pathol Oral Radiol 122(4):455–459

    Article  PubMed  PubMed Central  Google Scholar 

  20. Magremanne M, Reychler H (2014) Pentoxifylline and tocopherol in the treatment of yearly zoledronic acid-related osteonecrosis of the jaw in a corticosteroid-induced osteoporosis. J Oral Maxillofac Surg 72(2):334–337

    Article  PubMed  Google Scholar 

  21. Nica DF et al (2021) Complementarity of photo-biomodulation, surgical treatment, and antibiotherapy for medication-related osteonecrosis of the jaws (MRONJ). Medicina (Kaunas) 57(2):145

  22. Monteiro L et al (2021) Photobiomodulation laser therapy in a Lenvatinib-related osteonecrosis of the jaw: a case report. J Clin Exp Dent 13(6):e626–e629

    Article  PubMed  PubMed Central  Google Scholar 

  23. Torres AA et al (2020) Medication-related osteonecrosis of the jaw and low-level laser therapy as adjuvant treatment: a case report. J Lasers Med Sci 11(4):497–499

    Article  PubMed  PubMed Central  Google Scholar 

  24. Şahin O et al (2020) Prevention of medication related osteonecrosis of the jaw after dentoalveolar surgery: an institution’s experience. J Clin Exp Dent 12(8):e771–e776

    Article  PubMed  PubMed Central  Google Scholar 

  25. Del Pilar Rodríguez-Sánchez M et al (2020) The effectiveness of the low-level laser, antibiotic and surgical therapy in the treatment of medication-related osteonecrosis of the jaws: a case report. J Lasers Med Sci 11(1):98–103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tenore G et al (2020) Management of medication-related osteonecrosis of the jaw (MRONJ) using leukocyte- and platelet-rich fibrin (L-PRF) and photobiomodulation: a retrospective study. J Clin Med 9(11):3505

  27. Javelot MJ et al (2020) Rituximab as a trigger factor of medication-related osteonecrosis of the jaw. A case report. J Stomatol Oral Maxillofac Surg 121(3):300–304

  28. Merigo E et al (2018) Combined approach to treat medication-related osteonecrosis of the jaws. J Lasers Med Sci 9(2):92–100

    Article  PubMed  PubMed Central  Google Scholar 

  29. Favia G et al (2018) Medication-related osteonecrosis of the jaw: surgical or non-surgical treatment? Oral Dis 24(1–2):238–242

    Article  CAS  PubMed  Google Scholar 

  30. Rugani P et al (2015) Stage-related treatment concept of medication-related osteonecrosis of the jaw—a case series. Clin Oral Invest 19:1329–1338

    Article  Google Scholar 

  31. Altay MA et al (2014) Low-level laser therapy supported surgical treatment of bisphosphonate related osteonecrosis of jaws: a retrospective analysis of 11 cases. Photomed Laser Surg 32(8):468–475

    Article  CAS  PubMed  Google Scholar 

  32. Silva MC et al (2023) Antimicrobian photodynamic therapy in medication-related osteonecrosis of the jaws. J. Craniofac. Surg 34(2):839–840

    Article  PubMed  Google Scholar 

  33. Paiva AB et al (2022) Antimicrobial photodynamic and photobiomodulation adjuvant therapies for medication-related osteonecrosis of the jaw–report of two cases with long-term follow-up. Clinical and Laboratorial Research in Dentistry

  34. Schussel JL et al (2022) Antimicrobial photodynamic therapy as a treatment option for inoperable cases of medication-related Osteonecrosis of the jaws. Photodiagn Photodyn Ther 39:102947

    Article  CAS  Google Scholar 

  35. Viganò R et al (2021) BPFC pure growth factor, PDT and LLLT for the treatment of severe MRONJ non-responsive to prolonged antibiotic therapy. Qeios

  36. Almeida M et al (2021) Photodynamic therapy as an adjunct in the treatment of medication-related osteonecrosis of the jaw: a case report. J Lasers Med Sci 12:e12

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tartaroti NC et al (2020) Antimicrobial photodynamic and photobiomodulation adjuvant therapies for prevention and treatment of medication-related osteonecrosis of the jaws: case series and long-term follow-up. Photodiagnosis Photodyn Ther 29:101651

    Article  CAS  PubMed  Google Scholar 

  38. Poli PP et al (2019) Adjunctive application of antimicrobial photodynamic therapy in the prevention of medication-related osteonecrosis of the jaw following dentoalveolar surgery: a case series. Photodiagn Photodyn Ther 27:117–123

    Article  Google Scholar 

  39. Israel MS et al (2016) Photodynamic therapy for medication-related osteonecrosis of the jaws: a case report. Int J Clin Med 7(12):824–828

    Article  Google Scholar 

  40. Minamisako MC et al (2016) Medication-related osteonecrosis of jaws: a low-level laser therapy and antimicrobial photodynamic therapy case approach. Case Reports Dentist 2016:6267406

  41. Lin LJ et al (2020) Management of stage 0 medication-related osteonecrosis of the jaw with hyperbaric oxygen therapy: a case report and review of the literature. Undersea Hyperb Med 47(2):241–251

  42. Fatema CN et al (2015) FDG-PET may predict the effectiveness of hyperbaric oxygen therapy in a patient with bisphosphonate-related osteonecrosis of the jaw: report of a case. Odontology 103(1):105–108

    Article  PubMed  Google Scholar 

  43. Al-Zoman KH et al (2013) Surgical management of bisphosphonate-related osteonecrosis of the jaw: report of three cases. J Palliat Care 29(1):52–57

    Article  PubMed  Google Scholar 

  44. Porcaro G et al (2022) Treatment of medication-related osteonecrosis of the jaw (MRONJ) with Er: YaG laser and ozone therapy: a case series. Inventions 7(4):97

    Article  Google Scholar 

  45. Di Fede O et al (2022) Ozone infiltration for osteonecrosis of the jaw therapy: a case series. J Clin Med 11(18):5307

  46. Nicolatou-Galitis O et al (2020) Alveolar bone histological necrosis observed prior to extractions in patients, who received bone-targeting agents. Oral Dis 26(5):955–966

    Article  PubMed  Google Scholar 

  47. Goker F et al (2020) Treatment of BRONJ with ozone/oxygen therapy and debridement with piezoelectric surgery. Eur Rev Med Pharmacol Sci 24(17):9094–9103

    CAS  PubMed  Google Scholar 

  48. Maluf G et al (2019) A rare case of bevacizumab-related osteonecrosis of the jaw associated with dental implants. International Journal of Implant Dentistry 5(1):1–6

    Article  Google Scholar 

  49. Brozoski M et al (2014) Adjuvant aqueous ozone in the treatment of bisphosphonate induced necrosis of the jaws: report of two cases and long-term follow-up. Minerva Stomatol 63(1–2):35–41

    CAS  PubMed  Google Scholar 

  50. Agrillo A et al (2012) Bisphosphonate-related osteonecrosis of the jaw (BRONJ): 5 year experience in the treatment of 131 cases with ozone therapy. Eur Rev Med Pharmacol Sci 16(12):1741–1747

    CAS  PubMed  Google Scholar 

  51. Delanian S, Lefaix JL (2004) The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol 73(2):119–131

    Article  PubMed  Google Scholar 

  52. Robard L et al (2014) Medical treatment of osteoradionecrosis of the mandible by PENTOCLO: preliminary results. Eur Ann Otorhinolaryngol Head Neck Dis 131(6):333–338

    Article  CAS  PubMed  Google Scholar 

  53. Martos-Fernández M et al (2018) Pentoxifylline, tocopherol, and clodronate for the treatment of mandibular osteoradionecrosis: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 125(5):431–439

    Article  PubMed  Google Scholar 

  54. Delfrate G et al (2022) Effect of pentoxifylline and α-tocopherol on medication-related osteonecrosis of the jaw in rats: before and after dental extraction. Arch Oral Biol 137:105397

    Article  PubMed  Google Scholar 

  55. Epstein MS et al (2010) Management of bisphosphonate-associated osteonecrosis: pentoxifylline and tocopherol in addition to antimicrobial therapy. An Initial Case Series Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 110(5):593–6

    Article  PubMed  Google Scholar 

  56. Heifetz-Li JJ et al (2019) Systematic review of the use of pentoxifylline and tocopherol for the treatment of medication-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol 128(5):491-497.e2

    Article  PubMed  Google Scholar 

  57. Cavalcante RC, Tomasetti G (2020) Pentoxifylline and tocopherol protocol to treat medication-related osteonecrosis of the jaw: a systematic literature review. J Craniomaxillofac Surg 48(11):1080–1086

    Article  PubMed  Google Scholar 

  58. Bashutski JD et al (2010) Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 363(25):2396–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bashutski JD et al (2012) Systemic teriparatide administration promotes osseous regeneration of an intrabony defect: a case report. Clin Adv Periodontics 2(2):66–71

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kwon YD et al (2012) Short-term teriparatide therapy as an adjunctive modality for bisphosphonate-related osteonecrosis of the jaws. Osteoporos Int 23(11):2721–2725

    Article  CAS  PubMed  Google Scholar 

  61. Kim KM et al (2014) Distinctive role of 6-month teriparatide treatment on intractable bisphosphonate-related osteonecrosis of the jaw. Osteoporos Int 25(5):1625–1632

    Article  CAS  PubMed  Google Scholar 

  62. Jung J et al (2017) Short-term teriparatide and recombinant human bone morphogenetic protein-2 for regenerative approach to medication-related osteonecrosis of the jaw: a preliminary study. J Bone Miner Res 32(12):2445–2452

    Article  CAS  PubMed  Google Scholar 

  63. Jung J et al (2021) Effect and timing of parathyroid hormone analog administration for preventing medication-related osteonecrosis of the jaws in a murine model. J Craniomaxillofac Surg 49(8):719–725

    Article  PubMed  Google Scholar 

  64. Kim JY et al (2021) Effects of pre-extraction intermittent PTH administration on extraction socket healing in bisphosphonate administered ovariectomized rats. Sci Rep 11(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sim IW et al (2020) Teriparatide promotes bone healing in medication-related osteonecrosis of the jaw: a placebo-controlled, randomized trial. J Clin Oncol 38(26):2971–2980

    Article  PubMed  Google Scholar 

  66. Ohbayashi Y et al (2020) A comparative effectiveness pilot study of teriparatide for medication-related osteonecrosis of the jaw: daily versus weekly administration. Osteoporos Int 31(3):577–585

    Article  CAS  PubMed  Google Scholar 

  67. Kim KM et al (2023) Effects of daily versus weekly teriparatide for medication-related osteonecrosis of the jaw: a case–control studyOral Dis 00:1–10

  68. Tempesta A et al (2023) Medication-related osteonecrosis of the jaw triggered by endodontic failure in oncologic patients. Oral Dis 29(7):2799–2805

    Article  PubMed  Google Scholar 

  69. Thumbigere-Math V et al (2014) Periodontal disease as a risk factor for bisphosphonate-related osteonecrosis of the jaw. J Periodontol 85(2):226–233

    Article  PubMed  Google Scholar 

  70. Soma T et al (2021) Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab 39(3):372–384

    Article  CAS  PubMed  Google Scholar 

  71. Kim T et al (2018) Removal of pre-existing periodontal inflammatory condition before tooth extraction ameliorates medication-related osteonecrosis of the jaw-like lesion in mice. Am J Pathol 188(10):2318–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuroshima S et al (2019) Systemic administration of quality- and quantity-controlled PBMNCs reduces bisphosphonate-related osteonecrosis of jaw-like lesions in mice. Stem Cell Res Ther 10(1):209

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moretti F et al (2011) A prospective clinical trial for assessing the efficacy of a minimally invasive protocol in patients with bisphosphonate-associated osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(6):777–782

    Article  PubMed  Google Scholar 

  74. Bosco G et al (2018) Hyperbaric oxygen therapy ameliorates osteonecrosis in patients by modulating inflammation and oxidative stress. J Enzyme Inhib Med Chem 33(1):1501–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thom SR (2009) Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 106(3):988–995

    Article  CAS  PubMed  Google Scholar 

  76. Vezzani G et al (2017) Hyperbaric oxygen therapy modulates serum OPG/RANKL in femoral head necrosis patients. J Enzyme Inhib Med Chem 32(1):707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grassmann J et al (2015) Hyperbaric oxygen therapy improves angiogenesis and bone formation in critical sized diaphyseal defects. J Orthop Res 33(4):513–520

    Article  CAS  PubMed  Google Scholar 

  78. Freiberger JJ et al (2012) What is the role of hyperbaric oxygen in the management of bisphosphonate-related osteonecrosis of the jaw: a randomized controlled trial of hyperbaric oxygen as an adjunct to surgery and antibiotics. J Oral Maxillofac Surg 70(7):1573–1583

    Article  PubMed  Google Scholar 

  79. Beth-Tasdogan NH et al (2022) Interventions for managing medication-related osteonecrosis of the jaw. Cochr Database Syst Rev 7(7):CD012432

  80. Agrillo A et al (2006) New therapeutic protocol in the treatment of avascular necrosis of the jaws. J Craniofac Surg 17(6):1080–1083

    Article  PubMed  Google Scholar 

  81. Daigo Y et al (2020) Wound healing and cell dynamics including mesenchymal and dental pulp stem cells induced by photobiomodulation therapy: an example of socket-preserving effects after tooth extraction in rats and a literature review. Int J Mol Sci 21(18):6850

  82. Forte CPF et al (2020) Photobiomodulation therapy reduces the inflammatory process without inhibiting bone deposition in rats in an extraction model. Photobiomodul Photomed Laser Surg 38(11):673–678

    CAS  PubMed  Google Scholar 

  83. Mohamad SA et al (2021) Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 20(5):699–714

    Article  CAS  PubMed  Google Scholar 

  84. Kulkarni S, Meer M, George R (2019) Efficacy of photobiomodulation on accelerating bone healing after tooth extraction: a systematic review. Lasers Med Sci 34(4):685–692

    Article  PubMed  Google Scholar 

  85. Escudero JSB et al (2019) Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury 50(11):1853–1867

    Article  PubMed  Google Scholar 

  86. Lopes CCA et al (2022) Effectiveness of photobiomodulation therapy on human bone healing in dentistry: a systematic review. Photobiomodul Photomed Laser Surg 40(7):440–453

    CAS  PubMed  Google Scholar 

  87. Neto FCJ et al (2020) Effects of photobiomodulation in the treatment of fractures: a systematic review and meta-analysis of randomized clinical trials. Lasers Med Sci 35(3):513–522

    Article  PubMed  Google Scholar 

  88. da Guarda MG et al (2012) Laser GaAlAs (λ860 nm) photobiomodulation for the treatment of bisphosphonate-induced osteonecrosis of the jaw. Photomed Laser Surg 30(5):293–297

    Article  PubMed  Google Scholar 

  89. Momesso GAC et al (2020) Laser surgery in management of medication-related osteonecrosis of the jaws: a meta-analysis. Oral Maxillofac Surg 24(2):133–144

    Article  PubMed  Google Scholar 

  90. Magalhães IA et al (2020) Photobiomodulation and antimicrobial photodynamic therapy as adjunct in the treatment and prevention of osteoradionecrosis of the jaws: a case report. Photodiagnosis Photodyn Ther 31:101959

    Article  PubMed  Google Scholar 

  91. Ateş GB et al (2017) Methylene blue mediated photobiomodulation on human osteoblast cells. Lasers Med Sci 32(8):1847–1855

    Article  PubMed  Google Scholar 

  92. Jadah NA, Shamkhi IA, Shamkhi JA (2022) Photobiomodulation and antimicrobial photodynamic influence of a 650 nm wavelength on staphylocoagulase and viability of Staphylococcus aurous. J Lasers Med Sci 13:e5

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alqerban A (2020) Efficacy of antimicrobial photodynamic and photobiomodulation therapy against Treponema denticola, fusobacterium nucleatum and human beta defensin-2 levels in patients with gingivitis undergoing fixed orthodontic treatment: A clinic-laboratory study. Photodiagnosis Photodyn Ther 29:101659

    Article  CAS  PubMed  Google Scholar 

  94. Silva PGB et al (2022) Photodynamic therapy and photobiomodulation therapy in zoledronic acid-induced osteonecrosis in rats. Photodiagnosis Photodyn Ther 38:102889

    Article  CAS  PubMed  Google Scholar 

  95. de Cássia Dias Viana Andrade, R., et al (2022) Comparative randomized trial study about the efficacy of photobiomodulation and curcumin antimicrobial photodynamic therapy as a coadjuvant treatment of oral mucositis in oncologic patients: antimicrobial, analgesic, and degree alteration effect. Support Care Cancer. 9:7365–7371

    Article  Google Scholar 

  96. Calderipe CB et al (2024) What is the effect of lactoferrin on oral and jawbone tissue repair? A systematic review. Brit J Oral Maxillofacial Surg 62(1):4–14

  97. Agatieva E et al (2021) Evaluation of direct and cell-mediated lactoferrin gene therapy for the maxillofacial area abscesses in rats. Pharmaceutics 13(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xiao X et al (2023) Gavage-administered lactoferrin promotes palatal expansion stability in a dose-dependent manner. Oral Dis 29(1):254–264

    Article  PubMed  Google Scholar 

  99. Calvani F et al (2018) Efficacy of bovine lactoferrin in the post-surgical treatment of patients suffering from bisphosphonate-related osteonecrosis of the jaws: an open-label study. Biometals 31(3):445–455

    Article  CAS  PubMed  Google Scholar 

  100. Yang Z et al (2017) Fluvastatin prevents lung adenocarcinoma bone metastasis by triggering autophagy. EBioMedicine 19:49–59

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ko HHT et al (2018) In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. Eur J Clin Microbiol Infect Dis 37(6):1125–1135

    Article  CAS  PubMed  Google Scholar 

  102. Yasunami N et al (2015) Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres An in vitro and rodent in vivo study. Biomed Mater 11(1):015001

    Article  PubMed  Google Scholar 

  103. Adachi N et al (2020) Preventive effect of fluvastatin on the development of medication-related osteonecrosis of the jaw. Sci Rep 10(1):5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sanda K et al (2022) Therapeutic effect of fluvastatin on medication-related osteonecrosis of the jaw. J Periodontol 93(6):837–846

    Article  CAS  PubMed  Google Scholar 

  105. Jang WG et al (2011) Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 48(4):885–893

    Article  CAS  PubMed  Google Scholar 

  106. Park SH et al (2020) Metformin coordinates osteoblast/osteoclast differentiation associated with ischemic osteonecrosis. Aging (Albany NY) 12(6):4727–4741

    Article  CAS  PubMed  Google Scholar 

  107. Chen K et al (2019) Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway. Biomed Pharmacother 115:108875

    Article  CAS  PubMed  Google Scholar 

  108. Chen Y et al (2020) Metformin, an AMPK activator, inhibits activation of FLSs but promotes HAPLN1 secretion. Mol Ther Methods Clin Dev 17:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gharib M et al (2021) Efficacy and safety of metformin use in rheumatoid arthritis: a randomized controlled study. Front Pharmacol 12:726490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakagawa T et al (2021) Effects of metformin on the prevention of bisphosphonate-related osteonecrosis of the jaw-like lesions in rats. J Prosthodont Res 65(2):219–224

    Article  PubMed  Google Scholar 

  111. Mücke T et al (2016) Prevention of bisphosphonate-related osteonecrosis of the jaws in patients with prostate cancer treated with zoledronic acid - a prospective study over 6 years. J Craniomaxillofac Surg 44(10):1689–1693

    Article  PubMed  Google Scholar 

  112. Ottesen C et al (2022) Tooth extractions in patients with cancer receiving high-dose antiresorptive medication: a randomized clinical feasibility trial of drug holiday versus drug continuation. Oral Surg Oral Med Oral Pathol Oral Radiol 133(2):165–173

    Article  PubMed  Google Scholar 

  113. Özalp Ö et al (2021) Promising results of surgical management of advanced medication related osteonecrosis of the jaws using adjunctive leukocyte and platelet rich fibrin. BMC Oral Health 21(1):613

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lopez-Jornet P et al (2016) Medication-related osteonecrosis of the jaw: is autologous platelet concentrate application effective for prevention and treatment? A systematic review J Craniomaxillofac Surg 44(8):1067–1072

    Article  PubMed  Google Scholar 

  115. Yüce MO, Adalı E, Işık G (2021) The effect of concentrated growth factor (CGF) in the surgical treatment of medication-related osteonecrosis of the jaw (MRONJ) in osteoporosis patients: a randomized controlled study. Clin Oral Investig 25(7):4529–4541

    Article  PubMed  Google Scholar 

  116. On SW et al (2021) Various therapeutic methods for the treatment of medication-related osteonecrosis of the jaw (MRONJ) and their limitations: a narrative review on new molecular and cellular therapeutic approaches. Antioxidants (Basel) 10(5):680

  117. Asaka T et al (2017) Platelet-rich fibrin may reduce the risk of delayed recovery in tooth-extracted patients undergoing oral bisphosphonate therapy: a trial study. Clin Oral Investig 21(7):2165–2172

    Article  PubMed  Google Scholar 

  118. Ragazzo M et al (2022) Human amniotic membrane: an improvement in the treatment of Medication-related osteonecrosis of the jaw (MRONJ)? A case-control study Cell Tissue Bank 23(1):129–141

    Article  CAS  PubMed  Google Scholar 

  119. Inchingolo F et al (2017) Platelet rich fibrin in the management of medication-related osteonecrosis of the jaw: a clinical and histopathological evaluation. J Biol Regul Homeost Agents 31(3):811–816

    CAS  PubMed  Google Scholar 

  120. Park JH, Kim JW, Kim SJ (2017) Does the addition of bone morphogenetic protein 2 to platelet-rich fibrin improve healing after treatment for medication-related osteonecrosis of the jaw? J Oral Maxillofac Surg 75(6):1176–1184

    Article  PubMed  Google Scholar 

  121. Ye P et al (2021) The role of autologous platelet concentrates in the treatment of medication-related osteonecrosis of the jaw. J Craniofac Surg 32(2):621–625

    Article  PubMed  Google Scholar 

  122. Epstein JB et al (2023) Medication-related osteonecrosis of the jaw: successful medical management of complex maxillary alveolus with sinus involvement. Case Rep Oncol 16(1):397–413

    PubMed  Google Scholar 

  123. Breik O et al (2019) Is there a role for pentoxifylline and tocopherol in the management of advanced osteoradionecrosis of the jaws with pathological fractures? Case reports and review of the literature. Int J Oral Maxillofac Surg 48(8):1022–1027

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JE and FS contributed to the study conception and design. AA contributed to literature search. AA and JE contributed to original draft preparation. JE and FS contributed to critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Firoozeh Samim.

Ethics declarations

Ethics approval

The systematic review is not subject to ethical review.

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolrahmani, A., Epstein, J.B. & Samim, F. Medication-related osteonecrosis of the jaw: evolving research for multimodality medical management. Support Care Cancer 32, 212 (2024). https://doi.org/10.1007/s00520-024-08388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00520-024-08388-4

Keywords

Navigation