
Originalarbeit

Elektrotech. Inftech. (2023) 140:562–571
https://doi.org/10.1007/s00502-023-01156-y

Realistic sensor simulations for the digital twin

Barnaba Ubezio · Serkan Ergun · Hubert Zangl

Received: 30 May 2023 / Accepted: 4 August 2023 / Published online: 25 September 2023
© The Author(s) 2023

Abstract Digital twins use actual sensor data to repli-
cate the current state of a plant in a virtual model.
They can be used to evaluate the current state, pre-
dict future behavior, and thus allow to refine control
or optimize operation, enable predictive maintenance
as well as detection of anomalies and failures.
The model of a digital twin includes models of the
components, behaviors and dynamics of a system.
With the ability to simulate real scenarios, such mod-
els can therefore also be used before a plant is actu-
ally implemented, e.g., to predict the actual perfor-
mance, identify potential issues for the implementa-
tion and to develop optimal operation strategy and
algorithms. Furthermore, interfaces may be defined,
implemented, and tested with such models allowing
fast and easy commissioning of the physical imple-
mentation.
Accurate digital twins therefore also need to include
realistic sensor models, considering adverse effects
that impact their output signals. The proposed work
presents approaches for accurate sensor simulations
allowing researchers and industries to assess sensor
performance, optimize algorithms, and evaluate sys-
tem-level integration. We address Frequency Mod-
ulated Continuous Wave (FMCW) radar sensors and
time-of-flight cameras as examples for far-field sen-
sors and capacitive sensors as an example for near-
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field sensors. The approaches can be transferred to
other sensors, e.g., ultrasound sensors, LiDAR sen-
sors and inductive or magnetic sensors so that a wide
range of industrial sensors can be covered.
The proposed simulations are benchmarked with dif-
ferent tests, including real-world experiments and
compared with the corresponding real sensors.
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Radar · Time of flight

Realistische Sensor-Simulationen für den Digital
Twin

Zusammenfassung Digital Twins (Digitale Zwillinge)
nutzen reale Sensordaten, um den aktuellen Zustand
einer Anlage in einem virtuellenModell nachzubilden.
Mit ihnen lässt sich der aktuelle Zustand bewerten
und zukünftiges Verhalten vorhersagen. Des Weite-
ren ermöglichen sie eine Verfeinerung der Steuerung
bzw. Optimierung des Betriebs durch vorausschauen-
de Wartung und Erkennung von Anomalien und Aus-
fällen. Ein Digital Twin umfasst Modelle der einzelnen
Komponenten sowie Verhaltensweisen und die Dyna-
mik des Systems.
Mit der Fähigkeit, reale Szenarien zu simulieren, kann
daher auch vor der eigentlichen Umsetzung einer An-
lage solch ein Modell eingesetzt werden, z.B. für Pro-
gnosen der tatsächlichen Leistung, Identifikation von
potenziellen Problemen für die Implementierung so-
wie zur Entwicklung von optimalen Betriebsstrategien
und Algorithmen.
Darüber hinaus können auch Schnittstellen mit sol-
chen Modellen schnell definiert, implementiert und
getestet werden, um eine einfache Inbetriebnahme
der realen Umsetzung zu ermöglichen. Realitätsnahe
Digital Twins müssen daher auch realistische Sensor-
modelle umfassen. Dazu gehört auch die Berücksich-
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tigung nachteiliger Einflüsse, die sich auf ihre Aus-
gangssignale auswirken.
Diese Arbeit präsentiert Ansätze für eine genaue Sen-
sorsimulation, die es Forscher:innen und Anwen-
der:innen ermöglicht, die Sensorperformance zu be-
werten, Algorithmen zu optimieren und auszuwerten
sowie die Integration auf Systemebene voranzutrei-
ben. Wir befassen uns mit FMCW-Radarsensoren
und Time-of-flight-Kameras exemplarisch für Fern-
feldsensoren und kapazitive Sensoren als Beispiel
für Nahfeldsensoren. Diese Ansätze sind auf andere
Sensoren übertragbar, z.B. auf Ultraschallsensoren,
LiDAR-Sensoren und induktive oder magnetische
Sensoren, sodass ein breites Spektrum an Industrie-
Sensorik abgedeckt werden kann. Die hier vorge-
schlagenen Simulationen werden mit verschiedenen
Tests verglichen, darunter reale Experimente mit den
entsprechenden realen Sensoren.

Schlüsselwörter Sensor-Simulationen · Kapazitive
Sensoren · Radar-Sensoren · Time-of-flight-Sensoren

1 Introduction

Industrial, collaborative, and mobile robotics have
witnessed tremendous growth and adoption in vari-
ous sectors, revolutionizing manufacturing processes,
automation, and Human-Robot Interaction (HRI).
These systems rely on many sensors to perceive and
understand the environment accurately. Among the
key sensors used, Frequency Modulated Continuous
Wave (FMCW) radars, Time-of-Flight (ToF) cameras,
and capacitive sensors for tactile and proximity per-
ception (Capacitive Tactile Sensor (CTS) and Capaci-
tive Proximity Sensor (CPS) respectively) have gained
significant attention due to their unique capabilities
and diverse applications.

FMCW radars are able to detect and track objects
in both static and dynamic scenarios. According to
their configuration, they provide precise range, ve-
locity, and direction of arrival measurements, making
them ideal for applications such as navigation and lo-
calization for automotive and mobile robotics [1, 2],
as well as for human tracking and Speed and Separa-
tionMonitoring (SSM) [3, 4]. They work in challenging
environments where dust, fog, smoke, rain, sparks or
other occluding agents might be present [5].

ToF cameras, on the other hand, offer depth per-
ception capabilities with higher spatial resolution with
respect to radars, enabling accurate 3D mapping and
object recognition [6, 7]. However, problems such
as occlusion, varying lighting conditions, and various
parasitic effects need to be addressed for their optimal
utilization. Because of the similar measuring princi-
ples and physical properties, ToF can be efficiently
paired with radars for sensor fusion applications [8,
9].

Capacitive sensors close the perception gap of the
aforementioned technologies, combining tactile and

close range (0cm to 20cm) sensing in a single modal-
ity. They can be applied as cost-effective modular
and flexible on-board or retro-fitted large-scale sens-
ing skins [10]. Simple data processing chains allow
low measurement latencies and therefore faster reac-
tion times. In contrast to vision based sensing modal-
ities, capacitive sensors are not affected by substantial
occlusions. Whereas, CPS are used for close range hu-
man perception to reduce operation speeds ahead of
potential collisions [11, 12], CTS can be used for con-
tinuous monitoring of contact forces, ensuring obey-
ing bio-mechanical limits given by safety standards
and technical specifications (e.g. ISO/TS 15066 for in-
dustrial scenarios [13]). Especially, in rehabilitation
robotics, where a patients’ sensation of pain may be
significantly reduced, continuous force monitoring is
pivotal to avoid injuries.

Accurate digital twins of these sensors would al-
low speeding up data collection, testing configuration
changes, and generally assess their performance for
the selected applications. Therefore, a proper simu-
lation environment needs to cover both the possibil-
ity of properly reproducing the application scenarios
and to fully customize sensor parameters. Moreover,
a proper simulation should allow access to a certain
level of signal processing. In particular, an important
feature is the generation of the time domain raw radar
signal, which is not considered in many sensor sim-
ulation environments. A lack of realistic sensor mod-
els decreases simulation quality and the subsequent
transfer of the findings to the real world. Limitations
of some state-of-the-art work in the simulation of the
aforementioned sensors [14–18] include low resolu-
tion, absence of noise, absence of geometrical features
of radar antennas and high computational complex-
ity. In a similar manner, capacitive sensor simula-
tions (both proximity and tactile) have seen attention
in recent work [18, 19]. Current tackles include low
resolution, lack of multi-touch detection or unavail-
ability of mutual-capacitive modes as well as the lack
of combining tactile and proximity sensing. Addition-
ally inclusion of both conductive and non-conductive
occlusions in simulation is limited.

This article describes the implementation of simu-
lation frameworks to deal with the realistic sensor si-
gnal generation and processing for digital twins of the
aforementioned sensors. The simulated data and the
capabilities of the proposed simulation environments
are compared with real-world sensor measurements
and discussed.

2 Time-of-Flight Sensor Simulation

The ToF simulation, as well as the FMCW radar sim-
ulation described in Sect. 3, are based on the soft-
ware Unity 3D [20]. Starting from and improving the
preliminary work in [16, 21], the proposed framework
provides a user-friendly platform that can be config-
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ured to simultaneously simulate the ToF and the radar
from a single RGB camera object in Unity.

An overview of the framework components and
their interconnections for the joint simulation is
shown in Fig. 1.

The Unity 3D developer scene provides interac-
tive 3D content with various objects and materials
for modeling different scenarios. The illumination
response of the environment to the camera object
depends on configurable global illumination and ma-
terial properties, such as metallic and smoothness.
Unity 3D’s High Definition Render Pipeline (HDRP)
performs Graphics Processing Unit (GPU)-based ren-
dering using physically based lighting techniques.

A custom shader script retrieves the GPU buffer
data and computes the depth and intensity images.
Using layers in Unity, it is possible to make some ob-
jects visible for the ToF but not for the radar and
vice versa. The intensity information is coded into
separate color channels of the RGB render of the im-
age, in order to separate the data to be processed by
either the ToF or the radar simulation. Afterwards,
the images are transferred to the Central Processing
Unit (CPU) using a C# script and published as TCP/IP
stream. The C# script additionally controls the set-
tings and objects’ motion in the Unity 3D scene, which
is useful for testing velocity estimation with the radar.
A Matlab script receives and interprets the intensity
and depth images and performs the data processing
needed to generate sensor point clouds.

2.1 Sensor placement

The rendered RGB image has a resolution of 1000×342
pixels and a Field of View (FOV) of 100◦ ×45◦. The
resolution of the camera object is chosen to be 4×
the one of the ToF, to model the Flying Pixel effect, as
explained in the next Section.

Because of the similar output produced by the cam-
era object in Unity 3D, the origin of the simulated ToF
is placed coincident with the camera origin. Neverthe-
less, the rotation and translation of any sensor can be
retrieved by rearranging the central perspectivemodel
equations [22] and using homogeneous transforma-
tions. The image is also cut according to the specific
FOV of the sensor modeled. This transform-cut ap-
proach allows the user to physically add and place
additional sensors without the need of further cam-
era objects. From a single RGB camera in Unity, it
is then possible to model various shapes of antenna
arrays in the radar simulation, just by specifying the
extrinsic parameters (rotation and translation) of each
antenna element.

2.2 Signal Modeling

Amplitude Modulated Continuous Wave (AMCW)ToF
cameras transmit periodic infra-red light signals,
which are reflected by the environment. The in-

Fig. 1 An overview of the simulation pipeline to generate re-
alistic ToF and radar data

coming signal is correlated with the outgoing one to
estimate the phase shift caused by light’s travel time
and, ultimately, the distance traveled. By modeling
the transmitted light as g (t)= cos(ω0t) and the incom-
ing reflection as f (t) = AT cos(ω0t −φ0), where φ0 and
AT denote the phase shift between the signals and
the amplitude of the received signal, the correlation
function evaluates to [21]:

C = AT

2
cos(φ0+ω0τ). (1)

The values for AT and φ0 origin from the inten-
sity and distance maps provided by the shader, where
φ0 = 2πdToF /(λ/2) and λ= c/ f0 is the wavelength of the
modulation frequency f0 = 2πω0. By selecting four ob-
servation phases as ω0τ = i π2 for i = 0. . .3 yielding
C0. . .C3,
a suitable estimator for φ0 and a corresponding out-
put distance estimator by using the estimated phase
shift are given by:

̂φ0 = atan

(

C3−C1

C0−C2

)

, ̂dtof =
ĉφ0

2ω0
. (2)

The distance estimation procedure is performed pixel-
wise and expanded to multiple parallel pixels yielding
a depth image. Additional effects modeled in the ToF
simulation are the following:

� The Flying Pixel effect, which occurs when the sen-
sor pixel projects to an area containing depth dis-
continuities, e.g. a sharp edge. Consequently, the
received reflections have different travel times and
potentially different intensities. Thanks to the high-
resolution image, which is four times higher than
the ToF one, a summed contribution of four simu-
lated pixels corresponds to a single sensor pixel sig-
nal.

� Cross-talk effect due to the tunnel effect in comple-
mentary metal-oxide-semiconductor (CMOS) tech-
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nology. The pixels of ToF cameras are grid-type po-
sitioned, so this effect is modeled using a radially
symmetric Gauss Filter as isotropic approximation.

2.3 Experimental Results

The commercial sensor used to validate the results in
the real world is the PMD CamBoard pico flexx ToF
camera. The relevant specifications for the following
experiments are summarized in Table 1.

The simulation framework is qualitatively tested in
the environment shown in Fig. 2, where multiple ob-
jects andmaterials are present, including a very strong
infrared reflector object on the right desk. The scene
model in Unity 3D reproduces the indoor office en-
vironment and contains the most important items.
To each object in the simulated environment, mate-

Table 1 Relevant parameters of the used ToF camera. All
the quantities are configurable in the simulation

PMD CamBoard pico flexx

Field of View 72◦ ×45◦

Wavelength λ 850nm

Modulation Frequency ω0 20MHz

Resolution (pixels) 224 × 171

Unambiguous range 7.5m

Fig. 2 Real-world and simulated scene. Highlighted in green are the most important targets, including specific infrared and
radar reflectors

Fig. 3 A comparison be-
tween real world and sim-
ulated ToF camera data
shows the importance of
the modelled parasitic phe-
nomena

rial and metallic/smoothness properties are assigned.
The results in terms of the distance maps of the real
and simulated ToFs are shown in Fig. 3. It can be
observed that the infrared reflector, roughly at pix-
els (80,220) has zero depth in both cases. Due to the
high intensity, the affected sensor pixels are saturat-
ing, leading to failing depth estimation. Additionally,
the Cross-talk effect is present: electrons move from
high intensity regions to lower intensity ones, produc-
ing a visible “cloud“ in the image. This effect can be
seen in the corresponding real-world sensor output
as well as in its digital twin one in Fig. 3, where the
estimated depth in the region of the reflector is null
and the neighboring region shows false distance val-
ues, i.e., they have the distance that the original target
should have.

In overall, the simulated sensor output very closely
matches the real-world data. Some differences are
due to the objects’ properties, e.g. the arm of the
chair is not really visible in the real camera. Such
minor discrepancies can be easily accounted for by
additional effort in scene modeling, and are not of
concern for the proposed concept.

3 Radar Sensor Simulation

The radar transmitter is modeled from the same cam-
era object in Unity 3D, by exploiting a different layer

K Realistic sensor simulations for the digital twin 565



Originalarbeit

and color channel with respect to the ToF. This ap-
proach allows to keep the synchronization between
the two sensors, a feature of paramount importance
for sensor fusion applications.

In the proposed simulation, a Uniform Linear Array
(ULA) of receiver antennas is modeled with the trans-
formation and cut approach described in Sect. 2. The
radar FOV can be set independently from the ToF one.

3.1 Signal modeling

In FMCW radars, a sinusoidal waveform with varying
frequency is transmitted for a time Tc . Linear sweeps
of the frequency bandwidth B are known as chirps.
The waveform is reflected by the target and captured
by one ormore receiving antennas after a time delay τ,
proportional to the distance and velocity of the target.

For Doppler velocity estimation, a number Nc of
chirps can be transmitted in a single measurement
frame. The received signal is mixed with the trans-
mitted one and low-pass filtered, to provide so called
Intermediate Frequency (IF) signal, whose real part is
[1, 23]:

xIF(t)= AR cos(2π fIFt +φIF) (3)

where AR is the signal amplitude, fIF is the constant
beat frequency corresponding to the difference be-
tween transmitted and received waveforms, and φIF

is the mixed signal phase. Finally, the mixed signal is
sampled Ns times at the ADC frequency fs to provide
the raw time domain data which we are interested in
to model. Radars allowing low level access can be
configured by varying Ns , Nc , fs , B and Tc . These pa-
rameters are chosen on the basis of desired maximum
range, velocity and resolution. The proposed simula-
tion framework allows the configuration of all these
quantities. The generation of the time domain sig-
nal is summarized in the following: The mixed signal
is first evaluated at each pixel, by discretizing the IF
equations for all samples and chirps. For one pixel of
coordinates {u,v}, we have:

τ[n]u,v = 2(Ru,v + vu,vn)nc/c (4)

f [n]u,v = 2π fcτ[n]u,v +2πSτ[n]u,vn−πSτ[n]2u,v (5)

xIF[n]u,v = AR cos( f [n]u,v ) (6)

where 1 ≤ nc ≤ Nc is the chirps index, n = ns/ fs , with
1≤ ns ≤Ns is the samples index, S =B/Tc is the chirp’s
slope and AR is the pixel intensity. The pixel’s ve-
locity v is computed from the difference between
radial distance values Rk and Rk−1 obtained at two
consecutive steps k and k −1, with Δt as simulation
rate. The values of R are simply given by the distance
maps computed in the shader, after the transforma-
tion and cutting process. The pixels’ contributions
are summed up, and everything is repeated for each
simulated antenna, obtaining the raw time domain

signal xIF, reshaped into the so-called Nc×Ns×Na radar
cube, where Na is the number of Rx antennas.

Radar tracking performances are highly dependent
on the target detection algorithm, related to the peaks
in the Range-Fast Fourier Transform (FFT) spectrum.
In real sensors, low-amplitude peaks corresponding
to targets with low Radar Cross Section (RCS) might
not exceed the noise floor level and therefore will not
be detected. The proposed simulation takes this ef-
fect into account. Noise is usually modeled at the
receiver level [24] and is a mixture of thermal noise,
phase noise and other effects, the sum of which is
approximated as additive white Gaussian noise. Hav-
ing modeled the mixed signal, White Gaussian Noise
(WGN) samples are added to obtain the final time do-
main radar signal xR [n] = xIF[n]+w[n]. The variance
of w[n] can be adjusted by the user, as its value varies
with each device and in different conditions.

The obtained samples of xR can be processed with
standard radar signal processing algorithms for target
tracking. We use 2D-FFT paired with an OS-CFAR de-
tector and monopulse phase difference estimation to
compute radial distance (range), velocity and Angle
of Arrival (AoA), from which the radar point cloud is
generated.

3.2 Experimental Results

The commercial sensor used to validate the results
in the real world is the Infineon BGT60TR13C 60GHz
FMCW radar. This small, antenna-on-chip radar is a
perfect solution for short range measurements in in-
door and outdoor enviroments. The relevant specifi-
cations for the following experiments are summarized
in Table 2.

From experiments in the same office environment
used for testing the ToF camera, the radar results are
reported in Fig. 4 and 5, in terms of Range-FFT spec-
trum and Range-Angle map, i.e., 2D point cloud with
horizontal AoA. From both figures, the generally simi-
lar behavior of the two signals is evident. Some targets
are off by few centimeters, as the simulated environ-
ment is not a perfect replica, as mentioned for the
ToF case. One advantage of modeling the raw data
is evident from Fig. 4, where it can be seen that the
real radar generally sees more low-Signal-to-Noise Ra-

Table 2 Relevant parameters of the used radar. All the
quantities are configurable in the proposed simulation

Infineon BGT60TR13C

Field of View 120◦ ×60◦

Wavelength λ 5mm

Operating Frequency fc 60GHz

Chirp Bandwidth B 6GHz

Sampling frequency fs 2MHz

Number of samples Ns 512

Number of chirps Nc 1 (static)–16 (dynamic)

Number of Rx antennas Na 2
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Fig. 4 Spectrum of the Range-FFT for the office scenario.
Both signals contain many peaks, due to the complexity of the
scene. The similarity of the effect of a low pass filter (for DC
leakage component removal) and the presence of the noise
floor model in the simulation data are also visible

Fig. 5 Range-Angle map for the office scenario. The simu-
lated data well matches real-world data, especially in terms of
range; errors of a few degrees for some targets are tolerable,
because of slightly different placement of objects in the real
and simulated world

Fig. 6 Velocity plot computed from the Doppler-FFT on the
simulated data for single target tracking

tio (SNR) reflections. These are often discarded from
standard detection algorithms and ignored in post-
processing data, thus actually missing information.

Another experiment is performed entirely in simu-
lation to test the velocity estimation of a single target
tracking scenario, where the camera object in Unity is
programmed to perform a simple back and forth mo-
tion while tracking the target. The simulated radar is
configured to send 16 chirps and the Doppler-FFT is
computed. In Fig. 6 we reported the results with re-
spect to the ground truth (computed directly in Unity).
The spikes reflect the presence of noise in the raw time
domain data.

Fig. 7 An overview of the simulation pipeline for capacitive
proximity and tactile simulation

4 Capacitive Sensor Simulation

The capacitive sensor simulation offers two modes:
proximity and tactile simulation. Quite similarly to
the radar and ToF simulation, the scene is represented
in a 3D simulation environment like Unity3D or Cop-
peliaSim for the proximity simulation. The tactile sim-
ulation, on the other hand, uses a real-time physics
simulator with finite element solver (such as Simu-
lation Open Framework Architecture (SOFA) [25]) for
more accurate mesh simulation. A external MATLAB
or Python client is used to model the actual capaci-
tive sensors. An overview of the simulation pipeline is
shown in Fig. 7.

4.1 Theory of capacitive sensor modelling

Fundamentally speaking, capacitive sensors follow
the propagation of electromagnetic fields. The elec-
tric field E(x, y,z) can be therefore be expressed using
Maxwell’s equations,

∇×E(x, y,z)= 0. (7)

Typically, capacitive sensors are operated in signal
range of kHz to low MHz, yielding a wavelength of
10m to several km allowing a quasi-static simulation
of the propagated field. This allows to reduce the set
of equations to essentially

∇·E(x, y,z)= ρ

ε
, (8)

where ε is the permittivity of the surroundings and ρ

is the charge density. Following the previously taken
quasi-static assumption, ρ can be determined by,

ρ =−∇· (ε∇φ(x, y,z)), (9)

where φ is the electric scalar potential in 3D space.
The equation above is commonly known as the Pois-
son equation of electrostatics. Actual sensing hard-
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ware obtains the electric displacement field D(x, y,z),
given by,

D(x, y,z)= εE(x, y,z), (10)

and measures the electric displacement current. In
commercial simulation programs (such as COMSOL),
the surface charge q is determined by taking the
closed integral of ρ on the electrode surface, assum-
ing a planar electrode structure. The capacitance C is
then calculated by,

C = q/V, (11)

where V is the excitation voltage of the electrode.

4.2 Simulation environment

4.2.1 Proximity Sensing
The capacitive sensor is modelled by an orthographic
depth camera in the physics simulation. The field of
view of a rectangular electrode is roughly urn-shaped
(see [11]) A cuboid shaped field of view is therefore
better suited than a classical conical field-of view cam-
era. The depth information is then transformed in a
point cloud, which feeds the FEM solver used in [18].
The permittivity information of the object is stored in
the red channel of the RGB-D data. In this manner,
different objects can be assigned different permittiv-
ity.

The finite elements are defined as linear tetrahedra.
The approach in use [18] avoids a re-meshing proce-
dure (static mesh) during consecutive steps in sim-
ulation, allowing a significant decrease in time con-
sumption with minor loss in object outlines. Also, a
deformation below an individual element size is not
recognized. The discretization error can be tuned with
the right choice of the mesh resolution.

Fig. 8 Approach of the capacitive simulation. Left: The
masked mesh (visualized with MATLAB). As only the front sur-
face is captured by the camera, the entire backside is assumed
to be of the same material. Right: The representative scene in

CoppeliaSim. The blue box shows the bounding box of the
othographic camera. The RGB image of the camera is shown
in the black window

In the next step of the approach, the stiffnessmatrix
KG is pre-computed according to the operating mode
of the capacitive sensor. A capacitive sensor may
operate in mutual-capacitance (differential mode) or
self-capacitance (single-ended mode) sensing mode.
Dirichlet boundary conditions need to be set to incor-
porate transmitting and receiving electrodes. A per-
mittivity vector ε is then defined to incorporate the
material properties from the red stream of the RGB-D
information. During initialization, the permittivity for
each element is set to εi = 1.

After retrieving a RGB-D image, all mesh elements
are masked with respect to the camera image, assign-
ing the accompanying εr values in the material vector.
A single camera approach can detect only the surface
facing the camera, this approach leaves undefined ar-
eas behind those surfaces. This does not allow to fully
represent the object size. In [18], the mesh elements at
the back side of the object are set as the same object.
This approach is visualized in Fig. 8. Such simplifi-
cation is valid when considering conductive objects
(or humans). In each step, KG is updated and varia-
tions of the electric field can be obtained by moving
the objects in the sensors vicinity. The approach in
[18] updates residual entries of the matrix to speed
up computations.

4.2.2 Tactile Sensing
The (real-time) simulation of CTS is a highly investi-
gated topic and we are not yet in the stage of publish-
ing results. Therefore, this section is more considered
as an outlook and the general concept of the simula-
tion is presented.

A CTS (see Fig. 9) is usually made up by two elec-
trode layers (transmitter and receiver), which are sep-
arated by an deformable insulating layer, called di-
electric. When force is applied, the dielectric deforms
and the local thickness of the pad changes the capaci-
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Fig. 9 Schematic of a capacitive tactile sensor array with
multiple electrodes. The deformable layer acts as di-electric.
Each black square represents an electrode

tance of a nearby channel. Depending on the material
of the dielectric, the relative permittivity might also be
affected, which is subject to intensive experimental
validation.

In a similar manner, the deformed dielectric can
be modelled in a real time FEM solver (such as SOFA
[25]) and the deformed mesh can then be used to de-
termine the capacitance in a quite similar manner to
the proximity sensing approach.

4.3 Experimental Results

This section presents an excerpt of the results of the
capacitive proximity simulation and real-world exper-
iments. The full set of results can be retrieved from
[18]. The approach and results can be seen in Fig. 10.
A set of stripe-shaped electrodes were placed on the
build plate of a 3D printer, and the cylinder object
was placed on the extruder. Two paths (T1 and T2)
were investigated and the comparison of the simula-
tion and real-world measurements are shown in the
bottom of Fig. 10. The capacitive read-out hardware
in use was a USRP X310 software defined radio (SDR)
with custom-made receiver daughter boards. The
computer experiments were conducted on an office
computer with an Intel i7 processor rated at 3.40 GHz
with 16 GB RAM.

The results show a quite good match between the
simulation and real-world data for the given object
and paths. The experiments do not replace simula-
tion and real-world comparison for different sensor
design, object shapes and environmental conditions.
The results are nevertheless adequate for the assump-
tions and simplifications made and are promising for
future investigations.

5 Discussion, Conclusion & Outlook

In this work, we have presented state-of-the-art sim-
ulation tools for three different sensing techniques
commonly used in robotics environments: Capacitive,
Radar and Time-of-Flight. These sensing modalities
have their advantages and drawbacks with respect to
each other, but complement each other for a more

Fig. 10 Results of the capacitve sensor simulation: Top Left:
Electrode Design, Top Right: Analysed paths: Triangle (T1) and
zig-zag (T2) Bottom Right: Results for path T1, Bottom Right:
Results for path T2

ubiquitous perception of a robots’ environment. This
work went into detail on the physics of each sensing
principle, describing the mathematical modelling and
embedding in a simulation environment and show-
casing the results for exemplary scenarios. For the
given scenarios, our results show promising results
with respect to real world measurements. The cur-
rent limitation of these simulation tools is that not
all influencing factors (such as occlusions for capac-
itive sensors) have not yet been considered and give
necessity for future research.

Each component of the simulation environment is
modular, and can be exchanged with other software
or tools or even with actual hardware for a hybrid ap-
proach (combining real hardware and simulation soft-
ware), assuming common communication protocols.

The necessity of digital twins for the factories the
future is widely accepted. In order to acquire full func-
tion-able digital twins for tasks such as condition mo-
nitoring or even predictive maintenance, effective and
precise sensor simulations are vital.
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