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Abstract Recent advancements in energy systems,
such as the emergence of prosumers and sector cou-
pling approaches, introduce additional flexibilities
over multiple energy sectors, such as heating, elec-
tricity, and mobility. Due to the complexity of such
distributed systems, the optimization of energy al-
location is a non-trivial task, especially considering
constraints and limitations introduced by distributed
devices or sub-systems. Additionally, the variety of
devices forces approaches to be highly situational and
not universally applicable. In this paper, a two-level
optimization scheme is proposed, which aims at re-
ducing the optimization complexity of sector-coupled
systems. The multi-vector optimization embedded in
the two-level optimization scheme is formulated as
a mixed-integer linear problem, optimizing the en-
ergy flow between domains, which are modeled as
an abstraction of a sector. Distributed devices are
modeled as components that represent an abstrac-
tion of devices connected to an energy domain. The
optimization process is evaluated based on the data
from a residential complex in Ghent, Belgium. It
shows that the approach is capable of minimizing
costs, CO2 emissions, and dependency on external
resources.
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Multivektor-Optimierungsschema für verteilte
Komponenten in Energieinseln

Zusammenfassung Neuste Entwicklungen in Ener-
giesystemen, wie beispielsweise die Etablierung von
Prosumern und Sektorkopplungsansätzen, erschlie-
ßen zusätzliche Flexibilitäten über mehrere Ener-
giesektoren, wie Wärme, Elektrizität oder Mobilität.
Aufgrund der Komplexität solcher verteilten Syste-
me ist die Optimierung der Energie-Allokation keine
triviale Aufgabe, insbesondere wenn die Nebenbe-
dingungen und Limitierungen einzelner verteilter
Geräte oder Subsysteme miteinbezogen werden. Au-
ßerdem erzwingt die hohe Variabilität der Geräte,
dass Lösungsansätze nur situtationsbedingt und nicht
universell angewendet werden können. In diesem
Artikel wird ein zweistufiges Optimierungsschema
vorgestellt, dass die Komplexität von Sektorkopp-
lungsansätzen reduziert. Das Multivektor-Optimie-
rungsproblem, welches eingebettet in das zweistufige
Optimierungsschema ist, ist als gemischt-ganzzahli-
ges lineares Programm formuliert und optimiert den
Energiefluss zwischen Domänen, die als Abstrakti-
on von Sektoren definiert sind. Die verteilten Geräte
sind als Komponenten modelliert, die eine Abstrak-
tion von mit Energiedomänen verbundenen Geräten
darstellen. Der Optimierungsprozess wurde basie-
rend auf einen Datensatz eines Wohnkomplexes in
Gent (Belgien) evaluiert. Die Evaluation zeigt, dass
der präsentierte Ansatz Kosten, CO2-Emissionen und
die Abhängigkeit von externen Energiequellen mini-
mieren kann.

Schlüsselwörter Energieoptimierung · Multi-
Energie-Systeme · Sektorkopplung · Energie-
Management-Systeme
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1 Introduction

In modern energy systems many consumers become
prosumers [8] by installing Photo-Voltaic (PV) panels
or electrical storage devices. Additionally, the concept
of sector coupling is becoming more prevalent [14].
An Energy Island (EI) is defined as a geographically de-
limited organization of distributed energy consumers
and producers which strive to optimize their cost,
CO2 consumption and the independence from exter-
nal sources. EIs are complex systems of intercon-
nected load, generation and storage units in various
energy sectors, such as electricity, heating and mo-
bility, distributed over multiple buildings. This com-
plexity makes it difficult to optimize the planning of
energy generation and consumption over multiple de-
vices in different locations. Each device introduces
different location-dependent constraints, e.g., the co-
efficient of performance of heat pumps, which can be
dependent on their environment. In this paper, this
issue is defined as multi-vector optimization problem.
Due to the heterogeneity of the EI’s structure as well
as the plethora of possible local constraints of each
device, solutions are forced to be highly complex and
uniquely suitable for individual sites. Depending on
the objective of a community, different preferences
might be given to the activation order of generators,
such as financial opportunities, CO2 emission reduc-
tion incentives or reducing the dependency on exter-
nal sources or, in other words, increasing self-suffi-
ciency. However, the realization of such objectives in-
troduces additional complexity, for instance, the vari-
ability of energy prices realized by dynamic electricity
tariffs and other demand response programs.

This paper introduces an optimization scheme
which can be used by a centralized decision maker
to optimize energy allocation over multiple energy
sectors for a group of energy producers, consumers
and prosumers, distributed over multiple buildings.
The proposed two-level optimization scheme sepa-
rates the optimization process into domain-specific
optimizations, where local device limitations and do-
main-specific constraints are enforced, and a multi-
vector optimization, which optimizes the energy flow
between domains and their respective domain-spe-
cific optimizer. Splitting the optimization problem
into two smaller problems decreases the complexity
of the system, since the multi-vector optimization
can neglect constraints of individual devices and pro-
vide a consumption schedule for each domain, which
is then realised by a domain-specific optimizer. To
achieve the simplification of the multi-vector opti-
mization, components are defined, which generalize
the behavior of distributed devices or sub-systems by
only considering basic functionalities, such as storage
systems with only charging and discharging limits
and an energy conversion efficiency. This modelling
of devices or sub-systems allows the existence of do-
main-specific optimizer, which can operate under

local constraints and can be established uniquely,
depending on the underlying systems needs.

Using the proposed multi-vector optimization
method, optimal scheduling of generation and con-
sumption, regarding the minimization of costs, CO2
emissions and the maximization of self-sufficiency, is
achieved, where flexibilities, provided over multiple
energy-sectors or domains are exploited. Based on
data gathered from a residential site in Ghent (Bel-
gium), it is shown that the multi-vector optimizer
provides an optimal consumption schedule for the
distributed appliances. The main contributions of
this paper are as follows:

� The paper introduces a two-level optimization
scheme for scheduling energy generation and con-
sumption located in an EI.

� A generalization model for different types of energy
generators and consumers is proposed.

� A case study for the optimization approach is pro-
vided, where the system is evaluated on real-world
data collected in a residential district in Ghent, Bel-
gium.

The paper is organized as follows: Sect. 2 presents the
related work and compares the methods to the sys-
tem proposed in this paper. Next, Sect. 3 provides
a description of the two-level optimization scheme,
followed by Sect. 4, where an outline of the introduced
components and objective function for the optimiza-
tion approach is provided. Sect. 5 definesmetrics used
to evaluate the results of themulti-vector optimization
in a real-world residential area in Ghent and a concise
explanation of the system’s behaviour is provided. The
concluding Sect. 6 is devoted to final remarks and po-
tential future research on this topic.

2 Related Work

Load scheduling [1], integrated with renewable energy
generation and storage management [9], is a com-
mon functionality of Energy Management System
(EMS) [2]. Additionally, newly developed platforms
allow control and optimization of not only the elec-
tricity sector, but also other energy sectors such as
heating, which supports the coupling of sectors [7].

Several approaches for energy optimization and
scheduling based on integer programming methods
are proposed [12]. Zhai et al. [19] provide a mixed-
integer linear programming approach where the op-
erational costs of individual units spanning over the
electricity, heating and gas sectors get minimized.
However, in contrast to the methodology presented in
this paper, only the operational costs get minimized,
while additional factors such as CO2 emissions or
self-sufficiency are ignored. Liu et al. [11] provide an
in-depth description of Combined Heat and Power
(CHP) generation systems and show the flexibility
potential for such systems. However, the complexity
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Fig. 1 Outline of the two-
level optimization scheme
of the site in Ghent [4].
Icons are taken from Ma-
terial Icons (https://github.
com/google/material-
design-icons) available un-
der the Apache License
Version 2.0 (https://www.
apache.org/licenses/
LICENSE-2.0.txt)

of CHP might cause scalability issues for optimization
schemes if the number of devices rises.

Two-level optimization schemes aim at separating
the initial complex problem into multiple smaller
optimization problems, by logically splitting the un-
derlying system into two parts. For instance, Rastegar
et al. [15] present an approach, where in the first
level each household implements a residential energy
management system to minimize customers’ costs.
On the second level, the system operator modifies the
households’ electrical demand by solving a multi-ob-
jective optimization problem. In another approach,
the coordination of data center operators and a sys-
tem operator is implemented as a demand response
program, which is split into two levels [10]. In the
lower level the data center operators try to buy energy
as low as possible from the system operator, while
maintaining quality of service requirements, while
the system operator tries to maximize the systems
profits in the upper layer. The two-level optimization
approach proposed in this paper allows splitting the
optimization process into two smaller parts, namely
a multi-vector optimization and a domain-specific
optimization, resulting in a reduction of complexity.

In this paper, devices and sectors are generalized
into components and domains, allowing for a more
abstract view on devices and sectors, by narrowing
them down to their most essential attributes and func-

tionalities. This aspect is not covered by other multi-
level optimization models such as the one depicted by
Wu et al. [18]. A modeling of battery storage systems
and grid connections for the optimization of energy
storage and Electric Vehicle (EV) charging session uti-
lization is provided by Danner et al. [3]. However,
this method merely allows the modeling of specific
flexibility potentials and does so only for the elec-
tricity sector. While the approach by Sun et al. [16]
introduces a flexible generation model for power bal-
ancing for an electricity grid in combination with an
appropriate flexible and base-load modeling, it does
not consider any interconnections between multiple
energy sectors, e.g., between electricity and heating,
and only remains in the electricity sector.

3 Two-level Optimization Scheme

All devices and their connections in an EI are repre-
sented as components and domains in the proposed
optimization approach. Components are abstractions
of distributed consumption and generation devices or
sub-systems, which are generalized to its most ba-
sic functionality, e.g., a storage system which is only
modelled with the device’s capacity and charging or
discharging limits. Each energy domain represents
a shared medium where energy can be exchanged be-
tween components and, therefore, abstracts the idea

462 Multi-vector optimization scheme for distributed components in energy islands K

https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.apache.org/licenses/LICENSE-2.0.txt


Originalarbeit

of energy sectors. Components are connected to do-
mains and can consume or generate energy in a do-
main.

Devices connected to the same domain can have
particular domain-specific restrictions. For instance,
in the electricity domain the voltage magnitude and
frequency have to stay within set ranges. Additionally,
individual devices may have restrictions, e.g., regard-
ing the operation time or ramping rate. Moreover,
the size of an EI may vary from only one building
to a city district with multiple buildings. In order to
create a scalable and device-agnostic solution, a two-
level optimization scheme is proposed and outlined
in Fig. 1.

The first level is dedicated to the domain-specific
functionalities and consists of two functional blocks
for each domain, as outlined in the mobility domain-
specific optimizer in Fig. 1. The domain-specific con-
figuration blocks are responsible for setting up param-
eters of components connected to the domain, while
the domain-specific optimization blocks are in charge
of scheduling the specific devices’ operations consid-
ering domain-specific restrictions. The second level
of the scheme is a multi-vector optimizer that man-
ages energy flows between domains. The optimization
scheme is defined as follows:

1. Domain-specific configuration functional blocks
send the parameters of each component in its do-
main, such as energy conversion efficiency, energy
generation and consumption limits. These param-
eters are determined according to technical spec-
ifications of the devices and outputs of prediction
algorithms for energy consumption and generation.

2. The multi-vector optimization located at the sec-
ond level in Fig. 1 is performed and optimal energy
supply and consumption are found for each com-
ponent.

3. Based on the output of the multi-vector optimiza-
tion, the domain-specific optimization blocks per-
form optimization within their domain. Domain-
specific optimization might have the same opti-
mization objectives as the multi-vector optimiza-
tion, however additionally new objectives and con-
straints can be introduced in order to reflect re-
strictions and preferences of the specific domain.
Ideally, the domain-specific optimizer creates an
operation schedule such that its energy profiles
aligns with the energy profile from the multi-vector
optimizer. Due to the constraints of real devices or
forecasting errors the alignment of the multi-vector
optimizer energy profile and the domain-specific
optimizer energy profile may not be achieved. An
energy profile is defined as a sequence of energy
consumption or generation values in every time
step t over the entire time horizonT .

It is important to mention that the assignment of de-
vices to particular domain-specific optimizer is simi-
lar to the assignment of components to domains in

multi-vector optimization. However, devices corre-
sponding to interconnector components, e.g., heat
pumps, can be assigned to any of the two connected
domains. Note, interconnectors should be connected
to only one domain-specific optimizer, in order to
avoid conflicting control signals, which is the reason
why the heat pump controller in Fig. 1 is only at-
tributed to the electricity domain-specific optimizer
and not the heating domain-specific optimizer.

4 Multi-vector optimization

This paper focuses on the first two steps of the
proposed optimization process outlined in Sect. 3,
namely the configuration of components and the
multi-vector optimization. Due to unavailability of
local domain controllers at the residential site in
Ghent, Belgium, the domain-specific optimization
step mentioned in Sect. 3, is left for future work.
Component c ∈ C introduces decision variable Sc

d (t)
when it generates energy in domain d ∈ D and deci-
sion variable Dc

d (t) when energy is consumed from
domain d at any time step t , where C denotes the
set of all components (see Table 1) and D represents
set of all domains. It is important to note that all
energy-related variables and parameters of compo-
nents are in the same energy unit. The time horizon
T is modelled as a set of discrete consecutive time
steps T = {1,2, . . . , tmax}. Time horizon T and the
duration of each time step ti are configured for each
EI individually, depending on the properties of each
component.

The multi-vector optimization is mathematically
formulated as mixed-integer programming problem
and defined as follows:

minimize
Scd (t ),D

c
d (t )

ω1
∑

t∈T

∑

d∈D

∑

c∈Cd

Sc
d (t) · rc(t) (1)

+ω2
∑

t∈T

∑

d∈D

∑

c∈Cd

Sc
d (t) ·pc(t) (2)

+ω3
∑

t∈T

∑

d∈D

∑

c∈Xd

Sc
d (t)+Dc

d(t), (3)

subject to

Sc
d (t)≥ 0, ∀t ∈T ,d ∈D,∀c ∈C , (4)

Dc
d (t)≥ 0, ∀t ∈T ,d ∈D,∀c ∈C , (5)

∑

c∈Cd

Sc
d (t)=

∑

c∈Cd

Dc
d (t), ∀t ∈T ,∀d ∈D, (6)

Sc
d (t)= Sc (t),D

c
d (t)= 0, ∀t ∈T ,d ∈D,∀c ∈A , (7)

Dc
d (t)=Dc (t),S

c
d (t)= 0, ∀t ∈T ,d ∈D,∀c ∈B, (8)

Sc
d (t)∈ [0,Sc (t)],D

c
d (t)= 0,

∀t ∈T ,d ∈D,∀c ∈M ,
(9)

Dc
d (t) ∈ [0,Dc (t)],S

c
d (t)= 0,

∀t ∈T ,d ∈D,∀c ∈N ,
(10)
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ty∑

t=tx
Dc

d (t)= Ec , tx , ty ∈T ,d ∈D,∀c ∈L , , (11)

Dc
d (t) ∈ [0,Dc (t)],S

c
d (t)= 0,

∀t ∈T ,d ∈D,∀c ∈L , ,
(12)

Ec (t)= Ec (t −1)+μc(t) ·Dc
d(t)−

1
μc (t)

·Sc
d (t),

∀t ∈T ,d ∈D,∀c ∈H ,

(13)

Ec
d (t)≤Cc , ∀t ∈T ,d ∈D,∀c ∈H , (14)

Sc
d (t) ∈ [0,Sc (t)], ∀t ∈T ,d ∈D,∀c ∈H , (15)

Dc
d (t) ∈ [0,Dc (t)], ∀t ∈T ,d ∈D,∀c ∈H , (16)

Sc
i (t)=μc (t) ·Dc

d(t), ∀t ∈T ,d , i ∈D,∀c ∈K , (17)

Sc
i (t) ∈ [0,Sc (t)],Dc

i (t)= 0,

∀t ∈T , i ∈D,∀c ∈K ,
(18)

Dc
d (t) ∈ [0,Dc (t)],S

c
d (t)= 0,

∀t ∈T ,d ∈D,∀c ∈K ,
(19)

where T is the set of all time steps, D is the set of
all domains. Ec (t−1) defines the energy in the storage
component at the previous time step. Table 1 pro-
vides an overview of each component type and their
respective notation used in Expressions (1)–(19).

Multiple components can be connected to a single
domain. At every time step t energy consumption and
generation in each domain has to be balanced which
is reflected in the constraint given in Eq. (6).

The Constraints (7)–(19) are introduced by differ-
ent components. Fixed generation and consumption
components cannot be controlled by management
of the EI, but the predicted energy consumption
D

d
fixed(t) or generation S

d
fixed(t) is known for each

time step, as indicated in Eqs. (7) and (8). Flexible
generation and consumption components introduce
a limit of energy generation (Constraint (9)) and con-
sumption (Constraint (10)) that they are allowed to
contribute to the domain at time step t . These pa-
rameters can be calculated as rated maximum power
of devices multiplied by a duration of the time step
t . A time-shiftable consumption component adds
constraint that in a set of consecutive time steps

Table 1 Sets of each component type defined in Expres-
sions (1)–(19)
Component Set

All Components C

All Components connected to domain d Cd

External Component connected to domain d Xd

Fixed generation A

Fixed consumption B

Flexible generation M

Flexible consumption N

Time-shiftable consumption L

Storage H

Interconnector K

{tx , . . . , ty } ⊆ T , where tx and ty realize the starting
and ending time step of the respective interval. The
component consumes Ec energy in total, which is
expressed in Eq. (11). The maximum energy that can
be consumed in every time step by time-shiftable
load component is determined by parameter Dc (t),
as shown in Constaint (12).

During the charging process of storage components
energy is consumed from domain d and stored in
the component. In the discharging process the en-
ergy is generated in domain d and consumed from
storage. The efficiency of the energy conversion is
given by parameter μc (t). The energy stored in stor-
age at time step t is given by Eq. (13). The com-
ponent has a limited capacity of energy storage, as
shown in Inequality (14). The initial energy stored in
the component before the first time step is given by
Ec (0). The maximum energy that can be generated
and consumed in domain d is given by the corre-
sponding parameters Sc (t) and Dc (t) as shown in
Constraints (15) and (16).

An interconnector component is connected to two
domains d and i and allows the energy transfer from
one domain to another. The energy is consumed from
domain d and generated in another domain i with en-
ergy efficiency of μc (t) as shown in Eq. (17). Similar
to other components the maximum energy which can
be supplied to the domain i and maximum energy
that can be consumed from the domain d are deter-
mined by component parameters, as given in Con-
straints (18) and (19).

The three objectives that EI operators want to
achieve are represented in the objective function
(Expressions (1)–(3)) formulated in the multi-vector
optimization. The objective function is constructed
as a weighted sum of three terms corresponding to
different objectives. ω1, ω2 and ω3 are the weights that
can be adjusted by EI operators to set the priority of
the objectives. The first term given in Expression (1)
relates to the use of energy sources with the lowest
green house gas emissions. For each component
that generate energy the CO2 emission index rc (t)
is assigned for each time step t . The CO2 emission
index values used in the optimization are normalized
between 0 and 1.

The second term depicted in Expression (2) is re-
lated to the financial cost of energy. For any compo-
nent the cost of energy pc(t) can be defined for each
time step t . This cost represents the financial cost of
supplying a unit of energy by a generation compo-
nent. Note that negative cost pc(t) can be assigned to
consumer component to reflect the revenue of selling
energy to this component. It can be used to model
the case of energy injection to the electricity grid. The
costs per energy unit used in the optimization process
are normalized between 0 and 1.

The last term given in Expression (3) is related to
the EIs’ goal of external resource dependency mini-
mization. Flexible energy components can be cate-

464 Multi-vector optimization scheme for distributed components in energy islands K



Originalarbeit

Table 2 An overview of KPIs used in the evaluation process
KPI Description

External Energy Imported (EEI) The amount of energy consumed from external sources, such as a gas boiler or the power grid.

External Energy Purchased (EEP) Energy purchased from external sources e.g., energy bought from the Belpex spot market [6].

External Energy Exported (EEE ) The amount of energy provided to external sources, such as the power grid.

External Energy Sold (EES) The revenue from energy sold to external sources, such as the power grid.

CO2 Emission (CO2E ) The amount of CO2 emissions from used energy sources, such as a gas boiler or the power grid

gorized into two groups: internal and external. The
third term in the objective function focuses on the
minimization of the sum of external flexible energy
generation and consumption, thus increasing self-suf-
ficiency of EI.

5 Evaluation

In this section an evaluation of the discussed multi-
vector optimization problem in Sect. 4 is provided.
Before the experimental model can be set up and eval-
uated, Key Performance Indicator (KPI) need to be es-
tablished and discussed, such that the results of each
scenario can be measured and compared. In this eva-
luation, five KPIs are defined and outlined in Table 2.

The External Energy Imported (EEI) indicator pro-
vides an overview on how much energy is consumed,
while the External Energy Purchased (EEP) shows the
resulting costs. The EEI is the sum of energy imported
from external sources over the entire simulation time
frame T and is therefore an indicator for the self-suf-
ficiency of the system, which is the reason why it
is considered as KPI in this paper. Furthermore the
EEP shows the cost of the systems’ consumed energy,
which is part of the optimization problems price ob-
jective as defined in Eq. (2) and is therefore considered
a KPIs.

EEId = ∑

t∈T
Sc
d (t), (20)

EEPd =
∑

t∈T
Sc
d (t) ·pc(t), c ∈Xd . (21)

In Eq. (21) the time dependable cost is denoted as pc(t)
and describes the energy price in a specific time step t
of time frame T . Further, in Eq. (20) and (21) Sc

d (t) de-
fines the amount of energy consumed from the spec-
ified external energy source during time step t . The
External Energy Exported (EEE) shows the amount of
energy provided to external sources. Together with
the EEI, the EEE visualizes the strategy of consuming
energy during low energy prices and injecting energy
to external sources during price peaks. To further em-
phasize the impact on such strategies, the External
Energy Sold (EES) show the financial gain of selling
energy to external sources. The EEE and the EES are
defined as follows:

EEEd = ∑

t∈T
Dc

d (t), (22)

EESd =
∑

t∈T
Dc

d (t) ·pc(t), c ∈Xd , (23)

where the sold amount of demanded energy per time
step in Eq. (22) and (23) is denoted as Dc

d (t) and the
price paid for the individual time step t is defined as
pc (t). To gain insight on the environmental impact
of the multi-vector optimizer or in other words the
impact on greenhouse emissions, the CO2 Emission
(CO2E) is depicted as:

CO2Ed = ∑

t∈T

∑

c∈(M∪A )
Sc
d (t) · rc (t). (24)

In Eq. (24) c denotes the component of the set of flex-
ible and fixed generation sources (M ∪A ), where the
amount of consumed energy Sc

d (t) is multiplied by the
energy sources’ CO2 index rc (t) in time step t .

These KPIs where chosen in order to provide an
overview of the energy flow, the economical influence
as well as the environmental impact of the multi-vec-
tor optimizer. The following section provides a short
overview of the underlying system’s model as well as
a comparison between the non-optimized case and
the optimized case.

5.1 Energy Island model structure

In order to evaluate the approach proposed in Sect. 4,
data from a real-world residential complex of mul-
tiple buildings in Ghent (Belgium) is used [4]. The
data contains information of different devices in-
stalled in distributed facilities, such as PV generation
data, charging and discharging battery data, but also
meta-data such as capacity and energy conversion
efficiency, EV charging stations, with consumption,
arrival and departure time data of individual charging
sessions, heat pump consumption data as well as
heat and electricity consumption meters. The unique
feature of this EI is its connection to the industrial
chemical plant which can supply energy to the heat-
ing system. The plant can be considered as a waste
heat source, i.e., that the EI consumes energy that
would otherwise not be used. The energy from the
waste heat source is not always available, thus often
a gas boiler has to be activated additionally to meet
heat demand.

Fig. 2 shows the structure of the model and selected
parameters of individual components. The residential
complex in Ghent is connected to the power grid via
an external flexible generation and an external flexi-
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Fig. 2 Components and
domains in multi-vector op-
timization based on the data
from Ghent EI [4]

ble consumption, which are limited by 250kWh and
100kWh respectively. Note that both, cost involved in
the energy consumption and gains in the energy in-
jection, are based on the Belpex spot market [6] and
therefore are variable over time with a granularity of
1 hour time intervals. The PV system installed are
fixed and cannot be influenced by the multi-vector
optimizer and is therefore modelled as a fixed gene-
ration. Similarly, the electricity load, which cannot
be controlled, is modelled as a fixed consumption.
The CO2 intensity of the power grid is assumed to
be 130CO2 geq/kWh according to Electricity Maps [5],
PV introduces a CO2 intensity of 36CO2 geq/kWh and
the gas boiler is modelled with a CO2 intensity of
515CO2 geq/kWh.

In accordance with the provided data, the battery
is modelled as a storage component with a capac-
ity of 193.6kWh a symmetric conversion efficiency

μc of 0.93 and a charging and discharging limit of
50kWh. According to the provided data the initial
state of charge is 157kWh. For simplification reasons,
storage losses are assumed to be static, i.e., it is as-
sumed, in every time step the battery looses 0.05kWh
per time step of energy [13].

The EV charging station is an interconnector and
connects the electricity domain with the mobility
domain. The residential complex inherits 10 wall-
boxes, each limited by a maximum input of 1.5kWh,
corresponding to a charging power of 6 kW. There-
fore, the entire EV charging station is limited to
15kWh. Furthermore, the EV charging station is
assumed to have a constant conversion efficiency
μc (t) = 0.8,∀t ∈T . The charging sessions depicted in
Fig. 2 are dynamic and modelled according to the
data provided, i.e., the individual sessions starting
and departure time as well as the needed energy nec-
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Fig. 3 KPIs values for the non-optimized scenario

essary for the charging session are extracted from the
data. Furthermore it is assumed that the EV charging
station only allows reserved charging sessions, i.e., it
is ensured to acquire the starting and ending time of
each charging session as well as the amount of energy
consumed during this session beforehand.

According to the data, the heat pump used in Ghent
has a coefficient of performance between 3.0 and 3.5,
where the lower limit is chosen to have a more con-
servative view on the system. Furthermore, the heat
pump is assumed to be limited by 12.5kWh on the
electrical side, since this is the maximum value found
in the data set. It is assumed, that the heat pump
is always available over the course of the simulation.
In the heating domain the connection to the indus-
trial chemical plant is modelled as a fixed generation,
since the multi-vector optimizer cannot influence the
output of the component itself, but can only control
other components to react to the energy supply ac-
cordingly. Similarly, the heating demand of the resi-
dential sector ismodelled as a fixed consumption. The
gas boiler installed in the residential complex allows
to additionally generate energy in the heating domain
and is modelled as an external source. However, the
boiler’s generation is limited by 377kWh, which is the
maximum energy generated that can be found in the
provided data. The unit cost of onekWh of energy is
defined by the gas price provided by VREG [17].

For the evaluation of the model a time frame T
from the 22th of April 2021 to the 29th of April 2021
is chosen, since during this time frame the original
data shows a sufficient amount of electricity export as
well as an considerable amount of gas and electricity
import. The optimization time horizon T consist of
96 time steps, which is equivalent to 1 day (each time
step represents a 15 minute interval).

In the next subsection a description of two scenar-
ios for evaluation is provided. At the moment of data
collection, multi-vector optimization was not imple-

mented in the evaluated EI. Thus as a baseline, the
first scenario represents the energy usage without op-
timization. The second scenario applies the proposed
multi-vector optimization algorithmwith the assump-
tion that forecasting data is 100% accurate.

5.2 Scenario without optimization

For the non-optimized case, the provided data is eval-
uated based on the KPIs defined in Sect. 5. Fig. 3
shows KPIs calculated for the individual domains over
the time frame of 22th of April 2021 to the 29th of April
2021. Note, the energy consumption and cost for en-
ergy imports are vastly higher for the heating domain
than for the electricity domain. This is represented by
the Electricity domain’s (flexible generation represent-
ing the power grid) EEI value being lower than the EEI
value of the Heating domain (gas boiler). This results
in higher CO2 emissions or a higher CO2E value in the
heating domain compared to the electricity domain.
The high gas consumption in the heating domain is
due to the under-utilization of the heat pump and the
resulting over usage of the gas boiler, as well as not
fully utilizing the waste heat source. Additionally, the
CO2 intensity of gas assumed in Sect. 5 is higher than
the CO2 intensity of the PV system or the power grid
in April. Furthermore, the EEE value of this scenario
shows that the exported energy is low compared to the
imported energy, which results in a low EES value.
This indicates that the battery is under-utilized and
strategies such as buying at low electricity prices and
injecting at price peaks are not considered.

5.3 Scenario with optimization

For the optimized scenario it is assumed that the fore-
casts provided are 100% accurate. Fig. 4 shows KPIs
separated by the individual external sources with dif-
ferent weight configurations in the optimization pro-
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Fig. 4 Results of the op-
timization for each case.
Case 1 (ω1 = 0,ω2 = 1,ω3 =
0) prioritizes the minimiza-
tion of financial costs,
case 2 (ω1 = 0.5,ω2 =
1,ω3 = 0) considers the
minimization of the finan-
cial costs and reduction of
CO2 emissions and case 3
(ω1 = 0.5,ω2 = 1,ω3 = 0.1)
includes all three optimiza-
tion objectives

cess. Three different configurations are chosen to
show the impact of each individual objective. Case 1
defines the initial case of the setup, where only the
price is considered as an objective (ω1 = 0, ω2 = 1,
ω3 = 0). Compared to the non-optimization scenario
the EEI of the heating domain is reduced heavily, due
to the waste heat provided by the industrial chem-
ical plant and the increased utilization of the heat
pump, which additionally leads to an increase of the
EEI value of the electricity domain.

In case 2, the objective related to CO2 emissions is
weighed with ω1 = 0.5, to emphasize on the reduction
of CO2 emissions, however still prioritizing the price
objective. This results in a decrease of energy con-
sumption, injection and therefore the financial gain
as well as CO2 emissions compared to case 1. Energy
consumption from the grid results in an increase of
CO2 emissions, but the injection of energy into the

grid does not decrease the CO2 emissions of the site.
This makes the prospect of buying energy from the ex-
ternal power grid less desirable, despite the financial
gain.

By increasing ω3 in case 3 from 0 to 0.1 the avoid-
ance of external consumption gains importance, how-
ever the financial as well as the CO2 reduction incen-
tive are still prominent. This results in further reduc-
tion of energy consumption/injection and therefore
decreases CO2 emissions. Both weights penalize the
strategy of buying during low prices and selling at high
peaks, since a) higher energy consumption is penal-
ized by ω3 and b) higher consumption results in higher
CO2 emissions, which is penalized by ω1.

Note that in case 1-3 the heating consumption does
not change. The reason for this is that electricity
prices during the time frame of the scenario are al-
ways cheaper than gas prices. This leads to the gas
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generation already being minimized in case 1 and no
further decrease can be observed in cases 2 and 3.
Further note, that despite the gas boiler being more
expensive and introducing more CO2 emissions the
gas boiler’s heat generation cannot be reduced any
further, since during certain time steps the heat de-
mand cannot be matched by the heat pump and the
waste heat source alone.

6 Conclusion

In this paper, a two-level optimization scheme for
a multi-vector optimization is proposed for a group
of distributed energy generation units and consumers.
The multi-vector optimizer is an essential part of this
scheme, allowing the control of multiple distributed
devices or sub-systems. The multi-vector optimizer
computes the optimal energy profile for devices in
all domains, while the domain-specific optimizer
schedule operation of devices considering domain-
specific constraints. Generators and consumers are
represented in the optimizer as abstract components.
Several types of components are proposed which
have different parameters and introduce different
constraints to the optimization problem. This allows
the modeling of real energy units, forecasts and differ-
ent types of consumers. One benefit of this model lies
in its abstraction level – it is not limited to a specific
energy domain and can be used to model different
types of energy sectors in facilities.

In order to show the effectiveness, the method is
evaluated based on the data from a real-world EI
in Ghent, Belgium. The scenario without optimiza-
tion acts as a baseline, while the optimized approach
shows that the optimal solution of the problem can
be derived if no forecasting errors are encountered.
Results show, the proposed multi-vector optimiza-
tion scheme increases financial gain and reduces CO2
emissions, by reducing gas consumption and increas-
ing the utilization of the onsite heat pump and the
provided waste heat energy.

In different cases, it was demonstrated that by
increasing the weights of CO2 reduction and self-
sufficiency, the strategy of buying during low-cost
hours and re-selling at price peaks gets increasingly
unattractive. The multi-vector optimizer penalizes
buying-and-re-selling strategies, since buying energy
from the power grid introduces a higher consump-
tion of CO2, but injecting energy to the grid does not
reduce the CO2 emissions of the system. Further-
more, the self-sufficiency objective minimizes the
amount of energy bought from and sold to the grid,
which additionally penalizes the buying and re-selling
strategy.

Note, for the optimization process a forecast accu-
racy of 100% is assumed. However, this is not realistic
and the issue of forecasting errors needs to be tackled
in future work. Additionally, this paper only focuses
on the multi-vector optimization and the two-level

optimization scheme. The integration of domain-spe-
cific optimization schemes as well as the evaluation of
cooperation between the multi-vector optimizer and
multiple domain-specific optimizer needs to be estab-
lished in future research.
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