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Abstract
Purpose  Chemotherapy-induced nausea and vomiting (CINV) are common side effects in pediatric oncology treatment. 
Besides 5-HT3-antagonists, both dexamethasone and aprepitant are cornerstone drugs in controlling these side effects. Based 
on results of adult studies, the dexamethasone dose is reduced by 50% when combined with aprepitant, because of a drug-
drug interaction, even though data on the interaction in children is lacking. The current study was developed to investigate 
the effect of aprepitant on dexamethasone clearance (CL) in children, in order to assess if dexamethasone dose reduction for 
concomitant use of aprepitant is appropriate in the current antiemetic regimen.
Methods  In total, 65 children (0.6–17.9 years), receiving intravenous or oral antiemetic therapy (dexamethasone ± aprepi-
tant) as standard of care, were included. 305 dexamethasone plasma concentrations were determined using LC–MS/MS. An 
integrated dexamethasone and aprepitant pharmacokinetic model was developed using non-linear mixed effects modelling 
in order to investigate the effect of aprepitant administration on dexamethasone CL.
Results  In this population, dexamethasone CL in patients with concomitant administration of aprepitant was reduced by 
approximately 30% of the uninhibited CL (23.3 L/h (95% confidence interval 20.4–26.0)). This result is not consistent 
with the results of adult studies (50% reduction). This difference was not age dependent, but might be related to the route 
of administration of dexamethasone. Future studies are needed to assess the difference in oral/intravenous dexamethasone.
Conclusion  When dexamethasone is given intravenously as a component of triple therapy to prevent CINV in children, we 
advise to reduce the dexamethasone dose by 30% instead of 50%.
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Introduction

Chemotherapy-induced nausea and vomiting (CINV) are one 
of the most common side effects of pediatric oncology treat-
ment. International guidelines for management and preven-
tion of these side effects have been developed [1–4]. Different 
treatment levels are based on the emetogenicity classification 
of the Canadian Pediatric Oncology Group of Ontario [1, 5]. 
The overall backbone of antiemetic supportive care consist of 
a 5-HT3 receptor antagonist for low emetogenic chemotherapy, 
addition of dexamethasone for moderate emetogenic chemo-
therapy (MEC) and, for highly emetogenic chemotherapy 
(HEC), addition of the NK1 receptor antagonist, aprepitant.

Dexamethasone shows a bioavailability of approximately 
86% after oral administration [6]. It is rapidly distributed 
and about 77% is bound to plasma proteins [7]. Dexametha-
sone is metabolized by cytochrome P450-3A4 (CYP3A4)[7], 
the elimination half-life is 3–6 h for adults which is higher 
in children or infants (3–8 h and 2–10 h, respectively) [8]. 
Aprepitant is administered orally and shows a bioavailabil-
ity of 59–67%. Aprepitant is highly bound to plasma pro-
teins (97%). The metabolism of aprepitant occurs mainly 
via oxidation and CYP3A4, and the half-life is 9–13 h in 
adults [9, 10]. Fosaprepitant is a water soluble prodrug, the 
intravenous formulation of aprepitant. Within 30 min after 
administration, fosaprepitant is converted to aprepitant, after 
which it shows similar pharmacokinetics (PK) [10].

Besides being a substrate for CYP3A4, (fos)aprepitant 
is a weak to moderate inhibitor of CYP3A4. (Fos)aprepi-
tant therapy can result in higher plasma levels of CYP3A4 
metabolized agents (e.g. dexamethasone). In adult stud-
ies, it has been shown that concurrent use of aprepitant 
resulted in lower dexamethasone clearances (CL) and a 
higher exposure to dexamethasone of approximately two-
fold, and thus, a 50% dexamethasone dose reduction is rec-
ommended [11–14]. However, for children, this reduction 
is based on extrapolation of adult data, and it is not known 
if the magnitude of this interaction is the same [15].

Moreover, despite standardized prophylaxis, children 
receiving HEC achieve 20–30% less CINV control com-
pared to adults[16–18], which might be explained by sub-
optimal dexamethasone therapy, due to a possible different 
interaction in children compared to adults. (Fos)aprepitant 
and dexamethasone doses used in children are different 
than in adults, which could lead to a different magnitude 
of the interaction. Moreover, developmental changes occur 
over age (e.g. development of liver enzymes), which could 
lead to altered PK in young children [19].

In this study, we studied the effect of aprepitant on dexa-
methasone PK in pediatric oncology patients, in order to assess 
whether dexamethasone dose reduction for concomitant aprep-
itant use is appropriate in the current antiemetic regimen.

Methods

Patients, sampling, and bioanalysis

A prospective observational study was performed in Prin-
cess Máxima Center for Pediatric Oncology, the Nether-
lands. Patients aged 0.5–18 years with a new oncological 
diagnosis, having a central venous line, planned to receive 
chemotherapy with granisetron/ondansetron; dexametha-
sone and/or aprepitant as standard of care were screened 
for eligibility. Patients could be included twice: once for 
oral aprepitant and once for intravenous fosaprepitant, if 
applicable. Patients using strong CYP3A4-substrates and/or 
-inhibitors within 7 days or strong CYP3A4-inducers within 
30 days before the start of antiemetic therapy were excluded 
(Supplementary Table S1). Patients with Down syndrome 
were excluded due to possible altered PK as compared to 
children without Down syndrome. Written informed consent 
was obtained prior to participation. Ethical approval by the 
institutional Medical Ethics Committee of the Erasmus MC 
was obtained. The study was registered in the Dutch Trial 
Registry as NTR7720.

Patients were treated with dexamethasone with (HEC) or 
without (MEC) (fos)aprepitant according to the antiemetic 
guidelines of the Dutch Childhood Oncology Group 
(Table 1). Blood samples of 1 mL were collected from the 
central venous line before and after administration of the 
antiemetics on day 1, 2, or 3. A pre-dose sample was taken 
when dexamethasone was administered in the previous 
7 days. Post-dose, a maximum of six samples were taken 
over 24 h (Supplementary Table S2). The exact number of 
collected samples depended on the availability of the central 
venous line (especially in patients with a single lumen line 
and continuous chemotherapy infusions). Patients with at 
least one sample post-dose were included in the analysis.

Plasma samples were stored at − 80 °C until analyzation. 
Plasma concentrations of dexamethasone and aprepitant 
were measured using a validated liquid chromatography 
mass spectrometry method, with a lower limit of quanti-
fication (LLOQ) of 1 µg/L and 0.1 µg/L respectively, as 
described previously [20]. The first post-dose samples below 
LLOQ were included as a plasma concentration of 0.5 µg/L 
(1/2 LLOQ for dexamethasone); other samples below LLOQ 
were omitted [21].

Sample size

In order to study age-related differences, children ≤ 18 years 
were divided in three age groups (≥ 0.5–6 years; ≥ 6–12 years 
and ≥ 12 years) treated with dexamethasone with/without 
(fos)aprepitant. We planned to include 30 children in each 
age category, with the aim to distinguish 15 children using 
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dexamethasone without (fos)aprepitant and 15 children 
using dexamethasone with (fos)aprepitant. We planned to 
evaluate at least 5 children across all age groups, based on 
previous experience in similar projects.

Dexamethasone model development

Starting point for model development for dexamethasone 
were one- and two-compartment models with first-order 
absorption [22–25]. Allometric scaling using body weight 
was a priori included on all parameters [26].

Interindividual variability (IIV) was evaluated for all 
parameters, using an exponential function [27]. Since data 
of multiple dexamethasone doses were available (sampling 
over 24 h, while dexamethasone was administered twice 
or four times daily), interoccasion variability (IOV) was 
implemented similarly as IIV, with each dose and subse-
quent sampling defined as a separate occasion. This vari-
ability was evaluated for all parameters to diagnose potential 
time-dependent trends and allow for random unaccounted 
variability between dosing moments. Residual unexplained 
variability was evaluated as a proportional error model or 
as a combination of a proportional and additive error model.

Dexamethasone covariate analysis

Following structural model development, the influence of 
patient-specific factors for variability in PK parameters 
was evaluated. Assessed covariates included age and (fos)
aprepitant treatment to study the effect of (fos)aprepitant 
treatment on dexamethasone CL. Continuous covariates 
were evaluated using a power function. (Fos)aprepitant 
treatment was described as a binary categorical variable: 1 

when (fos)aprepitant was administered concomitantly and 
0 when no (fos)aprepitant was administered. (Fos)aprepi-
tant as a covariate was tested on CL as follows:

where Pcov represents the estimated proportional factor by 
which CL changes at a specific covariate value.

Integrated dexamethasone and aprepitant model 
development

In order to thoroughly investigate the drug-drug interac-
tion, an integrated PK model of dexamethasone and (fos)
aprepitant was developed. The PK of (fos)aprepitant was 
assumed to be described by a one-compartment model 
with absorption transit compartments, as described by 
Nijstad et al. [28]. The dataset that was used for the current 
model was previously used for the solely (fos)aprepitant 
model [28].

Two (hypothetical) enzyme compartments (enzymeactive 
and enzymeinactive) were added as previously described by 
Huitema et al. [29]. Elimination of dexamethasone was 
directly proportional to the amount of enzymeactive pre-
sent in the compartment. The amount of enzymeactive was 
set to 1 and enzymeinactive to 0 at t = 0. The conversion of 
enzymeactive to enzymeinactive was driven by the amount of 
aprepitant in the central compartment.

Model evaluation

Discrimination between models was guided by physiologi-
cal plausibility, goodness-of-fit (GOF) plots, precision of 
parameter estimates, and change in objective function value 

Pi = Ppop × P(fos)aprepitant
cov

Table 1   Dose regimens for 
dexamethasone and (fos)
aprepitant

BID, twice daily; QD, once daily; QID, four times daily
1 Dexamethasone was administered as commercially available tablets, oral solution, or solution for injec-
tion, using locally available products
2 Aprepitant was administered as 80 mg or 125 mg capsules (Merck Sharp & Dohme B.V. [9] or generic 
equivalent) or as an extemporaneous oral suspension of 10 mg/mL (prepared using the commercially avail-
able aprepitant capsule filling and a suspension base as described by Nijstad et al. [28])
3 Fosaprepitant was administered using the commercially available iv fosaprepitant formulation (Ivemend, 
Merck Sharp & Dohme B.V. [10])

Emetogenicity Dexamethasone1 Aprepitant2 Fosaprepitant3

Moderate  < 0.6 m2: 2 mg BID iv/po
 > 0.6 m2: 4 mg BID iv/po

High 3 mg/m2 QID iv/po
(or 6 mg/m2 QID iv/po without 

aprepitant)

Day 1: 3 mg/kg QD po 
(max 125 mg)

Day 2–3: 2 mg/kg QD po 
(max 80 mg)

Day 1: 3 mg/
kg QD iv (max 
115 mg)

Day 2–3: 2 mg/
kg QD iv (max 
80 mg)
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(dOFV). A drop of ≥ 3.84 points, corresponding to a P < 0.05 
(χ2 distribution with one degree of freedom (df)), was con-
sidered a significant improved fit for hierarchical models. 
The adequacy of the models was assessed by GOF plots 
and visual predictive checks (VPC) [30]. Parameter preci-
sion was assessed by the sampling importance resampling 
procedure [31].

Drug‑drug interaction between dexamethasone 
and aprepitant

Since patients in both groups (dexamethasone with/with-
out (fos)aprepitant) were not treated with the same dexa-
methasone doses (Table 1), it is difficult to compare the 
observed areas under the curve (AUCs) between the two 
groups, in order to assess the influence of (fos)aprepitant 
on the AUC of dexamethasone. For this reason, simula-
tions were carried out. Patients included in this study 
were used for the simulations and individuals were rep-
licated to attain a total of 2000 patients per group. All 
patients were hypothetically treated, once with a single 
dose of intravenous dexamethasone alone and once with 
a single dose of intravenous dexamethasone plus oral 
aprepitant (doses according to Table 1, HEC day 1). In 
the first simulations, the hypothetical dexamethasone 
dose in both groups was the same (100%, 6  mg/m2), 
to compare AUCs. Subsequently, dexamethasone dose 
reductions (50% and 33%) were tested to test which dose 
regimen would lead to comparable (assessed visually 
and by range) AUCs for both groups. The AUC​t0-∞ (in 
mg/L*h) was calculated using a dummy compartment 
in the final population PK model. The results of these 
simulated AUCs are used for the dexamethasone dose 
reduction recommendations.

Software

Nonlinear mixed-effects modelling was performed using 
NONMEM (version 7.3.0, ICON development Solutions, 
Ellicott City, MD, USA) and Pearl-speaks-NONMEM (PsN, 
version 4.7.0) with First-Order Conditional Estimation with 
interaction (FOCE-I) as estimation method [32, 33]. Pirana 
(version 2.9.9) was used as graphical user interface for 
NONMEM [34]. R (version 3.4.3) was used for data han-
dling and visualization [35].

Results

Patients and sampling

In total, 222 patients were eligible for inclusion in the study. 
Of these patients, 93 gave informed consent, 39 patients did 
not gave informed consent, 87 patients were screen failures 
before informed consent was given and 3 patients did not 
response before the study was closed. 65 of the 93 included 
patients with a median age of 8.8 years (range 0.6–17.9) 
were available for sampling in this study, and were included 
between March 2019 and April 2021. For trial profile, see 
Fig. 1. A total of 28 children were excluded after receiving 
informed consent. In 12 of these children, dexamethasone 
was stopped as antiemetic drug due to hypertension (n = 3), 
behavioral problems (n = 6), or a combination of those two 
(n = 1), bradycardia (n = 1) or no complaints of nausea 
(n = 1). No patients were included in the study twice.

Of the 65 sampled patients, 18 patients were treated 
with dexamethasone without aprepitant and 47 patients 
with dexamethasone plus aprepitant. We experienced a 
lower median age in the dexamethasone group compared 

Fig. 1   Trial profile
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to the dexamethasone with aprepitant group. In 80% of the 
patients, samples were taken on day 1 of antiemetic treat-
ment. In total, 62 of the patients (95%) were treated with 
intravenous dexamethasone. Detailed patient characteristics 
are shown in Table 2. In total, 305 dexamethasone samples 
were available for analysis, of which 12 were below LLOQ 
(all single below LLOQ samples post-dose). No outliers 
were observed in our data. Supplementary Figure S1 dis-
plays the observed plasma concentrations over time.

Dexamethasone model development

A two-compartment model with first-order absorption was 
appropriate to describe the dexamethasone PK. The absorp-
tion rate constant (ka) could not be estimated due to the small 
number of patients that were treated with dexamethasone 
orally, so ka was fixed to 1.5 h−1 [36, 37]. Interindividual var-
iability (IIV) was included on CL, Q, and Vc, and interocca-
sion variability (IOV) on CL and Vc.

Inclusion of aprepitant as categorical covariate on CL led 
to an improved model fit (dOFV − 7.2). The proportional 
factor by which CL changes was estimated at 0.74 (95% 
confidence interval (CI) 0.56 − 1.01), signifying a 26% lower 
CL when aprepitant is administrated concomitantly.

Integrated dexamethasone and aprepitant model 
development

The model was further optimized by integrating the dexametha-
sone and aprepitant models. A graphical representation of the 
combined model is showed in Supplementary Figure S3. The 
inhibition of dexamethasone CL was modelled by an aprepitant 
concentration-dependent reversible inhibition of enzymes. As 
mentioned in the methods, the total amount of enzymes con-
sisted of an active and inactive part. Mass transport between 
enzymeactive and enzymeinactive was modelled using an inhibition 
rate constant kinh and a reactivation rate constant kreac. No age-
related effects on any of the PK parameters were found.

The final model consisted of a two-compartment model 
with first-order absorption for dexamethasone, a one-com-
partment model with absorption transit compartments and 
two enzyme compartments describing the aprepitant con-
centration-dependent reversible inhibition of enzymes. The 
final estimates and 95%CI are shown in Table 3.

The GOF plots (Supplementary Figure S3A and B) 
showed accurate population and individual predictions, 
without signs for over- or underprediction. CWRES are 
evenly distributed over the whole plasma concentration 
range (Supplementary Figure S3C) and time interval (Sup-
plementary Figure S3D). The VPC demonstrated that the 

Table 2   Patient characteristics, 
median (range)

NA, not applicable

Dexamethasone with-
out aprepitant

Dexamethasone with 
aprepitant

Total

N = 18 N = 47 N = 65

Patient characteristics
  Female sex [n (%)] 8 (44%) 19 (40%) 27 (40%)
  Age, years 3.9 (0.6–16.5) 10.0 (0.7–17.9) 8.8 (0.6–17.9)
  Body weight, kg 16.3 (8.6–74.1) 32.5 (8.4–66.3) 29.5 (8.4–74.1)

Diagnosis
  Acute myeloid leukemia 0 3 3
  Atypical teratoid rhabdoid tumor 1 1 2
  Ependymoma 2 0 2
  Ewing sarcoma 3 5 8
  Glioma 2 0 2
  Medulloblastoma 2 11 13
  Neuroblastoma 1 7 8
  Osteosarcoma 3 11 14
  Rhabdomyosarcoma 0 5 5
  Others 4 4 8

Dexamethasone iv [n (%)] 18 (100%) 44 (94%) 62 (95%)
Aprepitant po [n (%)] NA 42 (89%) 42 (65%)
Available data
  Total no. of PK samples [n] 85 220 305
  No of samples per patient 5 (1–6) 5 (1–7) 5 (1–7)

9995Supportive Care in Cancer (2022) 30:9991–9999



1 3

median and the 95%CI of the observed data were in line 
with those from the simulation-based predictions from the 
model (Supplementary Figure S4).

Drug‑drug interaction between dexamethasone 
and aprepitant

Simulations were carried out and AUCs were calculated 
(Supplementary Table S2 and Fig. 2). Patients treated with 

6 mg/m2 dexamethasone without aprepitant achieved a 54% 
higher median AUC​t0-∞ than patients treated with 6 mg/
m2 dexamethasone with aprepitant. When the patients with 
aprepitant were hypothetically treated with 3 mg/m2 dexa-
methasone (50% reduction), we observed that the dexameth-
asone AUC​t0-∞ of patients with aprepitant was 23% lower 
than the AUC​t0-∞ of patients without aprepitant. This again 
shows that a dose reduction of dexamethasone of 50% is 
not accurate to achieve comparable exposure. A dexametha-
sone dose of 4 mg/m2 (dose reduction of 33%) for patients 
receiving concurrent aprepitant was tested. This resulted in 
a comparable exposure between the two groups.

Discussion

This population PK model is the first to describe the PK of 
dexamethasone (with and without aprepitant) as antiemetic 
agent in children. Dexamethasone PK was best described 
using a two compartment model, which is consistent with 
previously published models [22–25]. Firstly, a sole dexa-
methasone model was developed, including aprepitant as 
a categorical covariate. With concurrent aprepitant, dexa-
methasone CL changes with a proportional factor of 0.74 
(95%CI 0.56–1.01), meaning a 26% lower CL with concur-
rent aprepitant. However, this solely model did not reflect 
clinical practice properly, since we expect the interaction 
to be dependent on the aprepitant plasma concentration. 
Therefore, we attributed the fact that the 95%CI of the inter-
action component includes 1 to a modelling artefact. An 
integrated dexamethasone-aprepitant model was developed 
subsequently, in order to accurately examine the influence of 
aprepitant on dexamethasone CL. We found that aprepitant 
reduced the dexamethasone CL by approximately 30%. This 
is not consistent with the results of studies in adults and cur-
rent practice in children [11–14]. These studies all described 
a reduction of dexamethasone CL of approximately 50% or a 
doubling of the exposure to dexamethasone when combined 
with aprepitant.

At first, a possible explanation for the clinically relevant 
discrepancy with the results obtained in adults was thought 
to be related to age, since the rationale for dexamethasone 
dose reduction in children was extrapolated from adults. 
However, in our model development, no reason for testing 
age as covariate on any of the PK parameters was found. For 
this, we concluded that age has no obvious effect on the PK 
of dexamethasone or aprepitant.

Another possible explanation for the difference between 
adults and children could be found in the route of admin-
istration of dexamethasone. In several of the previously 
published articles, dexamethasone was administered orally 
[11, 13]. It was hypothesized that the presence of aprepitant 

Table 3   Final dexamethasone population PK parameter estimates

PK, pharmacokinetics; CI, confidence interval obtained by sampling 
importance resampling; CL, clearance; Vc, volume of distribution of 
the central compartment; Vp, volume of distribution of the peripheral 
compartment; Q, intercompartment clearance between Vc and Vp; 
IIV, interindividual variability; IOV, interoccassion variability
Population estimates CL70kg, Vc70kg, Vp70kg, and Q70kg correspond 
to a subject weighing 70 kg and are adjusted to an individual value, 
using allometric scaling

PK parameter Estimate 95% CI

CLdex,70kg(L∕h) 23.3 20.4–26.0
Vcdex,70kg(L) 51.0 43.1–63.2
Vpdex,70kg(L) 42.5 36.2–47.4
Qdex,70kg(L∕h) 47.6 40.1–57.9
kinh (L/µg*h) 0.906 0.704–1.200
kreact (h−1) 1.30 0.888–1.90
IIV CLdex (%) 36.6 29.5–43.8
IIV Vcdex (%) 59.0 42.5–72.4
IIV Qdex (%) 57.8 38.0–77.2
IOV CLdex (%) 17.9 13.4–27.5
IOV Vcdex (%) 14.4 5.6–23.3
Proportional residual error 

(%)
28.1 25.1–32.0

Fig. 2   Dexamethasone area under the curve (AUC​t0-∞) in simulated 
patients stratified for dose and aprepitant use. A single dexametha-
sone dose was simulated
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reduces dexamethasone metabolism by inhibiting CYP3A4 
enzymes in the gastro-intestinal (GI) tract, when dexametha-
sone is administered orally [15]. The inhibition of CYP3A4 
enzymes in the GI-tract will lead to reduction of the first 
pass effect and thus bioavailability, which leads to a higher 
systemic dexamethasone exposure. When dexamethasone 
is administered intravenously, as in 95% of our pediatric 
patients, this effect will not play a role and only the systemic 
elimination of dexamethasone is influenced by concurrent 
use of aprepitant. However, two studies in adults did inves-
tigate the effect of aprepitant on intravenous dexamethasone, 
and also did find a reduction of the dexamethasone CL of 
approximately 50% [12, 14]. Since the drug-drug interaction 
with either oral or intravenous dexamethasone was never 
compared within a previous study, we initiated a future study 
to examine this. Within this study, patients will receive dexa-
methasone orally and intravenously in a cross-over design. 
We will include patients with and without aprepitant in a 1:1 
ratio. The difference in PK and the bioavailability of dexa-
methasone and the influence of aprepitant will be studied in 
these cohorts (https://​www.​trial​regis​ter.​nl/​trial/​8981).

In the current study, 11 children were excluded after 
informed consent was given, due to stopping dexamethasone 
because of off-target side effects like hypertension and/or 
behavioral problems. Although dexamethasone is strongly 
recommended in clinical antiemetic guidelines[1–3, 38], 
the side effects are a major issue in daily practice. More-
over, the appropriate dose to control CINV is intensively 
debated among different hospitals treating pediatric oncol-
ogy patients. For example, in a survey among 36 children’s 
oncology institutions, two groups never administered dexa-
methasone. In the other 34 institutions, 29 different dexa-
methasone dosing schedules were used for children receiving 
HEC [39]. A recent systematic review aimed to describe all 
different dexamethasone doses studied for the prevention of 
chemotherapy-induced vomiting (CIV) in pediatric patients 
and their effects on achieving complete acute CIV control 
[40]. However, due to the heterogeneity of the studies and 
the wide variety in dosing schedules, no optimal dexametha-
sone dose to control acute CIV was found. Dosing regimens 
varied from 6 to 27 mg/m2/day in patients receiving HEC 
and 0.6–24 mg/m2/day in patients receiving MEC [40].

Translating the results of this study into clinical practice 
is challenging. On one hand, this current study shows that 
reduction of the intravenous dexamethasone dose with 50% 
in children might be too high, since we showed that aprepi-
tant inhibits dexamethasone CL by approximately 30%. 
Based on the results of the current study, we advise to reduce 
the intravenous dexamethasone dose with 30% in children, 
when combined with aprepitant. However, as we already 
see many side effects of dexamethasone in our current HEC 
dose schedule, it is not very appealing to upgrade the current 
dexamethasone dose of 3 mg/m2 4 times daily in presence 

of aprepitant. Triple therapy is the cornerstone of antiemetic 
treatment, however dexamethasone is regularly omitted due 
to side effects. Future studies should address dose reductions 
of dexamethasone, even as duration of antiemetic therapy 
in children, as many pediatric chemotherapy courses last 
much longer than the typical 3 day aprepitant regimen. For 
these future studies, we suggest to investigate a dose reduc-
tion of 30% in presence of aprepitant, and a dosing regimen 
within the dexamethasone dosing range (6–27 mg/m2/day) 
as described in the recent systematic review on the different 
dexamethasone dosing schedules worldwide [40].

Furthermore, our study underlines that extrapolating 
results from adults to children can be extremely difficult 
and should be done with caution. In our example, we found 
a clinically relevant discrepancy with the results in adults. 
That extrapolations from adults to children should be done 
with caution was previously described by Cella et al. [41]. 
They underlined that assuming a linear relationship between 
body weight and dose is not right for all drugs and that it 
can lead to either under- of overdosing. They suggested that 
dose recommendations for children should be derived from 
an integrated (model-based) analysis of PK data rather than 
from empiricism. This is in line with the results from our 
current study.

This study has several strengths. To start with, this is 
the first study that assessed the PK of dexamethasone as 
antiemetic agent and the influence of aprepitant on dexa-
methasone PK in children. Secondly, we used a rich sam-
pling scheme and at least 5 blood samples were collected in 
40 patients (62%). Furthermore, we developed an integrated 
dexamethasone and aprepitant model, where the inhibition 
of dexamethasone CL was dependent on the plasma concen-
tration of aprepitant. This is closest to the real life situation 
in patients. To our knowledge, this was not tested before.

However, this study had some limitations too. Dexameth-
asone was administered intravenously in almost all patients, 
and therefore the difference of the effect of aprepitant on oral 
versus intravenous dexamethasone CL could not be identi-
fied. Because of this limitation, based on the current study, 
we can only give recommendations for intravenously admin-
istered dexamethasone in children.

Our second limitation refers to our planned sample size. 
We included 65 of the defined 90 patients. This was due to 
inclusion difficulties because of Covid-19 restrictions and 
the loss of eligible patients due to dexamethasone cancella-
tion. The sample size of 90 patients was suggested in order 
to achieve a diverse population. However, we have shown in 
this analysis that we were able to accurately develop an inte-
grated PK model with 65 patients. Moreover, we included 
our planned 5 children across all age groups except for the 
dexamethasone group of ≥ 6–12 years, in which only 2 chil-
dren were sampled. The lower median age in the dexametha-
sone group compared to the dexamethasone plus aprepitant 
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group was thought to be explained by the experience that 
older patients were treated with triple therapy more fre-
quently than younger patients, due a higher occurrence of 
HEC chemotherapy courses.

Future studies are needed to optimize antiemetic control 
in pediatric oncology treatment. From this study we have 
learned the effect of aprepitant on dexamethasone CL in the 
pediatric oncology population. This important knowledge 
on the difference in CL compared to the adult population 
will be proceeded to the next phase in the optimization of 
antiemetic control. We are planning to conduct a randomized 
controlled trial in which we will study prolonged use of 
aprepitant to evaluate CINV control.
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