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Chordal automation towards high-order
systems
A. Weinmann OVE, Life Senior Member IEEE

This article refers to practical and application-oriented design aspects arising in the field of chordal automation where stereographic
projection is used. Several actions are discussed when high-order systems are involved. For average-order systems there exist elegant
analytically concise methods to present and solve the problems. The chordal stability margin design is extended to pole assignment
conditions, gradient analysis and actuation signal limits, also adequate for high-order systems.
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Chordale Automation in Richtung Systeme höherer Ordnung.

Dieser Beitrag befasst sich mit praktischen und anwendungsorientierten Aspekten der Auslegung im Bereich der chordalen Automation
beim Einsatz von stereographischer Projektion. Es werden mehrere Prozesse behandelt, an denen Systeme höherer Ordnung beteiligt
sind. Für Systeme durchschnittlicher Ordnung gibt es elegante, analytisch prägnante Methoden, die Probleme darzustellen und zu
lösen. Die Auslegung des chordalen Stabilitätsrandes wird ausgeweitet auf die Bedingungen der Eigenwertvorgabe, die Analyse mit
Gradienten und die Begrenzung der Stellgröße; Methoden, welche auch für Systeme höherer Ordnung anwendbar sind.
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1. Introduction
An automatic control setup, given as a single-loop linear control
system with a two-valued input and output, is considered in detail,
see Fig. 1. The dynamic property results from the closed-loop poles s
of the transfer functions, i.e., of 1 + G(s)K(s) = 0 or G(s) = −K(s)−1.
If s = jω was fulfilled by any solution, the system would stay in an
unwanted steady-state oscillation (if there was no otherwise solution
�e s > 0). That is, a necessary condition, to simplify matters, reads as
G(jω) �= −K−1(jω), G(jω) and −K(jω)−1 must be distinctly separated,
minω |G(jω) + K−1(jω)| > 0. This makes clear that an interrelation of
G and the inverse K is responsible for the closed-loop performance.
To consider inverses of proper transfer functions is not common with
reference to frequency plots routing to infinity. But the stereographic
projections keeps it in the usual range.

From Fig. 1 one has
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Fig. 1. Control system with controller K and (uncertain) plant G

Now, the Riemann sphere is considered. In spite of the analyt-
ical effort, relations on a sphere are well suited for requirements
in automatic control [2, 3]. The Riemann sphere is situated at
the complex plane of frequency plots with its south pole at the
origin. Using stereographic projection onto the Riemann sphere,
two points G1 and G2 of a frequency plot in the complex plane
are mapped to g1 and g2 on the Riemann sphere via an arrow
pointing to the north pole, i.e. map G �→ g corresponds with
g = [�eG,�mG, |G|2/(1 + |G|2)].

The straight distance inside the sphere, Fig. 2, results from basic
algebra

‖g1 − g2‖F = 1√
1 + |G1|2√1 + |G2|2 |G1 − G2|. (7)

For automatic control purposes, the chordal distance ρ[G,K] is the
inverse of the maximum singular value of M (conditionally weighted
by wik ).
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Fig. 2. Chordal distance with norm ‖g1 −g2‖F at the Riemann sphere

Fig. 3. Minimum chordal distance bGK between G and −K−1 as a
bold face line
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{
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. (8)

Comparing Eq. (7) and Eq. (45), the extension of Eq. (8), and
Eq. (36) is important, especially the correspondences G1, G2 and
−K−1, G, respectively. They are used for purpose in automatic con-
trol

ρ[G,K] = δ
[−K−1,G

]
. (9)

The chordal stability margin is defined by the minimum versus
frequency

bGK � inf
ω

ρ
[
G(jω),K(jω)

]
. (10)

Presupposing stability of the nominal system of Fig. 1, a given
family of uncertain (perturbed) plants Gp is robustly stable if [1–3]

bGK > rG � max
ω

δ
[
Gp(jω),G(jω)

]
. (11)

This relation has been slightly simplified. The chordal stability margin
must be bigger than the chordal uncertainty radius rG. Using the

Fig. 4. Cartesian plot of the stability margin (upper figure) and un-
certainty versus frequency (lower figure)

definitions Eq. (46) and Eq. (38) of the Appendix A,

bGK � min
ω

1√
1 + (| G(−s)−K(s)

1+G(s)K(s) |s=jω)2

> rG � max
ω

1√
1 + | Gp (s)−G(s)

1+Gp(s)G(−s) |(−2)
s=jω

. (12)

For illustration, an example for K(s) = (1 + 2s)/(2 + s), G(s) = 1/s2 is
given in Figs. 3 and 4.

Now, the main part of this article aims at application-oriented
problems characterized especially by high-order systems. The chordal
stability margin is extended by a gradient method. An optimization
uses eigenvalue assignment and actuation effort conditions. The
unstructured chordal stability margin is also combined with the un-
structured design method using the inverse trace of system matrix
in state space.

2. Gradient of the chordal stability margin bGK

Define the polynomial setup of the controller K(jω) = Z(jω)
N(jω) , N(jω) =

bTω, Z(jω) = aTω, ω � (1 jω − ω2 − jω3 . . .)T ∈ Cn, ω ∈ R1, ωH ≡
ω�T

� � ωωH =
⎛
⎜⎝

1 −ωj −ω2

ωj ω2 −ω3j
−ω2 ω3j ω4

⎞
⎟⎠ (13)
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�r ��e�, �i � �m�, |N|2 = bT�b, |Z|2 = aT�a.

bGK
(10)= min

ω
ρ[G,K]

= min
ω

1√
1 + |G|2√1 + |K−1|2 |K−1 + G|

= min
ω

U1U2√
1 + |G|2 (14)

where

U1 � | − K−1 + G|

=
√(−aT�rb

aT�a
+ �eG

)2

+
(−aT�ib

aT�a
+ �mG

)2

(15)

U2 � 1√
1 + |K−1|2 = 1√

1 + bT �b
aT �a

. (16)

With bi as one of the coefficients of b in the denominator poly-
nomial, responsible for the poles of the controller, and ei the unit
vector
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U1aT�a

[(
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)
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(
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]
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2
bT�ei
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(
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∂bi
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∂U2

∂bi

)
. (19)

Changing the order of operations one has

∂bGK

∂bi
= ∂

∂bi

(
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ω
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)

= inf
ω

(
∂ρ[G,K]

∂bi

)
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ω

[U2
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+ U1
∂U2
∂bi√

1 + |G|2
]
. (20)

An extension to vector-valued gradients ∂
∂b or ∂

∂a for uncertain
coefficients of G or K can easily be stated, irrespective of the system
order.

3. Eigenvalue assignment as a condition
Consider a controller K which order is selected intentionally higher,
using a surplus of e.g. c1 and c2 of K(s). Assume a first-order plant
and a second-order controller

G(s) = g1

g2 + gss
, K(s) = c0 + c1s + c2s2

n0 + n1s + n2s2 (21)

and assigned poles of the control system

a0 + a1s + · · · + a3s3 (−1.04; −1.47 ± j4.5). (22)

Then the system is underdetermined referring to the parameters c1

and c2. They can be arbitrarily chosen without affecting the eigen-
value assignment. The task is

bGK (ai ,ni ,gi , ci ) → max
c1,c2

subject to (23)

⎛
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⎞
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n0

n1

n2

c0

⎞
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a3

⎞
⎟⎟⎟⎠ . (24)

Fig. 5. Maximizing bGK with conditions

Fig. 6. Optimal open-loop frequency characteristic G(jω)K(jω)

The optimum controller results as

K = 0.09091s2 + 0.5455s + 0.7109
0.1429s2 + 0.141s + 1.336

and bGK = 0.421, (25)

portrayed in Figs. 5 and 6.

4. Valuating constraints
An important issue is valuating constraints, e.g. the maximum actu-
ation signal um arising from a reference step function. What is the
design process? In Fig. 7 lines of given constant values bGK are re-
peated in the basis plane c1, c2. A plane of resulting um is depicted.
Above one of these lines of constant bGK , a single line of values of
um is plotted as a thick line. This line demonstrates um(c1, c2) with
no influence on the implemented eigenvalue assignment and cho-
sen chordal stability margin bGK .

5. Structured rectangular uncertainty versus chordal
uncertainty

The question arises what is the chordal uncertainty measure δ[Gp,G]
for a given structured rectangular uncertainty in Gp = 2s+bz

s2+3s+aN
;

aN = 5, bz = 4, K(s) = s+2
20s+1 , with parameters aN , bZ uncertain less

than a certain amount, see Fig. 8.
Another question is: Which rectangular uncertainty is equivalent

to a chordal one. Which part of the rectangular parameters is in-
cluded if e.g. δ[G,Gp] < 0.03 is given. The result is depicted in Fig. 9.
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Fig. 7. um(c1, c2) where the eigenvalue assignment and bGK are un-
touched

Fig. 8. δ[Gp,G] for the rectangular uncertainty

Fig. 9. Range of coefficients for rG = δ[Gp,G] < 0.03

For illustration purpose the set of eigenvalues of the closed-loop sys-
tem are included in this figure when a so-called uncertainty walk is
executed along the border of the chordal uncertainty.

Fig. 10. Elements of N of bGK and H∞, limit. K(s) = (2s + 1)/
(s + 2.5), G(s) = 1/s2

Fig. 11. Stability margin bGK for K = (1 + 2vs)/(s + 2) including a
bound for ‖KS‖∞

6. Graphically supported design
Figure 10 is derived from Eq. (58). The function N is depicted ver-
sus frequency before having selected the minimum. The areas be-
tween the function and the abscissa are

∫ ∞
0 (·)*(·)dω. In the figure,

6.3 stands for |GS|2 and 2.5 for |GKS|2, for the outputs caused by
disturbance and reference in the steady state, respectively. These
values represent the root mean square energy content of the sig-
nals. According to Parseval Theorem they correspond to the inte-
gral of squared impulse response. Usual requirements are increasing
bGK , observing all the actuations and selected limits. Besides, also
the squared initial values can be observed if the frequency axis is
scaled up to higher values; the initial actuation signal, 4 and 1, from
KS and S, caused by reference and disturbance, respectively. When
changing parameters during the design process, special limits, e.g.
‖wKS‖∞, can be taken into consideration.

The influence of a varying design parameter v is shown in Fig. 11.
A subplot demonstrates the frequency-dependent ρ(G,K)(ω; v) and
the local minimum in bGK .
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An alternative could be: Varying ki , elements of K, from 1/b2
GK →

minki
from Eq. (48) one finds

1 +
∥∥∥∥G(−s) − K

1 + GK

∥∥∥∥
2

∞
+ η‖KS‖2∞ → min

ki

. (26)

Then, bGK and ‖KS‖∞ are displayed having an eye on the limits.

7. Chordal stability margin for holistic eigenvalue
assignment

The trace of the negative inverse closed-loop coefficient matrix in

state-space system design is the sum of inverse poles [4]. Shifting

the poles to the left as much as possible

−
∑

i

1/λi [A + BK] = −tr
{
A−1

cl

} → min
K

(27)

is required, conditionally augmented by the norm of K. Now, when

bGK is included

1

−tr[A−1
cl ]

+ bGK → max
K

(28)

has to be executed. Figure 12 depicts the result with an additional

condition c2 > 2.

Fig. 12. Combining bGK with holistic sum of eigenvalues

8. Conclusion
The presented methods are intended to demonstrate high-order
control systems and graphically supported design tools, adequate
for applications. The methods are selected of simple structure in or-
der to simplify the access.
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Appendix A

This appendix is considered as a clearly arranged presentation of
interrelations which might be confound with each other, and to
get familiar with the intermediate derivations, even though they are
known in the literature [1–3],

A.1. Singular values

The singular value obeys σ [G] � +
√

λ[GHG] and its maximum
σmax[G] = +

√
λmax[GHG] ≡ ‖G‖s. The H∞ norm is ‖G(s)‖∞ �

supω σmax[G(jω)]. The maximum singular value is a generalization
of the absolute value of scalars for matrices.

For any matrix X or a special vector X = (a,b)T one has XHX =
(a,b)*(a,b)T = (a*a + b*b) and

σmax[XY] =
√

λmax
[
(XY)HXY

] =
√

λmax
[
YHXHXY

]
(29)

=
√

λmax
[
YH

(
XHX

)0.5(XHX
)0.5Y

]
(30)

= σmax
[(

XHX
)0.5Y

]
(31)

= σmax
[(

a�a + b�b
)0.5Y

] = σmax
[√

a�a + b�bY
]
. (32)

A.2. Chordal uncertainty measurement δ[Gp,G]

Note that p*(jω) = p(−s)|s=jω and a(s) · a(−s)|s=jω = aTω · aTω* (13)=
aT�a. Note also G* � G(−s)|s=jω (for functions rational real P*(jω) =
conj(P(jω) = P(−s)|s=jω).

There is the rather strange definition of the distance of two trans-
fer functions where each one is a function of s = jω, but it turns out
similar Eq. (7)

δ
[
G1(jω)),G2(jω)

]

= 1√
1 + | G1−G2

1+G1G2(−s) |(−2)

∣∣∣∣
s=jω

= 1√
1 + | 1+G1G�

2
G1−G2

|2

∣∣∣∣
s=jω

(33)

= 1√
(G1−G2)(G1−G2)�+(1+G1G�

2)(1+G�
1G2)

|G1−G2|2

∣∣∣∣
s=jω

(34)

= 1√
|G1|2+|G2|2+1+|G1|2|G2|2

|G1−G2|2

∣∣∣∣
s=jω

(35)

= |G1 − G2|√
(1 + |G1|2)(1 + |G2|2)

∣∣∣∣
s=jω

. (36)

For the case of uncertain plant G1 = Gp and G2 = G.
For G1 close to G2 and for small uncertainty, the 1 in Eq. (33) can

be neglected

max
ω

δ
[
Gp(s),G(s)

] = max
ω

δ
[
Gp(jω),G(jω)

] =
∥∥∥∥ Gp − G

1 + GpG(−s)

∥∥∥∥∞
.

(37)

For the nominal G, the family of perturbed Gp and δ[G(s),Gp(s)] one
has

max
ω

δ
[
Gp(jω),G(jω)

] = max
ω

1√
1 + | Gp−G

1+GpG(−s) |(−2)

∣∣∣∣
s=jω

� rG. (38)

A.3. Chordal distance ρ[G,K] and stability margin

ρ[G,K]
(8)=

{
σmax

[(
G
1

)
(1 + KG)−1(K 1)

]}−1

(39)
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(32)=
{
σmax

[√
(G 1)�

(
G
1

)
(1 + KG)−1(K 1)

]}−1

(40)

= {
σmax

[√
1 + G�G(1 + KG)−1(K 1)

]}−1 (41)

= {∣∣√1 + G�G(1 + KG)−1
√

1 + K�K
∣∣}−1 (42)

=
{∣∣∣∣

√
1 + G�G(1 + KG)−1K

1
K

√
1 + K�K

∣∣∣∣
}−1

(43)

=
{∣∣∣∣

√
1 + G�G(K−1 + G)−1

√
1
K

1
K*

+ 1
∣∣∣∣
}−1

(44)

ρ[G,K] = | − (−K−1) + G|√
1 + |G|2√1 + |K−1|2

(36)= δ
[
G,K−1]. (45)

Further correspondencies referring to bGK are given as follows. For
G1 = −K−1 and G2 = G in Eq. (36), bGK is defined as the smallest
chordal distance between G und −K−1

bGK � min
ω

δ
[−K1,G

]
� min

ω

{
1 +

∣∣∣∣ −K−1 − G
1 − K−1G(−s)

∣∣∣∣
−2

ω

}−1/2

(46)

= min
ω

{
1 +

∣∣∣∣ −1 − GK
K − G(−s)

∣∣∣∣
−2

ω

}−1/2

and with inversion (47)

=
{

1 +
∥∥∥∥G(−s) − K

1 + GK

∥∥∥∥
2

∞

}−1/2

, (48)

where minω |G−1| = maxω |G| = ‖G‖∞ was used.
We start a new derivation with Eq. (45) and we multiply numera-

tor and denominator with |K|

ρ[G,K]
(45)= (|K−1 + G|)|K|√

1 + |G|2√1 + |K−1|2|K| (49)

=
√

(K−1 + G)(K−1� + G�)
√

KK�√
1 + |G|2√1 + |K|2 (50)

=
√

(1 + GK)(1 + G�K�)√
1 + |G|2√1 + |K|2 (51)

= |1 + GK|√
1 + |GK|2 + |G|2 + |K|2 . (52)

Alternatively, from Eqs. (12), (46) and (47) it follows bGK �
minω

1√
N

and

N = |1 + GK|2 + |G(−s) − K|
|1 + GK|2 (53)

= [1 + (GK)�][1 + (GK)] + [G(−s)� − K�][G(−s) − K]
|1 + GK|2 (54)

s=jω= 1 + (GK)� + (GK) + (GK)�(GK) + GG� − K�G� − GK + K�K
|1 + GK|2

(55)

N = 1 + (GK)�(GK) + GG� + K�K
|1 + GK|2 = 1 + |GK|2 + |G|2 + |K|2

|1 + GK|2 . (56)

The chordal distance p[G,K] of Eq. (52) equals 1/
√

N of Eq. (56).

bGK = min
ω

1√
N

= 1

supω

√
N

= 1

supω

√
1+|GK|2+|G|2+|K|2

|1+GK|
(57)

= 1

supω

√|S|2 + |T |2 + |GS|2 + |KS|2 . (58)

Take notice of the different interpretations of bGK . The origin re-
sulting of automatic control Eq. (39); the chordal distance in Eq. (45);
the minimum value in frequency domain in Eq. (12); an expression

using H∞-norm Eq. (48) and the graphical correspondence using all
the components of M in Eq. (58).
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