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Abstract This paper presents a method for planning
time-optimal trajectories for a formation of multi-
ple nonholonomic (heavy duty) platforms (HDPs)
to cooperatively transport an object to a specified
pose. The first part addresses the mobile platforms
themselves while the second part provides a trajec-
tory planning approach derived from the well-known
virtual leader approach. In order to ensure proper
transport of the shared payload, the vehicles are
modeled individually, resulting in a formation control
problem. The goal of the optimization process is to
minimize a cost function that balances time optimal-
ity, smooth control signals, and formation rigidity.
The optimal control problem (OCP) takes into ac-
count the kinematics of the vehicles as well as their
physical limitations. It is solved by using a multiple
shooting method, which yields the desired trajectories
for all vehicles while ensuring smooth control signals.
The paper includes optimization results for several
scenarios involving two and three HDPs together with
various target poses, demonstrating the effectiveness
of the proposed method.

Keywords Cooperative transport · Formation
control · Nonholonomic vehicle · Optimal trajectory
planning

Zeitoptimale Trajektorienplanung für eine starre
Formation nichtholonomer mobiler Plattformen

Zusammenfassung Dieser Artikel präsentiert ei-
ne Methode zur Planung zeitoptimaler Trajektori-
en für eine Formation mehrerer nichtholonomer

S. Schmidt (�) · H. Gattringer · A. Mueller
Institute of Robotics, Johannes Kepler University Linz,
Altenberger Str. 69, 4040 Linz, Austria
simon.schmidt@jku.at

(Schwerlasttransport-) Plattformen (HDPs). Ziel ist
dabei der kooperative Transport eines Objektes zu
einer gewünschten Endposition. Der erste Abschnitt
behandelt die mobilen Plattformen, während der
zweite Abschnitt ein Konzept zur Trajektorienpla-
nung liefert, das aus dem bekannten „Virtual Leader-
Ansatz“ abgeleitet ist. Um den korrekten Trans-
port der gemeinsamen Nutzlast zu gewährleisten,
werden die Fahrzeuge individuell modelliert, was
zu einem Formationsregelungsproblem führt. Das
Ziel des Optimierungsprozesses besteht darin, eine
Kostenfunktion zu minimieren, die Zeitoptimalität,
glatte Steuersignale und die Formationssteifigkeit
ausbalanciert. Das Optimalsteuerungsproblem (OCP)
berücksichtigt die Kinematik der Fahrzeuge sowie
ihre physikalischen Einschränkungen. Das Lösen
erfolgt mit einem Mehrfach-Schieß-Verfahren, das
die gewünschten Trajektorien inklusive der glatten
Steuersignale für alle Fahrzeuge liefert. Der Artikel
enthält zudem Optimierungsergebnisse für Szenarien
mit zwei und drei HDPs und unterschiedlichen Ziel-
positionen, die die Wirksamkeit der vorgeschlagenen
Methode demonstrieren.

Schlüsselwörter Kooperativer Transport ·
Formationsregelung · Nichtholonomes Fahrzeug ·
Optimale Trajektorienplanung

1 Introduction

Autonomous ground vehicles are crucial for automat-
ing logistics systems. Cooperative transport involv-
ing multiple agents can reduce the payload of indi-
vidual mobile platforms while enhancing the maneu-
verability of the objects being transported. Forma-
tion control, initially explored in UAV applications, is
now gaining attention in AGV applications. A com-
prehensive survey on the fundamental problem and

578 Time-optimal trajectory planning for a rigid formation of nonholonomic mobile platforms K

https://doi.org/10.1007/s00502-023-01157-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s00502-023-01157-x&domain=pdf
http://orcid.org/0009-0002-7200-7810


Originalarbeit

Fig. 1 Photo of the heavy duty platform

solution approaches can be found in [1]. The primary
challenge lies in achieving virtual rigidity among the
fleet of mobile robots, which is a key aspect of any
formation control scheme. Two types of formations
must be distinguished: fixed topology with switch-
ing geometry [2] and switching topology formations
[3, 4]. Additionally, the rigidity property, particularly
for 6D-agents like UAVs, needs to be investigated
[5]. Formation control schemes assume that agents
can execute any desired motion, but non-holonomic
mobile robots have kinematic constraints that limit
their movement compared to omnidirectional plat-
forms. This paper addresses the underlying path plan-
ning problem, specifically using special autonomous
ground vehicles as mobile agents (see Fig. 1). The
considered nonholonomic vehicle possesses unique
kinematics, enabling car-like steered longitudinal and
lateral motion, pure rotation, and wheel alignment
even while stationary.

There are various approaches to cooperative trans-
port, one of which is the virtual leader method. In
[6], this method is applied to develop a distributed
model predictive controller (DMPC) for a formation
of differential-driven vehicles. Additionally, an adap-
tation for a car-like vehicle is proposed as the basis for
the optimal control problem (OCP). A similar DMPC
for omnidirectional vehicles is discussed in [7], which
also employs the virtual leader approach and com-
pares it with an algebraic graph theory method. Both
approaches enable tracking of predefined setpoints or
trajectories for the formation but do not offer a tra-
jectory planning method considering the formation’s
kinematics. On the other hand, [8] utilizes the vir-
tual leader approach to design a trajectory tracking
controller with collision avoidance for a formation of
robots equipped with differential drives. The advan-
tage of treating the vehicles individually and formu-
lating the issue as a formation control problem is the
flexibility to accommodate any number of vehicles,
regardless of their kinematics.

This paper is organized as follows. At first, a brief
overview of the HDP’s hardware setup and kinematics
along with a control strategy is given in Sect. 2. In
Sect. 3, a method for planning time optimal trajec-
tories for a single vehicle is proposed, which is then
extended to a formation of multiple mobile platforms
cooperatively transporting an object. Additionally, a
special case for two vehicles is considered. Sect. 4
presents optimization results for the cases of two and
three vehicles. The paper closes with a summary and
an outlook for the realization of the planned trajecto-
ries on the HDPs in Sect. 5. Note that this paper is an
extension of [9].

Notation Since this paper focuses solely on pla-
nar problems, positional vectors are denoted as
K r = (K xK y)T , where K refers to the corresponding
coordinate frame. For positional vectors expressed
in the initial frame of reference, K = I , the frame
indication is neglected, r = I r = (xr yr )T . Regarding
orientations, the chosen frame of reference is irrele-
vant and is therefore also neglected.

2 A pseudo-omnidirectional heavy duty platform

2.1 Hardware

The HDP (Fig. 1) is a vehicle equipped with four
wheels positioned at the corners of the chassis, each
being driven by its own electric motor. It is designed
to handle payloads weighing up to 1.5 tons. The
HDP’s chassis has dimensions of L = 1.18 m in length,
B = 0.55 m in width and the wheel radii measure
r = 0.125 m. Moreover, the off-center distance of each
wheel equals a = 0.11 m. To differentiate between the
front and rear parts of the vehicle, as well as the left
and right sides (Fig. 2), the angular velocities of the
wheels are denoted as β̇i , j , where i can take the values
of either l or r to represent the left or right side, and
j can be either F or R to represent the front or rear.
The motor-wheel units are mounted in such a way
that they can rotate around an off-center point, with
the corresponding steering angles being denoted as
αi , j . Due to mechanical coupling, the front and rear
wheels on each side i of the vehicle can only pivot in
opposite directions,

αi :=αi ,F =−αi ,R i ∈ {l ,r }. (1)

Therefore, the vehicle is steered passively by appropri-
ately driving the wheels. To enable proper control of
the robot’s motion, both the angular velocity and the
steering angle of each wheel are measured. The HDP
is also equipped with two additional motors located
at the front and back, allowing it to lift the payload up
to 0.3 m. However, in the considered two-dimensional
scenario, this lifting functionality does not contribute
to finding feasible trajectories for the vehicle and is
thus not considered further.
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Fig. 2 Kinematics of the HDP

For the fundamental control of the system, hard-
ware provided by B&R Industrial Automation is uti-
lized. This includes a X20 PLC (Programmable Logic
Controller) along with corresponding input and out-
put modules. Two ACOPOS servo amplifiers are em-
ployed to drive three motors each. For comprehensive
360◦ monitoring of the vehicle’s surroundings, two Li-
DAR laser scanners are positioned at opposite cor-
ners of the chassis. The entire setup communicates
through a Powerlink bus system.

2.2 Kinematics

To enable a wheeled vehicle to move without wheel
slippage, it is necessary for the lateral directions of
all wheels to intersect at a single point known as the
Instantaneous Center of Rotation (ICR). The motion of
the robot can then be interpreted as a rotation around
this particular point. The mechanical coupling of the
wheels restricts the ICR to the body fixed R y axis as
well as to ±∞ on the Rx axis. Therefore, it is possible
to distinguish between four different driving modes,
illustrated in Fig. 3. In the Steering mode, the lateral
directions of the wheels on the left and right sides
do not intersect at a single point. Consequently, it is
not possible to move the vehicle in this mode without
wheel slippage, but it is still essential for transitioning
between the other modes. In Fig. 3 this is illustrated
by two ICRs for the left and right wheels. In con-
trast to the first mode, the remaining three modes
enable the vehicle to drive in different ways. The

Fig. 3 The ICR for the four driving modes of the HDP

second mode, referred to as Sideways, permits lateral
movement of the vehicle, resulting in a trivial linear
motion along a straight line. When driving sideways,
the ICR is positioned at the vehicle’s longitudinal axis
at infinity. In the third mode, the HDP can rotate
around the geometric center of the wheels’ mount-
ing points, also leading to trivial motion. The final
mode allows the vehicle to behave like an all-wheel-
steered car, enabling nonlinear motion and facilitat-
ing tracking of more complex trajectories. This wheel
alignment configuration is commonly known as Ack-
ermann Kinematics. For this mode, the ICR can move
along the robot’s body fixed R y axis and is only re-
stricted by the physical steering angle limits. Due to
these four driving modes, the HDP can be categorized
as quasi-omnidirectional, as it needs to rotate before it
can move in any desired direction. This paper focuses
solely on the Ackermann mode, as the primary em-
phasis is not on planning trajectories with automated
mode switching.

The kinematics of the HDP can be fully described
using a set of minimal coordinates, z(t) = (rT (t) θ(t)
αT (t) βT (t))T , which encompass the position r =
(x y)T and orientation θ of the chassis, as well as
the steering angles α = (αl αr )T and wheel angles
β = (βl ,R βl ,F βr,R βr,F )T . For brevity, time dependen-
cies of the states, inputs and all variables depending
on those are not further denoted. Each mode m is
associated with a distinct set of minimal velocities
ṡm , which can be mapped to the time derivative of
the minimal coordinates, ż = Hm(q)ṡm . The number
of minimal velocities for each mode is determined
by the number of nonholonomic constraints, which
impose restrictions solely on the vehicle’s velocity, not
its position.

The kinematics of the Ackermannmode can be rep-
resented by the bicycle model, featuring a fixed wheel
at the center of the chassis and a steering wheel lo-
cated between the HDP’s two front wheels, as depicted
in Fig. 2. Hence, this simplified model can be em-
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ployed in the design of an appropriate path tracking
and feed-forward controller for the HDP, as well as
in the planning of suitable trajectories. The chosen
model, representing the bicycle’s kinematics,

q̇=

⎛
⎜⎜⎜⎝

ẋ

ẏ

θ̇

ϕ̇

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎢⎣

cosθ 0
sinθ 0
1
l
tanϕ 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H(q)

(
vR
ωF

)
=: g1

(
q
)
vR +g2

(
q
)
ωF , (2)

involves four minimal coordinates, q= (x y θ ϕ)T , and
two minimal velocities, ṡ = (vR ωF )T . For simplicity,
the parameter l = L/2 is introduced. Note that the
interpretation of the kinematic model as a projection
of the minimal velocities into the directions of the
input vector fields g1(q), g2(q) in the state space R4

will be relevant for trajectory planning in Sect. 3.
To control the HDP, given values for the bicycle

model’s steering angle ϕ and minimal velocities need
to be converted to the necessary steering angles and
angular wheel velocities for the HDP. The conversion
of the steering angles is derived using the ICR condi-
tion,

αl/r (ϕ)= arctan

(
L tanϕ

L∓B tanϕ

)
. (3)

The angular wheel velocities, corresponding to the in-
put for the HDP’s kinematic model, can be expressed
by

β̇=U(ϕ) ṡ with U(ϕ)=

⎡
⎢⎢⎢⎣

cv,l (ϕ) −cω,l (ϕ)
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using the abbreviations
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aL2

r
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) .

Moreover, to ensure proper steering of the vehicle, the
correlation between the angular wheel and angular
steering velocities,

β̇=Vα̇ with V=

⎡
⎢⎢⎢⎣

− a
r 0
a
r 0
0 a

r
0 − a

r

⎤
⎥⎥⎥⎦ , (5)

is required. This expression can be derived consider-
ing the HDP’s steering configuration (ṡ= α̇,vR = 0,ωF =
0) but is also evident, since (1) implies α̇i = α̇i ,F =−α̇i ,R

for i ∈ {l ,r }.

2.3 Control of a single platform

In order to move the HDP along planned trajectories
qd (t), a suitable control strategy consisting of three
components is implemented. A path tracking con-
troller ensures that the vehicle follows the given path
by providing desired minimal velocities ṡc , which are
then used in the low-level control to compute the re-
quired feedback torque MFB . Furthermore, a feed-
forward controller incorporates the HDP’s dynamics
yielding a feed-forward torque MFF .

2.3.1 Path tracking control
For path tracking control, there are several options
available. In [10] a flatness based control concept is
proposed, originally designed for the kinematic model
of a car but applicable to the bicycle model and thus
the HDP. This controller requires knowledge about
the desired trajectory up to its second derivative. An-
other option is the Stanley controller [11], which only
requires the desired trajectory up to the first deriva-
tive. It’s important to note that the Stanley controller
is primarily designed for forward driving and would
need slight modifications to handle reverse driving,
as the generated paths may require it. Furthermore,
a (D)MPC could be implemented for each individual
vehicle, following the approach outlined in [6]. This
controller only requires the desired trajectory without
any derivatives. However, implementing DMPCwould
necessitate communication between the robots, al-
lowing them to consider other agents and respond
effectively to potential disturbances. It should be em-
phasized that implementing such communication is
a non-trivial task. Therefore, this control concept can
be considered for future development, given the sim-
ilarity between the optimization problem it is based
on and the one used for trajectory planning in Sect. 3.

The chosen path tracking controller introduced in
[12] computes the desired minimal velocities based
on the vehicle’s positional and orientational error with
the former being expressed in the trajectory’s current
coordinate frame,

ser =Rs I (rd −r︸ ︷︷ ︸
I er

), (6)

using the rotation matrix

Rs I =
[
cosθd sinθd
−sinθd cosθd

]
. (7)
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Fig. 4 Low-level control for the HDP

The error in the orientation, on the other hand, is
independent of the coordinate frame, and reads eθ =
θd −θ. Using these error definitions, the path tracking
control law

ṡc =
(

vR ,d coseθ +kx sex
ωF,d + vR ,d

(
ky sey +kθ sineθ

)
)

(8)

results in an asymptotically stable closed loop behav-
ior for controller parameters kx ,ky ,kθ > 0. This state-
ment can be proven via Lyapunov’s indirect method
along with the respective Lyapunov’s function

V = 1
2

(
se

2
x + se

2
y

)
+ 1−coseθ

ky
≥ 0, (9)

for |eθ | < π/2. Note that this concept also requires
solely the desired trajectory, without any derivatives.
The computed minimal velocities leading to the vehi-
cle tracking its desired path are consequently handled
in the HDP’s low level control generating the required
feedback motor torque.

2.3.2 Low-level control
The HDP’s steering angles and angular wheel veloci-
ties are governed by respective cascaded controllers.
Initially, the desired angular steering velocity ωF,c , pro-
vided by the path tracking controller, is integrated to
obtain the desired steering angle ϕd . This steering an-
gle is then transformed to the HDP’s desired steering
angles αl/r,d by making use of (3). Thus, the steer-
ing error eα := αd −α can be introduced. In order to
achieve asymptotically stable steering control, it is es-
sential that the related error dynamics take the form
of

ėα
!=−KP,αeα ⇔ ėα+KP,αeα = 0, (10)

with KP,α > 0. Typically, while driving in the Ackermann
mode, changes in the steering angle occur at a slow
rate, allowing for the assumption α̇d ≈ 0. Therefore,
the control law

α̇c :=KP,αeα, (11)

is sufficient to ensure asymptotically stable steering
error dynamics.

Next, the desired angular wheel velocities are com-
puted by combining (4) and (5),

β̇d =
[
U(ϕc ) V

]( ṡc
α̇c

)
. (12)

Tomaintain these desired angular velocities, a Propor-
tional-Integral (PI) controller is implemented, which
yields the feedback torque,

MFB =KP,β
(
β̇d − β̇

)+KI ,β

∫(
β̇d − β̇

)
dt , (13)

with KP,β,KI ,β > 0.
The proposed low-level control scheme for the HDP

is illustrated in Fig. 4, taking the desired minimal ve-
locities from the path tracking controller, as well as
the current steering angles and angular velocities, and
providing in the feedback torque.

2.3.3 Feed-forward control
The feed-forward control considers the HDP’s dynam-
ics and generates a feed-forward torque based on the
desired trajectory. In the case of an ideal and undis-
turbed vehicle, this torque would be sufficient to keep
it on its desired path. Consequently, the feedback con-
trol just needs to compensate deviations due to the
real vehicles imperfections as well as potential dis-
turbances. Note that, especially when transporting
heavy payloads, feed-forward control is crucial to en-
sure sufficient path tracking and in this particular case
the formation’s rigidity. The HDP’s equations of mo-
tion are transformed to fit the bicycle model, resulting
in

M
(
ϕ
)
s̈+g

(
ϕ, ṡ

)=B
(
ϕ
)
MMot, (14)

with the mass matrix M(ϕ) ∈ R2×2, the input matrix
B(ϕ) ∈ R2×4 and the vector g

(
ϕ, ṡ

) ∈ R2 summarizing
the remaining terms related to friction as well as cen-
tripetal and coriolis effects. The feed-forward torque
is then derived by minimizing the squared motor
torques with the vehicle’s dynamics being consid-
ered as an equality constraint by using a Lagrange
parameter λ,

minimize
λ,MMot

(
MT

MotMMot+λT (B(
ϕ
)
MMot

−M
(
ϕ
)
s̈+g

(
ϕ, ṡ

)))
.

(15)

This minimization problem can then be solved using

the right pseudo inverse B+ (
ϕ
)=BT (·)(B(·)BT (·))−1,

MFF =B+ (
ϕd

)
(M

(
ϕd

)
s̈d +g

(
ϕd , ṡd

)
). (16)

Note that the feed-forward control requires the de-
sired minimal velocities up to the first derivative, s̈d .
For further details regarding the vehicle’s dynamics
and the feed-forward control, see [13].
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Fig. 5 Control scheme for
the HDP

2.3.4 Overall control scheme
The comprehensive control scheme for the HDP con-
sisting of the three discussed parts is depicted in Fig. 5.
The odometry is responsible for estimating the vehi-
cles current state by utilizing sensor data, i.e. mea-
surements of the steering angle and angular wheel
velocities. While a detailed explanation of the odom-
etry module is beyond the scope of this work, further
information can be found in [13].

3 Time optimal formation trajectory planning

3.1 The bicycle model

Before addressing the problem of trajectory planning
for a formation of multiple vehicles, a method for
planning a path for a single vehicle, as depicted in
Fig. 6, is proposed. The time optimal path, taking
the mobile platform from an initial pose qI to a given
final pose qF , will result from solving a time discrete
OCP. Since the Feed-forward control requires the time
derivative of the minimal velocities, the bicycle’s kine-
matic model (2) is extended by introducing v := s̈ as the
system’s new input,

ẋ=
(
q̇
s̈

)
=
[
H(q) 0
0 I

](
ṡ
v

)
mit x :=

(
q
ṡ

)
, (17)

Fig. 6 Kinematics of the bicycle model

where I ∈R2×2 denotes the identity matrix. To incor-
porate this kinematic model into the discretized OCP,
a fourth-order Runge-Kutta scheme (RK4) is employed
to discretize the system, xk+1 = fz

(
qk , ṡk ,vk

)
. Further-

more, the OCP takes into account the physical lim-
itations of the HDP, i.e. limits for the steering an-
gles αmin ≤α ≤αmax and the angular wheel velocities
β̇min ≤ β̇≤ β̇max. The constraints on these variables are
incorporated into the OCP using (3) and (4). With-
out loss of generality, constraints are also imposed on
the remaining states of the model, allowing for addi-
tional restrictions on the position and orientation of
the vehicle, qmin ≤ q≤ qmax.

Concatenating the relevant minimal coordinates

q̄ = (
qT
1 . . .qT

N

)T as well as new inputs v̄ = (
vT0 . . .vTN−1

)T
at all sample times tk = 0, T /N , . . ., T , the OCP can be
denoted as

min J
(
T, q̄, v̄,qF

)

s.t. xk+1 = fz
(
qk , ṡk ,vk

)
k = 0. . .N −1

q0 = qI

qN = qF

αmin ≤αk ≤αmax k = 1. . .N −1
β̇min ≤ β̇k ≤ β̇max k = 0. . .N −1
qmin ≤ qk ≤ qmax k = 1. . .N −1.

(18)

The overall cost functional is composed of three terms
Ji (·) with respective weights wi , reading

J (·)=wT JT (T )+wAJA
(
q̄,qF

)+wS JS (v̄) . (19)

The first term, JT (T ) = ∑N
k=0Δtk = T with Δtk := tk+1 −

tk = T /N , minimizes the overall time and the third
one, JS (v̄) =

∑N−1
k=0 v

T
k vk , ensures smooth input signals

by minimizing the squared inputs v.
The second term, JA (·)=

∑N
k=1lk

(
qk ,qF

)
with

lk (·)=
4∑

i=1
wi

(
gTi

(
qF

)
Δqk

)ki , (20)

determines how the setpoint qF is approached by pro-
jecting the deviations Δqk = qk −qF into the directions
of the input vector fields g1

(
q
)
, g2

(
q
)
and the subse-

quent Lie brackets
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g3
(
q
)
:= [

g1,g2
](
q
)= 1

lcos2ϕ

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ , (21)

g4
(
q
)
:= [

g1,g3
](
q
)= 1

l
(
sin2ϕ−1

)

⎛
⎜⎜⎜⎝

sinθ

−cosθ

0
0

⎞
⎟⎟⎟⎠ . (22)

Note that the system’s singularity at ϕ = ±π/2 is also
present in these Lie-Brackets. This part of the cost
functional plays a crucial role in the OCP for the MPC
presented in [6]. In that case, it is essential for finding
feasible trajectories without terminal deviations for a
(more or less) arbitrary setpoint, due to the absence
of terminal conditions. In contrast, when seeking fea-
sible solutions of (18) this term is not mandatory, be-
cause of the here present terminal condition

(
qN = qF

)
.

Nevertheless, the term is included in the overall cost
functional, since it can be beneficial for finding more
direct paths to the desired setpoint, although not nec-
essarily optimal in terms of time. Furthermore, the
OCP can be easily adapted to fit the requirements of
an MPC approach.

From an illustrative point of view, the input vector
fields correspond to the instantaneously controllable
directions of the vehicle in the configuration space,
i.e. driving straight and turning the front wheel. The
results from the Lie brackets on the other hand corre-
spond to the not instantaneously controllable direc-
tions, i.e. turning the whole vehicle and moving it
sideways. Note that these are the two only linear in-
dependent Lie brackets of the input vector fields and
subsequent Lie brackets, with g1

(
q
)
, . . . ,g4

(
q
)
spanning

the whole state space R4, since the vehicle is control-
lable. Due to the choice for the exponents k1 = k2 = 12,
k3 = 6, and k4 = 4, as proposed in [6], deviations in
the not instantaneously controllable directions of the
vehicle near the setpoint are penalized more than de-
viations in the remaining directions, with the ones in
the lateral direction being penalized the most. In the
case of a MPC, this specific choice for JA(·) and its ex-
ponents ultimately results in the vehicle approaching
the desired setpoint along its Rx direction. For this use
case, it enables a more direct setpoint approach, elim-
inating the need for extra distancing and reducing the
overall space required. With the coefficients w1, . . .,w4
the respective behavior can be further adjusted.

The overall cost functional J (·) balances three fac-
tors: achieving a time-optimal trajectory, ensuring
smooth input signals, and determining how the set-
point is approached. Thus, the coefficients wT , wA ,
and wS provide the flexibility to finely adjust the op-
timization result. Solving the proposed OCP yields
a feasible, time optimal trajectory q∗

k for the vehicle
along with the required input signals β̇

∗
k and v∗k for

all sample times t∗k = kT ∗/N . It is important to note,
that the resulting trajectory is time optimal only in

terms of the kinematic constraints, since the vehi-
cle dynamics have not been considered in the OCP.
Moreover, the time optimal part of the cost functional
is balanced with the two other terms, which is an-
other reason for why the trajectories are not purely
time optimal.

To solve the OCP, the direct Multiple Shooting
method [14] is employed with the N discretization
intervals as shooting intervals. This method is im-
plemented within the CASADI framework [15], and
solved using the Interior Point method with the inte-
grated IPOpt solver [16].

3.2 Formation trajectory planning for multiple
vehicles

In this section, the proposed method for planning
time optimal trajectories for a single vehicle will be
adapted to a group of n ≥ 2 nonholonomic mobile
platforms to cooperatively transport an object from an
initial pose q̂I to a desired final pose q̂F . Extending the
OCP (18) to multiple robots is straightforward. How-
ever, in order to ensure proper payload transport, the
vehicles must also maintain their relative distances
while following the resulting trajectories. This require-
ment needs to be mathematically formulated and in-
corporated into the OCP.

To simplify notation, the states qi of all vehicles
are concatenated, resulting in vectors denoted as
q̃= (

qT
1 . . .qT

n

)T respectively. The individual discretized
kinematic models of the robots are combined into
one system of equations, x̃k+1 = f̃z

(
q̃k ,˜̇sk , ṽk

)
. Further-

more, all relevant parameters that describe the pay-
load’s geometry, particularly its mounting points, ri
for i = 1, . . .,n, are concatenated into the formation
parameters p.

The formation is described by its geometric center
as well as the minimal coordinates of all mobile plat-
forms. The formation center serves as a virtual leader
and is represented by its pose q̂ = (x̂ ŷ θ̂)T including
its position and an assigned orientation. In Fig. 7, a
formation consisting of three vehicles along with the
virtual leader is depicted as an example. The leader’s
configuration can be estimated based solely on the
other vehicles’ positions, q̂= q̂

(
q̃
)
. The location of the

virtual leader is given by

r̂
(
q̃
)= 1

n

n∑
i=1

(
xi
yi

)
. (23)

For estimating the leader’s orientation, we consider
the orientations of the virtual connection lines of the
payload’s mounting points. Without loss of generality,
let ϑi j be the angle relative to the Iy-axis of the virtual
line connecting the mounting points ri and r j ,

ϑi j := atan2
(
xi − x j

y j − yi

)
. (24)
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Fig. 7 Formation of n = 3 vehicles and its representation by
a virtual leader

By averaging the change of these angles compared to
a reference configuration R, where θ̂

(
q̃R

)
:= 0, for all

possible connecting lines, the estimation for the vir-
tual leader’s orientation is obtained,

θ̂
(
q̃
)= 1

|S |
∑

(i , j )∈S

(
ϑi j −ϑi j ,R

)
. (25)

Here, S = {(i , j ) ∈ {1, . . .,n}2 : j > i } represents the set of
all possible connection lines, with each line included
exactly once.

Following that, the desired position of each robot
can be expressed either with respect to the virtual
leader,

ri ,d = ri ,d
(
q̂,p

)
, (26)

or directly through the vehicles’ minimal coordinates
and the formation parameters using (23) and (25),

ri ,d = ri ,d
(
q̂(q̃),p

)= ri ,d
(
q̃,p

)
. (27)

In order to maintain the formation exactly, the po-
sitions of all robots have to coincide with their re-
spective desired position, ri = ri ,d

(
q̃,p

)
. Including this

rigidity condition in the extended OCP for all n mo-
bile platforms as an additional equality constraint at
every sample time tk would ensure admissible relative
trajectories of the robots. However, it would also lead
to a problem that is hard to solve numerically.

To address this issue, considering that the robots
will track the resulting trajectories using the proposed

tracking controller and therefore will have small track-
ing errors, the strict requirement of exact formation
maintenance can be relaxed. Instead, the constraint
can be modified to allow the vehicles’ positions to be
within a certain margin of error εr > 0 around their
desired values, −εr ≤ ri − ri ,d (·) ≤ εr. This modifica-
tion significantly improves the solvability of the OCP
and reduces computation time, making it already suf-
ficient for finding feasible trajectories for the given
task. However, further improvement in solvability and
computation time can be achieved by minimizing the
margins between the desired and actual positions of
the vehicles, in addition to just constraining them.

Finally, the general OCP for planning time optimal
trajectories for multiple vehicles reads

min
¯̃v

J
(
T, ¯̃q, ¯̃v, q̃F ,p

)

s.t. x̃k+1 = f̃z
(
q̃k ,˜̇sk , ṽk

)
k = 0. . .N −1

q̃0 = q̃I

q̃N = q̃F

α̃min ≤ α̃k ≤ α̃max k = 1. . .N −1
˜̇βmin ≤ ˜̇βk ≤ ˜̇βmax k = 0. . .N −1
q̃min ≤ q̃k ≤ q̃max k = 1. . .N −1
−ε̃r ≤ r̃k − r̃k,d ≤ ε̃r k = 1. . .N −1.

(28)

In this formulation, various variables, including vehi-
cle states, inputs, position vectors, and error limits,
are concatenated using the tilde (∼) notation. The
initial and final conditions for each robot are derived
directly from the payload’s initial q̂I and final pose q̂F

using (26),

qi ,P =
(
ri ,d

(
q̂P ,p

)

θ̂P

)
, (29)

with P ∈ {I ,F }. Note that all robots are required to
have the same orientation as the leader at the start
and end of the trajectory to ensure that the forma-
tion can continue moving seamlessly after complet-
ing the computed trajectory. The OCP incorporates
state and input restrictions for all agents, extending
the analogous constraints from (18) to encompass all
vehicles, while also incorporating the new formation
constraints.

The overall cost functional,

J (·)=wT JT (T )+wAJA
(
¯̃q, q̃F

)+wS JS
(
¯̃v
)+wF JF

(
¯̃q,p

)
, (30)

is now composed of four terms that account for differ-
ent aspects of the optimization problem, in contrast to
the three aspects from the single vehicle from Sect. 3.1.
The first term, JT (T )= T , leads to time optimality and
remains the same for both single and multiple vehicle
OCPs. The second term,

JA(·)=
n∑

i=1

N∑
k=1

lk
(
qi ,k ,qi ,F

)
, (31)
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is responsible for how the vehicles approach their set-
points, qi ,F and is computed by applying the respec-
tive cost functional for a single vehicle, lk (·), to all
agents and summing up the results. The third term
ensures smooth input signals and is obtained in the
same way by simply extending the cost functional for
one robot to all agents,

JS
(
¯̃v
)=

n∑
i=1

N−1∑
k=0

vTi ,kvi ,k . (32)

The forth term in the cost functional minimizes the
formation error er,k

(
q̃k ,p

)
and can be expressed as

JF (·)=
n∑

i=1

N∑
k=1

eTr,k (·)er,k (·), (33)

with er,k
(
q̃k ,p

) = ri ,k − ri ,d (q̃k ,p) using (27). Again, the
overall cost functional J (·) is a trade off between now
four aspects, being time optimality, smooth input sig-
nals, the way the setpoint is approached and addi-
tionally the magnitude of formation errors.

3.3 Trajectory planning for 2 vehicles with equal
orientation

In addition to the general case of a formation with
n ≥ 2 robots, we want to consider a special case with
n = 2 mobile platforms maintaining the same orien-
tation as the payload throughout the entire transport,
θ1 = θ2 = θ̂ (see Fig. 8). Note that for the case n > 2,
the vehicles must also be aligned laterally in order to
enable the formation to move along a trajectory. Oth-
erwise the vehicles’ movements would be restricted
significantly, allowing only for linear, longitudinal mo-
tion. This setup simplifies the mounting of the object

Fig. 8 Special case with n = 2 vehicles

on the vehicles, as no rotatable connections are nec-
essary.

The additional requirement is included in the OCP
in two ways. First, all vehicle orientations are con-
strained, similar to their restricted positions, by en-
forcing −εθ ≤ θi − θ̂(q̃) ≤ εθ, with the error limit εθ > 0.
Second, the formation part of the cost functional is
extended by adding a second term that minimizes the
robots’ orientation errors at each time step, eθ,k (·), re-
sulting in

JF
(
¯̃q,p

)=
n∑

i=1

N∑
k=1

eTr,k (·)er,k (·)+e2θ,k(·), (34)

with eθ,k
(
q̃k

) = θi ,k − θ̂(q̃k). The leader’s orientation is
computed using (25). Hence, the resulting OCP for
the case of two vehicles transporting an object while
maintaining the same orientation can be written as

min
¯̃v

J
(
T, ¯̃q, ¯̃v, q̃F ,p

)

s.t. x̃k+1 = f̃z
(
q̃k ,˜̇sk , ṽk

)
k = 0. . .N −1

q̃0 = q̃I

q̃N = q̃F

α̃min ≤ α̃k ≤ α̃max k = 1. . .N −1
˜̇βmin ≤ ˜̇βk ≤ ˜̇βmax k = 0. . .N −1
q̃min ≤ q̃k ≤ q̃max k = 1. . .N −1
−ε̃r ≤ r̃k − r̃k,d ≤ ε̃r k = 1. . .N −1
−ε̃θ ≤ θ̃k − θ̃k,d ≤ ε̃θ k = 1. . .N −1.

(35)

4 Optimization results

In this section the optimization results for a general
case (n = 3) as well as the special case (n = 2, Sect. 3.3)
will be presented. The distance between all of the
payload’s mounting points is set as LP = 1 m, in both
scenarios. For the case of n = 3 the object resembles
an equilateral triangle. The HDP’s steering angles are
limited to |αl/r | � 0.6 ⇔ |ϕ| ≤ π/4 and the limits for
the angular wheel velocities are |β̇l/r,R/F | ≤ 2 1/s. The
desired bounds for formation errors are chosen as εx =
εy = 10−3 m for both cases and for the special case, the
additional orientation bound is set to εθ = 10−3 rad.

As initial pose of the payload, q̂I = 0 is chosen. For
the setpoint approach part of the cost functional, JA(·),
the chosen weights are w1 = 1, w2 = 0.1, w3 = 5 and
w4 = 50. Furthermore, the weights for the overall cost
functional read wT = 104, wA = 1/N , wF = 2 ·109/N and
wS = 109/N , where N = 500 is the number of control
intervals chosen for optimization.

The desired final pose for the general case (n = 3)
is q̂F,1 = (LP LP π/2)T . The set of all possible mount-
ing point connection lines reads S = {(1,2), (1,3), (2,3)}.
Figure 9 shows the trajectories for all three vehicles as
well as the payload’s geometric center together with
the longitudinal velocity vR and the steering angle ϕ

of the representative bicycle models. Note that the
color for all vehicles and the payload is consistent
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Fig. 9 Trajectories of the first scenario

Fig. 10 Angular velocities of the wheels for q̂F,1

across all the plots. The optimal time is T ∗
1 = 29.61 s

and the optimization took about a minute on average.
Figure 10 depicts the robots’ inputs being the angular
wheel velocities. Due to time optimality, at least one of
these overall 12 input values is at its limit throughout
most of the trajectory. Only towards the end, when
approaching the setpoint, none of the input values
reach their limits because of the setpoint approach
part in the overall cost functional. For wA = 0, one of
the angular wheel velocities would be at its limit at all
times, but the formation would require more space
during the maneuver. Moreover, Fig. 11 illustrates
the formation errors er(·) = (ex ey )T , which always re-
main within their designated boundaries. Obviously,
the chosen error limits could be reduced to a certain
degree, which would result in more exact trajectories
for the vehicles but for the cost of longer optimization
times.

Fig. 11 Formation related errors of the first scenario

Fig. 12 Impact of J A(·) (n = 2, left: wA = 0, right: wA �= 0)

Fig. 13 Parallel parking scenario (n = 2)

For the special case (n = 2, Sect. 3.3), only the re-
sulting trajectories are shown as the inputs and errors
exhibit similar behavior to the general case. In this
scenario, there is only one connecting line for the two
robots’ mounting points, S = {(1,2)}. Figure 12 shows
trajectories for the desired endpoint q̂F,2 = (−LP −LP −
π/2)T , comparing the results with and without the ap-
proach part in the cost functional. Consequently, the
optimal time for the scenario with the approach part
(wA �= 0, T ∗

2,1 = 30.21 s) is smaller than the one with-
out it (wA = 0, T ∗

2,2 = 39.79 s). As already discussed, the
trajectory with the approach part poses a more direct
approach. Figure 13 presents the resulting trajectory
for a parallel park scenario for the case of n = 2. The
chosen endpoint reads q̂F,3 = (0 LP 0)T with an optimal
time of T ∗

3 = 38.67 s.
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5 Summary and outlook

This paper proposes a method for generating time op-
timal trajectories for multiple HDPs in order to trans-
port a shared payload from a initial to a given fi-
nal pose. The next step involves implementing and
testing these trajectories on physical robots. How-
ever, validating the absolute formation errors solely
through the vehicle’s odometry is insufficient due to
its inaccuracies and limited ability, estimating only the
position of a single robot relative to its initial config-
uration. Hence, an external measuring system, e.g.
a laser tracker or motion capture system, has to be
employed. Furthermore, a proper way of mounting
the payload on the vehicles needs to be developed,
allowing for minor displacement of the object relative
to the robots mitigating non-rigidity of the formation.
Future research will also focus on utilizing the remain-
ing, unused drive modes of the HDP in addition to
the Ackermann steering. Further, considerations such
as collision avoidance and the payload’s weight dis-
tribution can be incorporated into the optimization
process.
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