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Eddy current losses in permanent magnets
of surface mounted permanent magnet
synchronous machines—Analytical
calculation and high order finite element

analyses

E. Schmidt OVE, M. Kaltenbacher, A. Wolfschluckner

Permanent magnet exited synchronous machines always show three significant portions of their losses: Iron losses within the magnetic
circuit, power losses within the stator winding and finally eddy current losses within the permanent magnets. In particular, surface
mounted magnets are directly exposed to asynchronous components of the air-gap field caused by either higher harmonic waves
or higher time harmonics. Analytical calculation of the eddy current losses within the permanent magnets for both linear as well as
cylindrical arrangements describe fundamental characteristics in dependence on only few significant parameters. These results serve
as reference results for detailed numerical calculations using the finite element method, too. The finite element analyses with various
formulations of the shape functions show the significant influence of the higher order elements on the accuracy of the eddy current
losses. Additionally, the effects of a various pole coverage can be obtained from the results of the numerical calculations. Therefore,
a clear summary of the significant parameters influencing the eddy current losses within the permanent magnets for both linear as
well as cylindrical arrangements will be established.
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Wirbelstromverluste in den Oberflichenmagneten von Synchronmaschinen mit Permanentmagneterregung —
Theoretische und praktische Aspekte der analytischen und numerischen Berechnungen.

Synchronmaschinen mit Permanentmagneterregung besitzen drei wesentliche Verlustanteile: Eisenverluste im magnetischen Kreis,
Stromwdrmeverluste in der Statorwicklung und Wirbelstromverluste in den Permanentmagneten. Insbesondere Oberfldchenmagnete
sind direkt den asynchronen Anteilen im Luftspaltfeld, welche einerseits als Oberwellen und anderseits als Oberschwingungen darge-
stellt werden kénnen, ausgesetzt. Analytische Berechnungen der Wirbelstromverluste in den Permanentmagneten fir eine lineare als
auch eine zylindrische Geometrie des Luftspalts zeigen die grundsétzlichen Zusammenhénge zu den bestimmenden Parametern auf.
Diese Ergebnisse dienen auch als Referenzlésungen fir umfangreiche numerische Analysen mit der Methode der Finiten Elemente. Die
Analysen mit unterschiedlichen Ansétzen fir die Formfunktionen zeigen den deutlichen Einfluss auf die Genauigkeit der Ergebnisse.
Die numerischen Ergebnisse dienen auch zur Darstellung des Einflusses der Polbedeckung der Permanentmagnete. Somit entsteht fir
lineare und zylindrische Luftspaltgeometrien eine klare Ubersicht der wesentlichen Einflussparameter auf die Wirbelstromverluste in

den Permanentmagneten.
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1. Introduction

A rated apparent power of permanent magnet excited electrical
machines in the range up to 50 MVA is considered as a realis-
able trend of development. Due to sub- and superharmonics of
the air-gap field, the eddy current losses generated in the per-
manent magnets of such machines may always lead to an ex-
cessive heating [1-5]. In particular with surface mounted perma-
nent magnets, this can cause the magnets to get partially or even
fully demagnetised [6-9]. Thus, the precalculation of these eddy
current losses caused by the harmonics of the air-gap field is
an important matter of interest with the design process of such
electrical machines. On one hand by using very fast evaluation
methods for the standard design procedures, on the other hand
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by using highly accurate calculation methods for reference pur-
poses [10-12].

As depicted in Fig. 1 and Fig. 2, both linear as well as cylindrical
arrangements are considered. Both arrangements are described with
few parameters, such as air-gap §, ratio of pole pitch and air-gap
7p/8, ratio of magnet height and air-gap hy/8 as well as the pole
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Fig. 1. Simplified geometry of a pole pitch with a linear arrangement
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Fig. 2. Simplified geometry of a pole pitch with a cylindrical arrange-
ment

coverage as ratio of magnet width and pole pitch bpy/zp. With the
same parameters and an increasing ordinal number of the harmonic
waves in circumferential direction, it is expected that the difference
between both arrangements will disappear more and more.

First, analytical calculations will be performed with the intent to
discuss the significant parameters influencing the eddy currents in
the magnets. It is expected, that there is a different behaviour of the
eddy current losses in dependence of frequency and wave length of
the excitation [13]. The analytically obtained results are used as ref-
erence results for the detailed numerical analyses by using the finite
element method, too. In order to analyse the accuracy of the nu-
merically obtained results, various approximation orders of the finite
element interpolation schemes are concerned. In addition, various
pole coverages with their effects on the eddy current losses are dis-
cussed by these numerical analyses.

Both calculation methods use an excitation with a surface current
sheet along the circumferential direction at the inner stator bound-
ary which can cover for any harmonic order generated from either
PWM modulated stator currents, the slotting as well as the satura-
tion. This surface current flow in axial direction K,(x, t) perpendicular
to the cross section of the conducting region can be expressed by a
travelling wave as

K(x, t) = K, Re (e/'wf e*fw/fp) )

where w=2nf denotes the exciting circular frequency with respect
to the moving region, v the harmonic order and —1<x/t, <1 being
the region of two pole pitches along the circumferential direction,
respectively. Referring to the total eddy current losses, there is no
interaction between waves with different harmonic orders as well
as different frequencies. Consequently, each travelling wave can be
discussed separately.

2. Analytical calculation

The analytical calculation is based on Laplacian and Helmholtz equa-
tions of a magnetic vector potential within the respective regions
and uses a pole coverage of by/t, = 1, which occurs practically with
Halbach arrays.

2.1 Analytical approach
The magnetic vector potential Az(w) is obtained from the Laplacian
equation

—AAw)=0 ()

in the non-conducting regions of air-gap and rotor and the
Helmholtz equation
9
(-a+ 23)Ae) =0 3)

in the conducting region of the permanent magnets, where

d= l; 4)
w Up om

denotes the skin depth of the eddy currents [13]. Respective inter-
face conditions of the magnetic field between these regions ensure
a unique solution of these equations.

The total eddy current losses within the conducting areas are eval-
uated by using the Poynting theorem. Thereby, the apparent power
per length S'(w) is obtained from the boundary aT'y, along the per-
manent magnets as

Sr= 22 § a0 L ds ©

Consequently, the total eddy current losses are always proportional
to the square of the magnitude K of each travelling wave.

2.2 Analytical results

Figures 3 and 4 depict the power losses of one NdFeB magnet in
dependence on exciting frequency and ordinal number of the har-
monics for a constant current sheet excitation of K;=10% A/m. Both
arrangements show the data of air-gap §=2 mm, ratio of pole pitch
and air-gap 1,/8=60, ratio of magnet height and air-gap hy/6=3.
Figure 5 shows the respective ratio of the power losses between
cylindrical and linear arrangements modified in accordance to the
different cross sections of the conducting areas within both arrange-
ments.

Obviously, the total eddy current losses are quite similar between
both arrangements with a deviation in the range +5% only. As men-
tioned in [13], there are different regions in dependence on both
frequency f and wave length 27,/v of the excitation. With a ratio
of wave length to skin depth (27,)/(v d)« 1, the power losses versus
frequency increase with a power of 2. On the other hand with a
ratio of wave length to skin depth (27p)/(v d)>>1, the power losses
versus frequency increase with a power of 0.5 only. However with
very low ordinal numbers, there is a transitional region where the
power losses are rather constant.

For more detailed results, in particular about the influence of the
permeability of the rotor on the eddy current losses, see [14].

3. Finite element analysis

The finite element analyses deal with a pole coverage of by/t, =1
for the direct comparison of the analytical results with those from
the numerical analyses. Further, the finite element analyses can
examine very easily pole coverages within the practical range of
bulty ~2/3...5/6.
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Fig. 3. Power losses of various harmonics versus frequency, linear
arrangement, analytical results, pole coverage 1
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Fig. 4. Power losses of various harmonics versus frequency, cylindri-
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Fig. 5. Ratio of power losses between cylindrical and linear arrange-
ment, analytical results, pole coverage 1

The finite element analyses carried out with various higher or-
der approx imation functions utilise an identical discretisation with
the minimum skin depth as approximately the half of the mesh size
in radial direction and the minimum wave length as approximately
7.5 times the mesh size in circumferential direction.
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3.1 Higher order finite elements

In the finite element context, any analytical function u(€) gets ap-
proximated by a finite dimensional subset of interpolation functions
defined on a finite element mesh. In local element coordinates, this
reads as

Neq

u@) ~ u(E) =" uNig), )
i=1

where u(¢) is the approximated function, with Ni(£) being the
shape functions, u; the related coefficients and neg the number of
unknown coefficients, respectively.

In the case of standard Lagrangian elements, the functions N; are
defined by the corner coordinates and u; are the related values of
the function u/(¢) on these nodes. The shape functions of first order
on the unit domain € [—1, 1] are defined as

_1-¢

M) =5, Nﬂ@:#.

However, one disadvantage of the Lagrangian basis is that for each
polynomial degree p > 2, a new set of shape functions as shown in
Fig. 6 (left) is required, which prevents the efficient usage of different
approximation orders within one finite element mesh.

In contrast, a set of hierarchic shape functions is defined in such
a way that every basis of order p is fully contained in the basis of
order p+ 1 as shown in Fig. 6 (right). In this work, we make use of
the Legendre based interpolation functions as

@)

Ne@E)=l_1(8), k=3,4,....p+1, (8)

where [ (§), kK > 2, denotes the integrated Legendre polynomials
[16, 17]
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Fig. 6. Lagrange (/eft) and Legendre (right) based shape functions up
toorderp=4
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£
wer=y 2 e, )= [ P ©
-1

Therein, Py are the regular Legendre polynomials [15]

_ 1 d
T 2Kk dxk

the scaling factor arises from their orthogonality

Pe(x) (2 —1) (10)

T St a1

Using the recursive formula of the regular Legendre polynomials
(k=1)

(k+ 1) Peya () = 2k + D)X Pe(x) — k Pe_q (x) (12)
yields the integrated Legendre polynomials

Pe(x) — Pe_2(x)

L) = ST k=2, (13)
and their recursive formula (k > 2)
(k+ VL1 0) = Rk = D x L) — (k = 2) L1 (x). (14)

Due to the orthogonality of the Legendre polynomials Py along
the unit interval [—1, 1], only the first two functions Ny, N, con-
tribute to the value at the ends of the unit interval [—1, 1]. All other
functions Ny of higher order k > 2 give only a non-zero value within
the interval. Therefore, they are also called internal modes or bubble
modes. With regard to the given recursive formulas, particularly a
mapping of results between different orders will be straight forward
and very easy.

On the other hand, the integrated Legendre polynomials Ly fulfil
the orthogonality

+1
/Lk(x)Lm(x)dx=O, k—m|>2. (15)
5

Consequently, the sparsity of the matrices decreases only slightly
with higher orders of these approximation functions.

Having this knowledge in mind, we can easily construct basis
functions up to any order for both quadrilateral and hexahedral ele-
ments by applying a tensor product. The other element shapes can
be constructed via the Duffy transformation [17].

3.2 Numerical results

3.2.1 General results

Figures 7 and 8 depict the power losses of one NdFeB magnet in
dependence on exciting frequency and ordinal number of the har-
monics for a constant current sheet excitation of K,=10% A/m. Both
arrangements show the geometry data as already given above with
the analytical analyses. Figure 9 shows the respective ratio of the
power losses between cylindrical and linear arrangements modified
in accordance to the different cross sections of the conducting areas
within both arrangements.

Obviously, the numerically obtained results are quite similar to the
analytically obtained results. Therefore, only ratios between numer-
ical and analytical results as well as ratios between linear and cylin-
drical arrangements are shown further.
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Fig. 7. Power losses of various harmonics versus frequency, linear
arrangement, numerical results, order p = 2, pole coverage 1
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Fig. 8. Power losses of various harmonics versus frequency, cylindri-
cal arrangement, numerical results, order p = 2, pole coverage 1
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Fig. 9. Ratio of power losses between cylindrical and linear arrange-
ment, numerical results, order p = 2, pole coverage 1

3.2.2 Accuracy of the results
As mentioned above, the differences between linear and cylindrical
arrangements are rather small. Thus, only the linear arrangement is
discussed in more detail herein.

The relative error

€ = Prea/Pana — 1 (16)
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Fig. 10. Relative error of power losses, linear arrangement, pole cov-
erage 1, numerical analyses, order p =1
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Fig. 14. Relative error of power losses, linear arrangement, pole cov-
erage 1, numerical analyses with half mesh size, order p =1
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Fig. 15. Relative error of power losses, linear arrangement, pole cov-
erage 1, numerical analyses with half mesh size, order p = 2.

between the power losses of finite element and analytical analy-
ses with different approximation orders is shown in Figs. 10, 11,
12, 13. In addition, Figs. 14 and 15 depict this relative error for
1st and 2nd orders with the half mesh size in both directions.
Tables 1 and 2 list the respective data of these numerical analy-
ses.

As expected, 1st order elements cannot encounter both for small
skin depths as well as short wave lengths. 2nd order elements are
better with an exception of short wave lengths and very high fre-
quencies. 3rd and 4th order elements give the same results with a
relative error less than 0.5% which means convergence with respect
to the higher orders.

In comparison of the default mesh with the half size mesh, of
course the results of 1st and 2nd order elements are better with
the dense mesh. However, the results of 2nd order elements with
the dense mesh are still less accurate than the results of in par-
ticular 3rd order elements with the default mesh. On the other
hand, the latter have approximately only the half number of un-
knowns.

Consequently, the usage of 3rd or even higher order elements
will be strongly suggested by evaluating eddy current losses. In par-
ticular with 3D meshes, the possibility of generating a relatively
coarse mesh within the conducting regions shows explicit advan-
tages against a dense mesh with 2nd order elements.

3.2.3 Influence of the pole coverage

The finite element calculations very easily allow to encounter for the
influence of various pole coverages on the eddy current losses, too.

e&i elektrotechnik und informationstechnik
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Table 1. Matrix data in dependence on the order, default mesh size

Order Number of Number Unknowns Non-zero
elements of nodes entries

1 1728 1843 1728 14976

2 1728 1843 5184 78544

3 1728 1843 8640 18,9132

4 1728 1843 13,824 40,2696

Table 2. Matrix data in dependence on the order, half mesh size

Order Number of Number Unknowns Non-zero
elements of nodes entries
1 5160 5272 5160 50,712
2 5160 5272 15,480 253,800
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Fig. 16. Ratio of power losses between cylindrical and linear arrange-
ment, numerical analyses, order p = 2, pole coverage 5/6
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Fig. 17. Ratio of power losses between cylindrical and linear arrange-
ment, numerical analyses, order p = 2, pole coverage 3/4
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Fig. 18. Ratio of power losses between cylindrical and linear arrange-
ment, numerical analyses, order p = 2, pole coverage 2/3
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Fig. 21. Ratio of power losses between pole coverages 2/3 and 1,
linear arrangement, numerical analyses, order p =2

With regard to a practical point of view with linear and cylindrical
arrangements, the pole coverages as of 5/6, 3/4 and 2/3 are con-
cerned in more detail.

Figures 16, 17, 18 depict the respective ratio of the power losses
between cylindrical and linear arrangements modified in accordance
to the different cross sections of the conducting areas within both
arrangements. Figures 19, 20, 21 depict the ratio of the power
losses with the above mentioned pole coverages in comparison to a
full coverage.

Obviously, the pole coverage only affects the power losses of the
lower harmonics while the power losses of the higher harmonics

heft 2.2017

153



154

m

25 L L L L L
v=1
v=3
v=>5
—~ 20 v="T
= v=11
E v=13
g 151 o7 H
éﬁ —v=19
S
E 1.0 4 F
é T~ S——
0.5 4 F
0.0 T T T T T
10° 10! 10% 103 10* 10° 109

Frequency (Hz)

Fig. 22. Ratio of power losses between pole coverages 2/3 and 1,
linear arrangement, numerical analyses, order p =4

are rather constant and directly proportional to the value of the pole
coverage.

In order to study the effects of various pole coverages with differ-
ent approximation orders, the ratio of the respective power losses
is shown in Fig. 22. Obviously, the approximation order affects the
total value of the losses only but has a negligible effect on ratios of
the losses between different arrangements deduced from the same
approximation order.

4. Conclusion
The paper discusses both analytical and numerical calculation meth-
ods of eddy current losses in permanent magnets of electrical ma-
chines. Therein, the finite element analyses utilise different approx-
imation orders with hierarchic shape functions in order to validate
modelling of wave length as well as skin depth. Obviously, higher
order elements with p > 3 can handle these parameters very well.
Further, linear and cylindrical arrangements are compared against
their results by using identical geometry parameters and various
pole coverages. With all harmonic orders along the entire frequency
range, there is a deviation only in the range £5% between these
two arrangements. It is shown that the pole coverage influences
only the power losses of the lower harmonic waves while higher
harmonic waves have approximately constant power losses directly
proportional to the value of the pole coverage.

Acknowledgement
Open access funding provided by TU Wien (TUW).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-

heft 2.2017

© The Author(s)

. Schmidt et al. Eddy current losses in permanent magnets of surface mounted. ..

tion in any medium, provided you give appropriate credit to the original au-
thor(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

References

1. Atallah, K., Howe, D., Mellor, P. H., Stone, D. A. (2000): Rotor loss in permanent
magnet brushless AC machines. IEEE Trans. Ind. Appl., 36(6), 1612-1618.

2. Reichert, K. (2004): Permanent magnet motors with concentrated, non-overlapping
windings. In Proceedings of the International Conference on Electrical Machines,
ICEM, Cracow, Poland.

3. El-Refaie, A. M., Shah, M. R. (2008): Comparison of induction machine performance
with distributed and fractional slot concentrated windings. In IEEE Industry Applica-
tions Society Annual Meeting, IAS, Edmonton, AB, Canada.

4. El-Refaie, A. M. (2010): Fractional slot concentrated windings synchronous perma-
nent magnet machines: opportunities and challenges. IEEE Trans. Ind. Electron., 57(1),
107-121.

5. Mirzaei, M., Binder, A., Deak, C. (2010): 3D analysis of circumferential and axial seg-
mentation effect on magnet eddy current losses in permanent magnet synchronous
machines with concentrated windings. In Proceedings of the International Conference
on Electrical Machines, ICEM, Rome, Italy.

6. Yamazaki, K., Abe, A. (2007): Loss analysis of interior permanent magnet motors con-
sidering carrier harmonics and magnet eddy currents using 3-D FEM. In Proceedings
of the IEEE International Electric Machines and Drives Conference, IEMDC, Antalya,
Turkey.

7. Yamazaki, K., Kitayuguchi, K. (2010): Teeth shape optimization of surface and interior
permanent magnet motors with concentrated windings to reduce magnet eddy cur-
rent losses. In Proceedings of the International Conference on Electrical Machines and
Systems, ICEMS, Incheon, Korea.

8. Wang, J., Atallah, K., Chin, R., Arshad, W. M., Lendenmann, H. (2010): Rotor eddy
current loss in permanent magnet brushless AC machines. IEEE Trans. Magn., 46(7),
2701-2707.

9. Okitsu, T, Matsuhashi, D., Gao, Y., Muramatsu, K., (2012): Coupled 2-D and 3-D Eddy
current analyses for evaluating eddy current losses of a permanent magnet in surface
permanent magnet motors. |EEE Trans. Magn., 48(11), 3100-3103.

10. Markovic, M., Perriard, Y. (2008): A simplified determination of the permanent mag-
net eddy current losses due to slotting in a permanent magnet rotating motor. In Pro-
ceedings of the International Conference on Electrical Machines and Systems, ICEMS,
Wuhan, China.

11. Wang, J., Papini, F., Chin, R., Arshad, W. M., Lendenmann, H. (2009): Computation-
ally efficient approaches for evaluation of rotor eddy current loss in permanent magnet
brushless machines. In Proceedings of the International Conference on Electrical Ma-
chines and Systems, ICEMS, Tokyo, Japan.

12. Etemadrezaei, M., Wolmarans, J. J., Polinder, H., Ferreira, J. A. (2012): Precise calcu-
lation and optimization of rotor eddy current losses in high speed permanent mag-
net machines. In Proceedings of the International Conference on Electrical Machines,
ICEM, Marseille, France.

13. Stoll, R. L. (1974): The analysis of eddy currents. Oxford: Clarendon.

14. Wolfschluckner, A. (2013): Analytische Berechnung der Wirbelstromverluste in den
Magneten einer permanentmagneterregten Synchronmaschine. Diploma thesis (in
German), Vienna University of Technology, Austria.

15. Abramowitz, M., Stegun, I. A. (1970): Handbook of mathematical functions. New
York: Dover.

16. Szabo, B., Babuska, I. (1991): Finite element analysis. New York: Wiley.

17. Zaglmayr, S. (2006): High order finite element methods for electromagnetic field com-
putation. Ph.D. thesis, Johannes Kepler University, Linz, Austria.

e&i elektrotechnik und informationstechnik



E. Schmidt et al. Eddy current losses in permanent magnets of surface mounted...

Authors

Erich Schmidt

was born in Vienna, Austria, in 1959. He re-
ceived his M.Sc. and Ph.D. degrees in elec-
trical engineering from the Vienna University
of Technology, Austria, in 1985 and 1993, re-
spectively. Currently, he is an Associate Pro-
fessor of Electrical Machines at the Institute
of Energy Systems and Electric Drives of the
Vienna University of Technology. His research
and teaching activities are on numerical field
computation techniques as well as design optimization of electrical
machines and transformers. He has authored more than 100 tech-
nical publications mainly in the fields of electrical machines and nu-
merical field calculation.

Manfred Kaltenbacher

was born in Klagenfurt, Austria, in 1966. He
received his M.Sc. and Ph.D. degrees in Elec-
trical Engineering from the Graz University
of Technology, Austria, and Johannes Kepler
University of Linz, Austria, in 1992 and 1996,
respectively. From 2008 until 2012, he was a
Full Professor of Applied Mechatronics at the
University of Klagenfurt, Austria. Since 2012,
he has been a Full Professor of Measurement

April 2017 | 134. Jahrgang

© The Author(s)

and Actuator Technology at the Institute of Mechanics and Mecha-
tronics of the Vienna University of Technology. His research and
teaching activities are on numerical field computation techniques,
simulation and optimization of complex mechatronics systems and
the related vibro- and aeroacoustics and measurement technology.
He has authored several books and more than 150 technical publi-
cations mainly in the fields of multiphysics simulations and compu-
tational aeroacoustics.

Anton Wolfschluckner

wurde 1986 in Grieskirchen geboren. Im
Jahr 2013 absolvierte er das Masterstudium
Energietechnik an der Technischen Univer-
sitat Wien, Osterreich. Seit September 2013
arbeitet er bei Traktionssysteme Austria in
Wiener Neudorf, Osterreich. Zu seinen Auf-
gabengebieten zdhlen die elektromagnetis-
che und thermische Auslegung von Traktions-
maschinen sowie die Isolationstechnik.

heft 2.2017

155




	Eddy current losses in permanent magnets of surface mounted permanent magnet synchronous machines-Analytical calculation and high order ﬁnite element analyses
	Abstract
	Zusammenfassung
	Introduction
	Analytical calculation
	Analytical approach
	Analytical results

	Finite element analysis
	Higher order ﬁnite elements
	Numerical results
	General results
	Accuracy of the results
	Inﬂuence of the pole coverage


	Conclusion
	Acknowledgement
	References


