Skip to main content

Advertisement

Log in

Evolution of predictive risk factor analysis for chemotherapy-related toxicity

  • Review
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

The causes of variation in toxicity to the same treatment regimen among seemingly similar patients remain largely unknown. There was tremendous optimism that the patient’s germline genome would be strongly predictive of treatment-related toxicity and could be used to personalize treatment and improve therapeutic outcomes. However, there has been limited success in discovering robust pharmacogenetic predictors of treatment-related toxicity and even less progress in translating the few validated predictors into clinical practice. It is apparent that identification of toxicity predictors that can be used to predict and prevent treatment-related toxicity will require thinking beyond germline genomics. To that end, we propose an integrated biomarker discovery approach that recognizes that a patient’s toxicity risk is determined by the cumulative effects of a broad range of “omic” and non-omic factors. This commentary describes the limited success in discovering and translating clinical and pharmacogenetic toxicity predictors into clinical practice. We illustrate the evolution of cancer toxicity biomarker discovery and translation through studies of taxane-induced peripheral neuropathy, which is one of the most common and debilitating side effects of cancer treatment. We then discuss the opportunities for discovering non-genomic (e.g., metabolomic, lipidomic, transcriptomic, proteomic, microbiomic, medical, behavioral, environmental) and integrated biomarkers that may be more strongly predictive of toxicity risk and the potential challenges with translating integrated biomarkers into clinical practice. This integrated biomarker discovery approach may circumvent some of the major limitations in toxicity biomarker science and move precision oncology treatment forward so that patients receive maximum treatment benefit with minimal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cobain EF, Wu YM, Vats P, Chugh R, Worden F, Smith DC, Schuetze SM, Zalupski MM, Sahai V, Alva A et al (2021) Assessment of clinical benefit of integrative genomic profiling in advanced solid tumors. JAMA Oncol 7(4):525–533. https://doi.org/10.1001/jamaoncol.2020.7987

    Article  PubMed  Google Scholar 

  2. Hayes DF (2021) Defining clinical utility of tumor biomarker tests: a clinician’s viewpoint. J Clin Oncol 39(3):238–248. https://doi.org/10.1200/JCO.1220.01572

    Article  PubMed  Google Scholar 

  3. Hertz DL, McShane LM, Hayes DF (2022) Defining clinical utility of germline indicators of toxicity risk: a perspective. J Clin Oncol 24(10):02209

    Google Scholar 

  4. Hertz DL (2022) Assessment of the clinical utility of pretreatment DPYD testing for patients receiving fluoropyrimidine chemotherapy. J Clin Oncol 15(10):00037

    Google Scholar 

  5. Ioannidis JP (2013) To replicate or not to replicate: the case of pharmacogenetic studies: have pharmacogenomics failed, or do they just need larger-scale evidence and more replication? Circ Cardiovasc Genet 6(4):413–418

    Article  PubMed  Google Scholar 

  6. Patel JN (2016) Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmgenomics Pers Med 9:65–77

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Travis LB, Fossa SD, Sesso HD, Frisina RD, Herrmann DN, Beard CJ, Feldman DR, Pagliaro LC, Miller RC, Vaughn DJ et al (2014) Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J Natl Cancer Inst 106(5):dju044. https://doi.org/10.1093/jnci/dju044

  8. Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45(3):925–937

    Article  CAS  PubMed  Google Scholar 

  9. Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF et al (2018) Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clin Cancer Res 24(15):3602–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Postma TJ, Vermorken JB, Liefting AJM, Pinedo HM, Heimans JJ (1995) Paclitaxel-induced neuropathy. Ann Oncol 6(5):489–494

    Article  CAS  PubMed  Google Scholar 

  11. Joerger M, von Pawel J, Kraff S, Fischer JR, Eberhardt W, Gauler TC, Mueller L, Reinmuth N, Reck M, Kimmich M et al (2016) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 27(10):1895–1902

    Article  CAS  PubMed  Google Scholar 

  12. Murphy R, Halford S, Symeonides SN (2023) Project Optimus, an FDA initiative: considerations for cancer drug development internationally, from an academic perspective. Front Oncol 13:1144056. https://doi.org/10.3389/fonc.2023.1144056

  13. Zirkelbach JF, Shah M, Vallejo J, Cheng J, Ayyoub A, Liu J, Hudson R, Sridhara R, Ison G, Amiri-Kordestani L et al (2022) Improving dose-optimization processes used in oncology drug development to minimize toxicity and maximize benefit to patients. J Clin Oncol 40(30):3489–3500

    Article  Google Scholar 

  14. Hertz, D.L., Tofthagen, C., Faithfull, S. (2021). Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). In: Lustberg, M., Loprinzi, C. (eds) Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-030-78663-2_2

  15. Speck RM, Sammel MD, Farrar JT, Hennessy S, Mao JJ, Stineman MG, DeMichele A (2013) Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract 9(5):e234-240

    Article  PubMed  Google Scholar 

  16. Hershman DL, Till C, Wright JD, Awad D, Ramsey SD, Barlow WE, Minasian LM, Unger J (2016) Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in Southwest Oncology Group clinical trials. J Clin Oncol 34(25):3014–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider BP, Shen F, Jiang G, O'Neill A, Radovich M, Li L, Gardner L, Lai D, Foroud T, Sparano JA et al (2017) Impact of genetic ancestry on outcomes in ECOG-ACRIN-E5103. JCO Precis Oncol 2017. https://doi.org/10.1200/PO.17.00059

  18. Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF, Benbow JM, Muss HB (2017) Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. Clin Cancer Res 23(3):658–665. https://doi.org/10.1158/1078-0432.CCR-1116-0940

    Article  CAS  PubMed  Google Scholar 

  19. Hertz DL, Chen L, Henry NL, Griggs JJ, Hayes DF, Derstine BA, Su GL, Wang SC, Pai MP (2022) Muscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing. Br J Clin Pharmacol 88(7):3222–3229. https://doi.org/10.1111/bcp.15244

    Article  CAS  PubMed  Google Scholar 

  20. Mongiovi JM, Zirpoli GR, Cannioto R, Sucheston-Campbell LE, Hershman DL, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ et al (2018) Associations between self-reported diet during treatment and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221). Breast Cancer Res 20(1):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zirpoli GR, McCann SE, Sucheston-Campbell LE, Hershman DL, Ciupak G, Davis W, Unger JM, Moore HCF, Stewart JA, Isaacs C et al (2017) Supplement use and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221): the DELCaP study. J Natl Cancer Inst 109(12):djx098. https://doi.org/10.1093/jnci/djx098

  22. Kleckner IR, Kamen C, Gewandter JS, Mohile NA, Heckler CE, Culakova E, Fung C, Janelsins MC, Asare M, Lin PJ et al (2018) Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support Care Cancer 26(4):1019–1028

    Article  PubMed  Google Scholar 

  23. Greenlee H, Hershman DL, Shi Z, Kwan ML, Ergas IJ, Roh JM, Kushi LH (2017) BMI, lifestyle factors and taxane-induced neuropathy in breast cancer patients: the pathways study. J Natl Cancer Inst 109(12):djx098. https://doi.org/10.1093/jnci/djx098

  24. Hertz DL, Rae J (2015) Pharmacogenetics of cancer drugs. Annu Rev Med 66:65–81

    Article  CAS  PubMed  Google Scholar 

  25. Diasio RB, Beavers TL, Carpenter JT (1988) Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest 81(1):47–51. https://doi.org/10.1172/JCI113308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hertz DL (2021) Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 6:1–13

    Google Scholar 

  27. Hertz DL, Ramsey LB, Gopalakrishnan M, Leeder JS, Van Driest SL (2021) Analysis approaches to identify pharmacogenetic associations with pharmacodynamics. Clin Pharmacol Ther 110(3):589–594. https://doi.org/10.1002/cpt.2312

    Article  PubMed  Google Scholar 

  28. Hertz DL, McLeod HL (2014) Using pharmacogene polymorphism panels to detect germline pharmacodynamic markers in oncology. Clin Cancer Res 20(10):2530–2540

    Article  CAS  PubMed  Google Scholar 

  29. Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R, Cox NJ, Roden DM (2013) Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet Genomics 23(8):383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McInnes G, Yee SW, Pershad Y, Altman RB (2021) Genomewide association studies in pharmacogenomics. Clin Pharmacol Ther 110(3):637–648. https://doi.org/10.1002/cpt.2349

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N et al (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33(11):1235–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cliff J, Jorgensen AL, Lord R, Azam F, Cossar L, Carr DF, Pirmohamed M (2017) The molecular genetics of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Crit Rev Oncol Hematol 120:127–140

    Article  CAS  PubMed  Google Scholar 

  33. Khan Z, Jung M, Crow M, Mohindra R, Maiya V, Kaminker JS, Hackos DH, Chandler GS, McCarthy MI, Bhangale T (2023) Whole genome sequencing across clinical trials identifies rare coding variants in GPR68 associated with chemotherapy-induced peripheral neuropathy. Genome Med 15(1):45. https://doi.org/10.1186/s13073-13023-01193-13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, Watson D, Eclov RJ, Mefford J, McLeod HL et al (2012) A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 18(18):5099–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS et al (2020) Genome-wide meta-analysis validates a role for S1PR1 in microtubule targeting agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 108(3):625–634

    Article  CAS  PubMed  Google Scholar 

  36. Sucheston-Campbell LE, Clay-Gilmour AI, Barlow WE, Budd GT, Stram DO, Haiman CA, Sheng X, Yan L, Zirpoli G, Yao S et al (2018) Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics 28(2):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE et al (2016) Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin Cancer Res 22(19):4890–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider BP, Li L, Radovich M, Shen F, Miller KD, Flockhart DA, Jiang G, Vance G, Gardner L, Vatta M et al (2015) Genome-wide association studies for taxane-induced peripheral neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res 21(22):5082–5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diouf B, Crews KR, Lew G, Pei D, Cheng C, Bao J, Zheng JJ, Yang W, Fan Y, Wheeler HE et al (2015) Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313(8):815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaddurah-Daouk R, Weinshilboum RM (2014) Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther 95(2):154–167

    Article  CAS  PubMed  Google Scholar 

  41. Kennedy S (2002) The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis. Biomarkers 7(4):269–290. https://doi.org/10.1080/13547500210127318

    Article  CAS  PubMed  Google Scholar 

  42. Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM (2023) Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 164(2):198–213. https://doi.org/10.1053/j.gastro.2022.1010.1018

    Article  CAS  PubMed  Google Scholar 

  43. Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L (2019) Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: paving the way to personalized treatment. Genes (Basel) 10(3):191. https://doi.org/10.3390/genes10030191

    Article  CAS  PubMed  Google Scholar 

  44. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, Henry NL, Stringer KA, Hertz DL (2018) Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 171(3):657–666. https://doi.org/10.1007/s10549-018-4862-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maekawa K, Ri M, Nakajima M, Sekine A, Ueda R, Tohkin M, Miyata N, Saito Y, Iida S (2019) Serum lipidomics for exploring biomarkers of bortezomib therapy in patients with multiple myeloma. Cancer Sci 110(10):3267–3274. https://doi.org/10.1111/cas.14178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verma P, Devaraj J, Skiles JL, Sajdyk T, Ho RH, Hutchinson R, Wells E, Li L, Renbarger J, Cooper B et al (2020) A metabolomics approach for early prediction of vincristine-induced peripheral neuropathy. Sci Rep 10(1):9659. https://doi.org/10.1038/s41598-41020-66815-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen EI, Crew KD, Trivedi M, Awad D, Maurer M, Kalinsky K, Koller A, Patel P, Kim Kim J, Hershman DL (2015) Identifying predictors of taxane-induced peripheral neuropathy using mass spectrometry-based proteomics technology. PLoS ONE 10(12):e0145816

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sollini M, Bartoli F, Marciano A, Zanca R, Slart R, Erba PA (2020) Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 4(1):24. https://doi.org/10.1186/s41824-41020-00094-41828

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL et al (2019) Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 20(2):95–104

    Article  CAS  PubMed  Google Scholar 

  50. Chen L, Chen CS, Sun Y, Henry NL, Stringer KA, Hertz DL (2021) Feasibility of pharmacometabolomics to identify potential predictors of paclitaxel pharmacokinetic variability. Cancer Chemother Pharmacol 5(10):021–04300

    CAS  Google Scholar 

  51. Gréen H, Söderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA, Peterson C (2009) Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 104(2):130–137. https://doi.org/10.1111/j.1742-7843.2008.00351.x

    Article  CAS  PubMed  Google Scholar 

  52. Marcath LA, Kidwell KM, Vangipuram K, Gersch CL, Rae JM, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Smith EML et al (2020) Genetic variation in EPHA contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Br J Clin Pharmacol 86(5):880–890. https://doi.org/10.1111/bcp.14192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gligorijević V, Pržulj N (2015) Methods for biological data integration: perspectives and challenges. J R Soc Interface 12(112):20150571. https://doi.org/10.1098/rsif.20152015.20150571

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gligorijević V, Malod-Dognin N, Pržulj N (2016) Integrative methods for analyzing big data in precision medicine. Proteomics 16(5):741–758. https://doi.org/10.1002/pmic.201500396

    Article  CAS  PubMed  Google Scholar 

  55. López de Maturana E, Alonso L, Alarcón P, Martín-Antoniano IA, Pineda S, Piorno L, Calle ML, Malats N (2019) Challenges in the integration of omics and non-omics data. Genes (Basel) 10(3):238. https://doi.org/10.3390/genes10030238

    Article  CAS  PubMed  Google Scholar 

  56. Kang M, Ko E, Mersha TB (2022) A roadmap for multi-omics data integration using deep learning. Brief Bioinform 23(1):bbab454. https://doi.org/10.1093/bib/bbab1454

    Article  PubMed  Google Scholar 

  57. Gewandter JS, Kleckner AS, Marshall JH, Brown JS, Curtis LH, Bautista J, Dworkin RH, Kleckner IR, Kolb N, Mohile SG et al (2020) Chemotherapy-induced peripheral neuropathy (CIPN) and its treatment: an NIH Collaboratory study of claims data. Support Care Cancer 28(6):2553–2562. https://doi.org/10.1007/s00520-00019-05063-x

    Article  PubMed  Google Scholar 

  58. Basch E, Iasonos A, McDonough T, Barz A, Culkin A, Kris MG, Scher HI, Schrag D (2006) Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: results of a questionnaire-based study. Lancet Oncol 7(11):903–909

    Article  PubMed  Google Scholar 

  59. Basch E, Jia X, Heller G, Barz A, Sit L, Fruscione M, Appawu M, Iasonos A, Atkinson T, Goldfarb S et al (2009) Adverse symptom event reporting by patients vs clinicians: relationships with clinical outcomes. J Natl Cancer Inst 101(23):1624–1632

    Article  PubMed  PubMed Central  Google Scholar 

  60. Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, Leung KT, Li YC, Wong KH, Suen LKP et al (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hertz DL (2019) Concerns regarding use of patient-reported outcomes in biomarker studies of chemotherapy-induced peripheral neuropathy. Pharmacogenomics J 19(5):411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aprile G, Ramoni M, Keefe D, Sonis S (2008) Application of distance matrices to define associations between acute toxicities in colorectal cancer patients receiving chemotherapy. Cancer 112(2):284–292. https://doi.org/10.1002/cncr.23182

    Article  PubMed  Google Scholar 

  63. Pritchard D, Goodman C, Nadauld LD (2022) Clinical utility of genomic testing in cancer care. JCO Precis Oncol 6:e2100349. https://doi.org/10.1200/PO.1221.00349

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu H, Steeghs N, Nijenhuis CM, Schellens JH, Beijnen JH, Huitema AD (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53(4):305–325

    Article  CAS  PubMed  Google Scholar 

  65. Zhang J, Zhou F, Qi H, Ni H, Hu Q, Zhou C, Li Y, Baburina I, Courtney J, Salamone SJ (2019) Randomized study of individualized pharmacokinetically-guided dosing of paclitaxel compared with body-surface area dosing in Chinese patients with advanced non-small cell lung cancer. Br J Clin Pharmacol 85(10):2292–2301. https://doi.org/10.1111/bcp.13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benson AB, Alan V (2021) Message in our mailbox. In: Acute Care Institute for Safe Medication Practices (ISMP) Medication Safety Alert!, vol 26. ISMP, pp 1–5. Available from: https://www.ismp.org/resources/message-our-mailbox

Download references

Funding

No funding was received in support of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and S.S. contributed to the article conception. D.L.H wrote the first draft of the manuscript and prepared all figures and tables. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Daniel L. Hertz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, D.L., Lustberg, M.B. & Sonis, S. Evolution of predictive risk factor analysis for chemotherapy-related toxicity. Support Care Cancer 31, 601 (2023). https://doi.org/10.1007/s00520-023-08074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00520-023-08074-x

Keywords

Navigation