Elektrotechnik & Informationstechnik (2018) 135/4-5: 322-327. https://doi.org/10.1007/s00502-018-0630-7

Quality assurance methodologies for
automated driving

F. Wotawa, B. Peischl, F. Kltck, M. Nica

For safety critical systems like cars, trains, or airplanes quality assurance methods and techniques are crucial for preventing situations
that may harm people. The case of automated driving represents the next level of safety critical systems where additional challenges
arise. This includes the question of how to assure that artificial intelligence and machine learning based systems fulfill safety crit-
icality requirements under all potential conditions and situations that may emerge during operation. In this paper, we first review
simulation-based verification and validation methods for such systems and afterwards discuss necessary requirements and future re-
search challenges that have to be solved in order to bring automated driving into practice without compromising safety requirements.

Keywords: functional safety; SOTIF; ADAS; testing; verification

QualitatssicherungsmaBnahmen fiir das automatisierte Fahren.

Fir sicherheitskritische Systeme wie Autos, Zlige oder Flugzeuge sind Methoden und Techniken zur Qualitatssicherung entscheidend,
um den Schutz von Leib und Leben zu garantieren. Automatisiertes Fahren stellt eine neue Herausforderung fiir die Entwicklung
und den Test von sicherheitskritischen Systemen dar. Dazu gehért die Frage, wie sichergestellt werden kann, dass Systeme, die auf
ktnstliche Intelligenz und maschinellen Lernen aufbauen, alle sicherheitskritischen Anforderungen, die wahrend des Betriebs auftreten
kénnen, erfillen. In diesem Beitrag stellen die Autoren zundchst simulationsbasierte Verifikations- und Validierungsmethoden fiir sol-
che Systeme vor und diskutieren anschlieBend zukiinftige Herausforderungen, die gel6st werden missen, um automatisiertes Fahren

322

in die Praxis umzusetzen, ohne die Sicherheitsanforderungen zu verletzten.

Schlisselwérter: funktionale Sicherheit; SOTIF; ADAS, Testen, Verifikation

Received March 16, 2018, accepted June 28, 2018, published online July 10, 2018

© The Author(s) 2018

1. Introduction

Complex electronic-based systems are nowadays realized with a
huge amount of software that controls mechanical, electrical or
hydraulic components. In such systems software-based subsystems
interact with the physical world employing sensors and actuators
to fulfill their intended purpose. An example is the anti-lock brak-
ing system of a vehicle, which senses the rotation of the wheels
and software decides on how to steer the brakes to avoid slip-
ping wheels. To an increasing extent such software-based functional
features like Advanced Driver Assistance Systems (ADAS) and auto-
mated/autonomous driving capabilities are integrated into modern
vehicles [5]. As a consequence, the amount of software in modern
vehicles is growing and software subsystems become increasingly in-
terconnected and complex [6]. Such systems exhibit critical proper-
ties in a sense that unhandled malfunctioning of parts of the system
may result in unacceptable harms to the system itself, to the physi-
cal system environment and—most crucial—to the safety of human
beings.

1.1 Safety and malfunctioning

Safety-critical systems need to contain mechanisms to detect, local-
ize and repair these malfunctions properly such that no harm can oc-
cur. In case that hardware or software elements fail, these elements
have to be isolated to prevent the fault propagation to the residual
system. There exist several ways to react to a failure at time of op-
eration. In present automotive systems it is often possible to reach
a safe state by shutting down parts of the system in case malfunc-
tioning has been detected. For example, failure of a brake-by-wire

P
@ CrossMark

function could be handled by turning of the units implementing this
function without losing control over the driving behavior as there
is a mechanical backup for the braking mechanism. However, with
the emerging progress towards automated driving functions, critical
functionality has to remain operational. Thus, considering a brake-
by-wire function having no mechanical backup in place, this func-
tion cannot be shut down in case of a failure as this would result
in losing the ability to brake. Such systems are referred to as fail-
operational and are able to operate with no change in objectives or
performance despite of any single failure [15].

In engineering safety-critical system we thus distinguish between
safety in use, functional safety (ISO 26262 [1]) and Safety Of The
Intended Functionality (SOTIF, ISO PAS 21448 [10]). Safety in use
refers to the absence of hazards induced by human error. According
to ISO 26262 part 1 [1] functional safety means the absence of un-
reasonable risk due to hazards caused by malfunctioning behavior.
Functional safety is thus primarily dealing with safety in the presence
of failures.

Wotawa, Franz, Graz University of Technology, Institute for Software Technology,
Christian Doppler Laboratory for Quality Assurance Methodologies for Autonomous
Cyber-Physical Systems (QAMCAS), Inffeldgasse 16b/2, 8010 Graz, Austria

(E-mail: wotawa@ist.tugraz.at); Peischl, Bernhard, Graz University of Technology,
Institute for Software Technology, Christian Doppler Laboratory for Quality Assurance
Methodologies for Autonomous Cyber-Physical Systems (QAMCAS), Inffeldgasse 16b/2,
8010 Graz, Austria; Kliick, Florian, Graz University of Technology, Institute for Software
Technology, Christian Doppler Laboratory for Quality Assurance Methodologies for
Autonomous Cyber-Physical Systems (QAMCAS), Inffeldgasse 16b/2, 8010 Graz, Austria;
Nica, Mihai, AVL LIST GmbH, Hans-List-Platz 1, 8020 Graz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s00502-018-0630-7&domain=pdf
mailto:wotawa@ist.tugraz.at

F. Wotawa et al. Quality assurance methodologies for automated driving

According to ISO 26262, part 1 [1] a failure is defined as the ter-
mination of the ability of a system element to perform a function
as required. In particular, there are two different types of failures:
Random failures are failures that can occur unpredictably during the
lifetime of a hardware element and in general follow a probabil-
ity distribution. In contrast, systematic failures are deterministically
related to a certain cause. Systematic faults are produced by hu-
man error during system development and operation. They can be
created in any stage of the system’s life including specification, de-
sign, manufacture, operation, maintenance and decommissioning.
After a systematic fault has been created, the observed failure will
always appear, when the circumstances are exactly the same, until
the fault is removed. However, it is difficult to predict the occurrence
of systematic faults and their effect on the safety of a system. This
is because of the difficulty to anticipate when the failure-revealing
circumstances will arise [7].

Simple hardware failures are primarily random in nature rather
than systematic. While it is possible that hardware can be subject
to systematic failures, the level of complexity of hardware means
that predominately failures are random in nature. However, this is
changing with the growing complexity of processors and the use
of Application-Specific Integrated Circuits (ASICS) [7]. Moreover, all
software faults are systematic and due to its complexity, the risk of
systematic faults is becoming increasingly prevalent. Unlike to ran-
dom faults, it is not possible to predict the probability of system-
atic faults. Instead the associated risks are addressed in terms of
process-based [8] (e.g., following well-defined development proce-
dures such as recommended by ISO 26262), constructive [9] (e.g.,
using fault-tolerant system and software architectures) and analyt-
ical approaches (e.g., static and dynamic verification) to quality as-
surance.

1.2 Automated driving and safety of the intended
functionality

Safety of intended functionality is the absence of unreasonable haz-
ardous functionality that may occur. In contrast to functional safety,
the system does not exhibit malfunctions in its intended function.
ISO 26262 does not address the nominal performance of electronic-
based systems. Instead SOTIF will cover the safety regarding the
nominal behavior. It addresses the fact that for some ADAS appli-
cations, a fault-free system can still suffer from safety violations (for
example, a false-positive detection of an obstacle by radar). This sit-
uation may occur because developing a system that can address
every possible scenario is infeasible. For instance, in ADAS deep-
learning techniques improve the detection and recognition of ob-
jects or humans on the road and furthermore enable the recognition
and prediction of actions. The idea of implementing safety-related
functions by training neural networks, however, brings empirical de-
sign choices and heuristics into the rigorous and rather predictable
development cycle as practiced in the automotive industry.

2. Verification, validation and testing for automated driving

To detect the failures as early as possible, one strives to cover the typ-
ical as well as corner-case scenarios at the MiL (Model in the Loop),
SiL (Software in the Loop) and finally the HiL (Hardware in the Loop)
level. Typically, a modern car goes through different test cycles cov-
ering the most important scenarios and amounting to about one
million miles prior to start of production (SOP). With the advent of
autonomous driving, this amount dramatically increases as the num-
ber of possible scenarios is exploding and there is need to carry out
test cycles that reach (maybe more than) 275 millions of miles [11].

covered
mileage

car with automated driving capabilities

necessary improvements
in testing ADAS functions

standard car

sop time
Fig. 1. ADAS increases the mileage to be covered by orders of mag-
nitude

Due to the vast amount of different traffic situations, road condi-
tions, and other influencing parameters, the mileage to be covered
dramatically increases as Fig. 1 schematically illustrates.

This increase in the functional range of present-day vehicles
rapidly brings new challenges to the automotive industry in terms
of development and testing. Following a continuous and traceable
process is state of the art and demanded by proven standards like
ISO 26262 [1]. Nevertheless, rising system complexity combined with
high quality standards and the need for detecting faults as early
as possible motivates the industry to employ simulation-based ap-
proaches. Particularly when it comes to testing ADAS functions,
novel methods are required to assure properties such as safety and
adequate fail-operational behavior.

ADAS development starts with a definition of the functional re-
quirements in terms of the desired functions. Hazard and risk anal-
ysis are therefore performed to identify the safety requirements. For
example, simulation models are nowadays used to support tasks like
Fault Tree Analysis (FTA) [12] or Failure Modes and Effects Analysis
(FMEA) [12, 13]. This primarily aids in anticipating the potential ef-
fects of random and systematic faults and thus in the design and
verification of fail-safe or fail-operational systems.

From the functional safety requirements, a system specification is
produced to define the precise operation of the system. After im-
plementation of the individual software modules, system integra-
tion testing takes place by assembling the complete system from
its component modules. In every phase, integration takes place to
determine whether the output of a phase meets its specification.
This testing demonstrates compliance with the specification, how-
ever, potential errors in the specification may result in a faulty ADAS
function. It is therefore important to perform validation of the in-
tegrated system against its requirements. Usually the development
process involves several iterations and the results of verification and
validation are used to modify the system specification and design
before the next test cycle is conducted. Due to the complexity of
ADAS functions, there is the increasing need to obtain reproducible
test results as early as possible. Therefore, the various in-the-loop
simulation tools are increasingly being used for verification and vali-
dation of such functions.

It is state of the art to deploy the software into simulated or real
hardware and to provide simulations for the different environments
like sensors or actors. In this approach the sensors or actors are re-
placed with the signals that a sensor or an actor would send respec-
tively receive under given physical conditions. The actions that an
actor performs as a response to the received signals are simulated.

323

324

The initial design of ADAS functions is supported by MiL simu-
lations, where the function is simulated in closed-loop with mod-
els and vehicle dynamics, sensors, actuators and the traffic environ-
ment. When MiL simulations have provided sufficient results, soft-
ware code is compiled from the simulation model of the ADAS func-
tion. This code can then be verified with SiL simulation, where hard-
ware components, sensors and vehicle dynamics are simulated. HiL
simulation allows to validate real hardware in an early development
phase without the need for a prototype vehicle as any missing ve-
hicle components can be simulated. Thus, HiL simulators are much
cheaper than test drives and are extensively used for the develop-
ment of ADAS functions. Because environment sensors should re-
ceive a real input, an artificial environment must be created to test
an ADAS-equipped vehicle in HiL simulation.

Due to the complexity of the environment and the infinite amount
of driving scenarios and parameter combinations that have to be
considered, there is urgent need for capable virtual simulation and
testing platforms. In the robotics field, Sotiropoulos et al. [14] report
on an exploratory study of detecting bugs regarding outdoor robot
navigation. The analysis of the triggers and the effects of these bugs
shows that most of them could be detected using simulation. Simu-
lation thus can serve both, the testing of the application but also to
explore the boundaries of the system.

Also heading into this direction, Mathworks released an applica-
tion-oriented Automated Driving System Toolbox™ for its product
Matlab [2] to design, simulate and test autonomous driving systems.
One of the centerpieces of a self-driving car is the vision system, al-
lowing the vehicle to perceive the surrounding environment and trig-
ger actions accordingly. The Automated Driving System Toolbox™
can, for example, be used to develop and verify a perception system
for object and lane detection that is capable of tracking and fusing
data from multiple sensors connected to the vehicle. Automatically
labeled video data can then be used, to test the perception system
against various predefined driving scenarios, to visualize the sen-
sor coverage and to check the object classification against ground
truth. The toolbox also supports C-Code generation for prototyping
and testing of the embedded application.

In the following we list tools that support the procedures de-
scribed previously: Providing simulation models for failure analysis,
the various in-the-loop scenarios for iterative refinement and sub-
sequent integration testing as well as the elicitation of safety and
fail-operational requirements and their traceability to test cases. In
Table 1, the first column refers to the specific tool, the second col-
umn describes its main focus and column three list the modeling
language, respectively the types of models being supported.

3. Challenges
Given the situation outlined above, ADAS features and auto-
mated/autonomous driving capabilities pose major challenges in the
following areas:

Elicitation of safety hazards at the system level: One of the key
challenges of automated driving systems is to demonstrate func-
tional safety and SOTIF. In particular, the elicitation of hazards to
safety and fail-operational requirements regarding the nominal sys-
tem behavior is difficult, as such properties need to be analyzed and
validated at the system level. For example, due to the intrinsic limi-
tations in sensor performance, wrong perception or erroneous anal-
ysis of driving situations is a major hazard. This in turn may result
in wrong information provided to the driver, or more severely, the
system may trigger a hazardous action such as unintended braking
or steering [3]. The elicitation of safety and fail-operational require-
ments is a foundation for a (requirements-based) test strategy. How-

F. Wotawa et al. Quality assurance methodologies for automated driving

ever, as safety is a system level property, the problem in software-
intensive systems is not primarily failure, but the lack of appropriate
constraints on software [27].

Generation of test scenarios and test data: A major challenge is
to generate meaningful test scenarios that capture the relevant haz-
ardous corner cases for automated driving. NVIDIA's DriveSIM—a vir-
tualized testing environment for self-driving cars—may be a promis-
ing tool in this direction. The tool is not only capable of simulat-
ing a wide range of traffic scenarios and weather conditions, but
other road users are virtualized agents too, which are operating in
the same virtual environment. Such testing with virtual environment
eases test regressions and shortens test cycles which may be the key
to archive sufficient mileage coverage [4].

Providing gquarantees for fail-operational behavior: Fully auto-
mated driving will require guarantees for fail-operational behavior.
To cope with this, the development process needs to incorporate a
formal, structural analysis to anticipate the effects of the isolation
of single components. This will help to address failures (i.e., viola-
tion of safety properties due to random faults, systematic faults, or
safety-violations of the fault-free system) in terms of redundant de-
ployments and failover scenarios. Having such failover scenarios in
place, however, two major challenges arise. First, the reconfigura-
tion of the remaining computing resources due to the isolation of a
specific component poses a challenge. In this respect, work on auto-
mated fault localization and program repair appears to be promising
[17, 18]. Second, the verification that fail-operational requirements
can be met in all considered failover scenarios is an unsolved issue.

Verification and validation of intelligent/adaptive systems: The
growth of deep learning in implementing ADAS functions raises im-
portant methodological challenges. The rigorous development pro-
cess followed in the automotive industry clashes with the empiri-
cal design choices driven by heuristics when deep-learning is ap-
plied within this development lifecycle. Despite neural networks
have achieved impressive experimental results, for example in image
classification, they can be surprisingly unstable with respect to ad-
versarial perturbations. Minimal changes to their input images may
cause the network to misclassify the image [16]. As such misclassi-
fications may result in violation of safety requirements, the verifica-
tion of safety-relevant functions relying on deep-neural networks is
an important challenge that urgently needs to be addressed.

In developing smart and autonomous systems, it is a promising
approach to bring verification and testing techniques to the run-time
environment. It is an open issue on how to best implement the feed-
back loop between the development time and runtime. According
to [37] an evidence-driven development feedback loop considerably
aids in mastering the above-mentioned challenges and makes use
of tools such as:

e A continuous integration/delivery/deployment infrastructure that
continuously executes a range of test cases on a new version of
the intelligent system. This enables the team to obtain continuous
feedback regarding critical quality metrics.

e Simulation and simulation-based testing (see Table 1 for the var-
ious tools available) allows the development team to better un-
derstand the boundaries of experimentation and to detect faults
in the early development phases. For this purpose, the simulation
needs to be integrated into the continuous integration infrastruc-
ture.

o In later stages, dedicated test beds offer a more realistic environ-
ment (MiL, HiL, SiL). Some behaviors may risk damage to hard-
ware and mechanics, consequently the boundaries for experimen-
tation tend to be narrower compared to simulation.

F. Wotawa et al. Quality assurance methodologies for automated driving

Table 1. Overview on tools for virtual development and testing

TOOLS

MAIN FOCUS

MODELS

Dynamic Modelling
Laboratory [38]
Matlab/Simulink [2]

Unity 3D Game Engine
[19]

MORSE [20]
AutoFOCUS 3 [21, 29]
OSATE [22]

ERNEST [23]

OpenCert [24]

Eclipse Safety

Framework [25]

UNISIM-VP [26]

Dynacar RT [28]
NVIDIA DriveSIM [4]
Virtual Test Drive (VTD)

(30]

PreScan [31]

CarMaker [32]

UnReal Engine [33]

Description and simulation of physically correct
system behavior.

Design and analysis of automotive control system
software.

Describe and model complex environmental
conditions for interactive/closed-loop simulation.
Realistic 3D simulation of environments and generic
vehicle-like robots for academic usage.
AutoFOCUS 3 is a model-based development tool
for distributed, reactive, embedded software
systems.

Creation of AADL models for Functional Hazard
Assessment, Fault Tree Analysis, Failure Modes and
Effects Analysis, and Dependence Diagrams.
Verification and validation of non-functional
properties (time) of networked embedded systems
with a focus on early design steps.

Compliance assessment and certification of
safety-critical products including the construction of
safety cases.

Analysis tool for FTA analysis.

Cross-platform open source simulation environment
with a focus on co-design and integration and
validation of hardware/software systems. A virtual
platform in which—unlike on the real
hardware—software can be debugged and tested
without affecting either its functional and/or
temporal behavior.

Configurable vehicle model running in a real-time
system for testing tasks.

Virtualized testing environment for self-driving
vehicles, simulating a wide range of traffic scenarios
and environmental conditions.

VTD provides a complete tool-chain for creation and
simulation of virtual worlds. Virtual worlds can be
modified to include dynamic content, realistic road
properties and any number of externally computed
entities.

PreScan is a physic-based simulation platform for
sensor-driven ADAS development, model-based
controller design (MIL) as well as real-time
software-in-the-loop (SIL) and hardware-in-the-loop
(HIL) testing.

CarMaker is an integration and testing platform to
realistically model real-world test scenarios,
comprising the surrounding environment, driver
behavior and traffic situations, in the virtual world.
The Unreal Engine provides a sophisticated graphical
development environment and a variety of
specialized tools. The engine includes modules
handling input, output (3D rendering, 2D drawing,
sound), networking and physics and dynamics.

Discrete or continuous models of vehicle
sub-systems and components.
Vehicle control software models.

Sensor, road and environmental models.
Sensor, actuator and environmental models.

The behavior description is carried out using state
automata, source code, or tables.

Architecture Analysis & Design Language (AADL)
models.

UML, EAST-ADL (Electronics Architecture and
Software Technology—Architecture Description
Language) and Artop/AUTOSAR.

No formal model in place as the focus of OpenCert
is on argumentation, evidence and process
management.

SysML (System Modeling Language) and MARTE
(Modeling and Analysis of Real-time Embedded
Systems).

Matlab, Simulink, Rational Statemate, Stateflow.

Overall vehicle model, third party models e.g.
Simulink can be integrated.

Road and environmental models as well as other
road users being self-driving Al-agents.

Virtual worlds can be designed from existing
database tiles and 3D model libraries to generate SiL
and HilL scenarios.

Interface to Matlab/Simulink for designing and
testing perception algorithms and sensor models as
well as further flexible interfaces to link 3rd party
vehicle dynamics models.

Complete environment model including an
intelligent driver model, a variety of accurate vehicle
type models as well as highly adaptable models for
roads and traffic.

The 3-D environment in defined in much the same
way as VRML (Virtual Reality Markup language).

August 2018 135. Jahrgang

he Author(s)

heft 4-5.2018 325

326

Such an evidence-driven development loop allows to refine the
various environments towards the real conditions. For example, an
ADAS function under test might be carried over from the simulation
environment (scenario generation), to the various co-simulation and
integration environments (MiL, e.g., early evaluation of boundaries
and corner cases), SiL- and HilL testbeds (sensor validation), finally
reaching the proving ground (e.g., testing of detailed scenarios and
maneuvers) and a public road test field (e.g., testing of regional-
specific scenarios). The development of ADAS functions is thus in-
tertwined with systematic experimentation and collection of data to
better adjust the models to the real environments.

Online safety analysis: In contrast to basic functionality, ADAS
such as parking assistant systems or lane departure warning of-
ten provide functionality relevant only in specific driving situations.
Hence activating such systems only when needed or expected to
be useful promises savings in energy. This is especially relevant to
electric vehicles. To realize a system that dynamically might acti-
vate and deactivate vehicle functions in order to adapt the system
to changing contexts, such as different driving situations [34], self-
adaption of ADAS functions must however still meet safety require-
ments. Therefore, online safety analysis will become a challenge.
One attractive idea is to monitor the runtime behavior of such sys-
tems against its safety case. As this monitoring mechanism itself
is implemented in software, it also becomes the part which inher-
its the issues with regards to safety assurance [35]. Another view to
safety applied to adaptive systems is presented in [36]. There the au-
thors propose Conditional Saftey Certificates (ConSerts). ConSerts
[36] are post-certification artefacts (i.e., the certification has been
conducted at time of development) equipped with variation points
that are bound to formalized external dependencies. These depen-
dencies are resolved at runtime [35, 36].

4. Conclusion

With the advent of ADAS features and automated/autonomous driv-
ing capabilities in modern vehicles, software-based functional fea-
tures become increasingly interconnected and complex. In this arti-
cle we discuss two different types of failures in the context of func-
tional safety: random failures that occur unpredictably in a system’s
lifecycle and systematic failures that are produced by human error
during system development and operation. Further we argue, that
in presence of intelligent systems—such as deep neural networks—
even a fault-free system may suffer from safety violation. Thus, the
needed increase in the covered mileage due to ADAS features re-
quires considerable improvements regarding simulation-based verifi-
cation, validation and testing methods. We provide a brief overview
of available tools and discuss the methodological challenges in the
context of autonomous driving. Among the major challenges are
the elicitation of safety hazards at the system level, the generation
of (realistic) test scenarios and test data, the provision of guarantees
for fail-operational behavior and the safety-verification of intelligent
systems employing neural-networks.

Acknowledgements

Open access funding provided by Graz University of Technology. The
financial support by the Austrian Federal Ministry for Digital and Eco-
nomic Affairs and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided you give appropriate credit to the original au-
thor(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

heft 4-5.2018 © The Author(s)

F. Wotawa et al. Quality assurance methodologies for automated driving

References

1. 150 (2011): 1SO 26262—road vehicles—functional safety. International organization
for standardization.

2. De.mathworks.com (n.d.): Automated Driving System Toolbox, [online]. Available
at: https://de.mathworks.com/products/automated-driving.html. [Accessed 28 Feb.
2018].

3. Fayolle, G., Raffaélli, L., Vallée, F, De Souza, P, Rouah, X., Pfeiffer, M., Géronimi, S.,
Petront, F, Ahiad, S. (2016): Facing ADAS validation complexity with usage-oriented
testing. In 8th European congress embedded real time software.

4. Nvidianews.nvidia.com (2018): NVIDIA announces worlds first functionally safe ai
self-driving platform, [online]. Available at: https:/nvidianews.nvidia.com/news/
nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform.2018. [Ac-
cessed, 28 Feb. 2018].

5. Esch, S., Lang, B. (2008): Elektronik- und Vernetzungsarchitektur mit gesteigerter Leis-
tungsfahigkeit. In ATZextra (pp. 194-199).

6. Lammering, D., Balbierer, N., Abdulkhaleg, A. (2016): Automatisiertes Fahren:
Keimzelle neuer Architekturkonzepte. In Hanser automotive 11-12/2016, pp. 34-37).

7. Safetyengineering.worldpress.com (2008): Systematic and random failure [on-
line]. Available at: 2018. https:/safetyengineering.wordpress.com/2008/04/09/
systematic-and-random-failure/. [Accessed 28 Feb. 2018].

8. Kelemen, Z. D., Trienekens, J., Kusters, R. J., Balia, K. (2009): A process based unifica-
tion of process-oriented software quality approaches. In 4th IEEE international confer-
ence global software engineering (pp. 285-288).

9. Wagner, S. (2013): Software product quality control. Berlin: Springer.

10. 15O (2016): ISO/AWI PAS 21448—road vehicles—safety of the intended functionality.
International organization for standardization.

11. Nidhi, K., Paddock, S. (2016): Driving to safety: how many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transp. Res., Part A, Policy Pract.,
94, 182-193.

12. Bozzano, M., Villafiorita, A. (2010): Design and safety assessment of critical systems.
Florida: CRC Press.

13. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F, Leue, S. (2009):
Safety analysis of an airbag system using probabilistic FMEA and probabilistic coun-
terexamples. In Quantitative evaluation of systems, 6th international conference on
quantitative evaluation of systems (pp. 299-308).

14. Sotiropoulos, T., Waeselynck, H., Guiochet, J., Ingrand, F. (2017): Can robot navigation
bugs be found in simulation? An exploratory study. In IEEE international conference
on software quality, reliability and security (pp. 150-159).

15. Blanke, M., Staroswiecki, M., Wu, E. (2001): Concepts and methods in fault-tolerant
control. In Proceedings of the American control conference (Vol. 4, pp. 2606—-2620).

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M. (2017): Safety verification of deep
neural networks. In 29th international conference on computer aided verification (pp.
3-29).

17. Jobstmann, B., Griesmayer, A., Bloem, R. (2005): Program repair as a game. In Inter-
national conference on computer aided verification (pp. 226—238).

18. Brandstotter, M., Hofbaur, M. W., Steinbauer, G., Wotawa, F. (2007): Model-based
fault diagnosis and reconfiguration of robot drives. In Proceedings of the IEEE interna-
tional conference on intelligent robots and systems (pp. 1203—1209).

19. Yamaura, M., Arechiga, N., Shiraishi, S., Eisele, S., Hite, J., Neema, S., Scott, J., Bapty,
T. (2016): ADAS virtual prototyping using modelica and unity co-simulation via Open-
META. In Japanese modelica conference (pp. 43—48).

20. Openrobots.org (n.d.): The MORSE simulator documentation, [online]. Available at:
https://www.openrobots.org/morse/doc/stable/morse.html. [Accessed 28 Feb. 2018].

21. AutoFOCUS3 (n.d.): AutoFOCUS 3. Available at: https://af3.fortiss.org/. [Accessed 28.
Feb. 2018].

22. Osate.org. (2018): OSATE 2.3.1 documentation, [online]. Available at: 2018.
http://osate.org/about-osate.html. [Accessed 28 Feb. 2018].

23. Esk.frauenhofer.de (2015): ERNEST, Early verification and validation of networked em-
bedded systems, [online]. Available at: https://www.esk.fraunhofer.de/content/dam/
esk/dokumente/PDB-ERNEST-dt.pdf. [Accessed 28 Feb. 2018].

24. PolarSys.org (n.d.): Open platform for evolutionary certification of safety-critical sys-
tems, [online]. Available at: https://www.polarsys.org/proposals/opencert. [Accessed
28 Feb. 2018].

25. PolarSys.org (n.d.): Eclipse safety framework, [online]. Available at: http://www.
polarsys.org/esf/. [Accessed 28 Feb. 2018].

26. Unisim-vp.org (n.d.): UNISIM virtual platforms, [online]. Available at: http://unisim-
vp.org/site/index.html. [Accessed 28 Feb. 2018].

27. Leveson, N. G. (2004): A systems-theoretic approach to safety in software-intensive
systems. IEEE Trans. Dependable Secure Comput., 1(1), 66-86.

28. Dynacar RT (n.d.): Dynacar RT. Available at: http://dynacar.es. [Accessed 28. Feb.
2018].

29. Aravantinos, V., Voss, S., Teufl, S., Holzl, F, Schatz, B. (2015): AutoFOCUS 3: tooling
concepts for seamless, model-based development of embedded systems. In ACES-
MB&WUCOR@MODELS (pp. 19-26).

e&i elektrotechnik und informationstechnik

https://de.mathworks.com/products/automated-driving.html
https://nvidianews.nvidia.com/news/nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform
https://nvidianews.nvidia.com/news/nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform
https://safetyengineering.wordpress.com/2008/04/09/systematic-and-random-failure/
https://safetyengineering.wordpress.com/2008/04/09/systematic-and-random-failure/
https://www.openrobots.org/morse/doc/stable/morse.html
https://af3.fortiss.org/
http://osate.org/about-osate.html
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/PDB-ERNEST-dt.pdf
https://www.esk.fraunhofer.de/content/dam/esk/dokumente/PDB-ERNEST-dt.pdf
https://www.polarsys.org/proposals/opencert
http://www.polarsys.org/esf/
http://www.polarsys.org/esf/
http://unisim-vp.org/site/index.html
http://unisim-vp.org/site/index.html
http://dynacar.es

F. Wotawa et al. Quality assurance methodologies for automated driving

30. VID (n.d): Virtual test drive, [online]. Available at: http://www.vires.com/
products.html. [Accessed 07. Mar. 2018].

31. TASS International (n.d.): PreScan, [online]. Available at: https:/tass.pim.
automation.siemens.com/prescan. [Accessed 14. Mar. 2018].

32. IPG Automotive (n.d.): CarMaker, [online]. Available at: https:/ipg-automotive.
com/products-services/simulation-software/carmaker. [Accessed 14. Mar. 2018].

33. Unreal Engine (n.d.): Unreal engine, [online]. Available at: http://unrealengine.com.
[Accessed 14. June 2018].

34. Weiss, G., Grigoleit, F., Struss, P. (2013): Context modeling of dynamic configuration of
automotive functions. In 16th international IEEE conference on intelligent transporta-
tion systems (pp. 839-844).

Authors

Franz Wotawa

received a M.Sc. in computer science (1994)
and a Ph.D. (1996), both from the Vienna
University of Technology, Austria. He is cur-
rently professor of software engineering at
the Graz University of Technology, Austria.
From the founding of the Institute of Soft-
ware Technology in 2003 to the year 2009,
Franz Wotawa was the head of the institute.
His research interests include model-based
and qualitative reasoning, theorem proving, mobile robots, verifi-
cation and validation, and software testing and debugging. Beside
theoretical foundations he has always been interested in closing the
gap between research and practice. For this purpose, he founded
Softnet Austria in 2006, which is a nonprofit organization carry-
ing out applied research projects together with companies. Starting
from October 2017, Franz Wotawa has been the head of the Chris-
tian Doppler Laboratory for Quality Assurance Methodologies for
Cyber-Physical Systems. During his career Franz Wotawa has writ-
ten more than 330 papers for journals, books, conferences, and
workshops. He supervised 84 masters’ and 34 Ph.D. students. For
his work on diagnosis he received the Lifetime Achievement Award
of the Intl. Diagnosis Community in 2016. Franz Wotawa has been
member of a various number of program committees and organized
several workshops and special issues of journals. He is a member of
the Academia Europaea, the IEEE Computer Society, ACM, the Aus-
trian Computer Society (OCG), and the Austrian Society for Artificial
Intelligence and a Senior Member of the AAAI

Bernhard Peischl

is a senior scientist at the Institute of Soft-
ware Technology and the scientific coordi-
nator for the competence network Softnet
Austria (managing the innovation programs
K-net Softnet Austria and COMET K-Projekt
Softnet Austria Il). He received a M.Sc. in
telecommunications engineering (2001) and
a Ph.D. in computer science (2004) from the
Graz University of Technology, Austria. He is

August 2018 135. Jahrgang

© The Author(s)

35. Ruiz, A, Juez, G., Schleiss, P., Weiss, G. (2015): A safe generic adaption mechanism for
smart cars. In 16th IEEE international symposium on software reliability engineering
(ISSRE) (pp. 161-171).

36. Schneider, D., Trapp, M. (2013): Conditional safety certification of open adaptive sys-
tems. ACM Trans. Auton. Adapt. Syst., 8(2), 8-20.

37. Bosch, J., Holstom-Olsson, H. (2016): Data driven continuous evolution of smart sys-
tems. In 11th IEEE/ACM international symposium on software engineering for adaptive
and self-managing systems (pp. 28-34).

38. Dymola (n.d.): Dynamic modeling labaratory, [online]. Available at: https://www.3ds.
com/de/produkte-und-services/catia/produkte/dymola/. [Accessed 07. July 2018].

responsible for managing the network’s R&D activities and a number
of applied research projects dealing with software test, fault local-
ization and quality assurance. He has co-authored over 85 scientific
articles on peer-reviewed workshops, conferences and in scientific
journals.

Florian Kliick

is a Ph.D. candidate at the Institute of Soft-
ware Technology at Graz University of Tech-
nology, and Reliability Engineer at the de-
partment of Reliability Engineering, AVL List
GmbH. Currently, he works on his Ph.D. the-
sis within the doctoral program of technical
sciences. His thesis focuses on quality assur-
ance methodologies for autonomous cyber-
physical systems. His main research area is
centered on verification of highly autonomous vehicles. He com-
pleted his Master of Science at the RWTH Aachen University, Ger-
many, with the thesis “Development of a Smart Testing Methodol-
ogy Focusing on the Service Life of a HV-Battery System”, in collab-
oration with AVL List GmbH.

Mihai Nica

is currently leading the team responsible
| for the reliability engineering and validation
methods at AVL List GmbH, Graz, Austria
(headquarters)}—powertrain division. He has
more than 12 years of work experience in the
field of verification and validation, 8 years’ ex-
perience in the area of R&D project manage-
ment and more than 6 years' experience in
the area reliability engineering and functional
safety development and management (ISO 26262). He worked in
over 30 customer projects and 10 EU research projects with cus-
tomers and partners from over 25 countries (China, India, Japan,
US, UK, South Korea, Germany, etc.). Mihai Nica received his Ph.D.
(Dr. techn.) in the area of software debugging and testing, from
Graz University of Technology, Austria.

heft 4-5.2018

327

http://www.vires.com/products.html
http://www.vires.com/products.html
https://tass.plm.automation.siemens.com/prescan
https://tass.plm.automation.siemens.com/prescan
https://ipg-automotive.com/products-services/simulation-software/carmaker
https://ipg-automotive.com/products-services/simulation-software/carmaker
http://unrealengine.com
https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/
https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/

	Quality assurance methodologies for automated driving
	Abstract
	Zusammenfassung
	Introduction
	Safety and malfunctioning
	Automated driving and safety of the intended functionality

	Veriﬁcation, validation and testing for automated driving
	Challenges
	Conclusion
	Acknowledgements
	References

