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Abstract: Volcanic rock masses exhibit temporal and spa-

tial variability, even at the scale and duration of engineer-

ing projects. Volcanic processes are dynamic, resulting

in rock masses ranging from high-porosity, clay-rich, frac-

tured, and soil-like to low-porosity, high-strength, brittle,

and massive. Based on a number of studies in a variety

of geological settings, such as active and fossil geother-

mal systems, on the surface of active volcanoes and up to

3000m below the surface, the work presented in this article

shows the relationship between geological characteristics

and mechanical parameters of volcanic rocks. These are

then linked to the resultant challenges to tunnelling asso-

ciated with the mechanical behaviour of volcanic rocks and

rock masses, ranging from ductile failure such as squeez-

ing and swelling to dynamic failure such as spalling and

rockburst.

This article highlights some of the key parameters that

should be incorporated in site and laboratory investiga-

tions to build representative ground models in volcanic

rocks and rock masses. Rock mass characterisation needs

to address the highly variable and anisotropic nature of vol-

canic rocks, ranging from millimetre to decametre scale.

Ground models must include not only the mechanical

properties, such as strength and stiffness, of typical lab

investigations, but also petrophysical properties, such as

porosity, and geological conditions, such as alteration.

Geomechanical characterisation of these rock masses re-

quires an understanding of geological processes to select

appropriate field, lab and design tools. In volcanic rocks,

perhaps more than any other rock types, the geology is

critical to characterising and understanding the behaviour

in response to tunnelling.
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Herausforderungen beim Tunnelbau in vulkanischem

Gestein

Zusammenfassung: Vulkanische Gesteinsmassen weisen

eine zeitliche und räumliche Variabilität auf. Vulkanische

Prozesse sind dynamisch und führen zu Gesteinsmas-

sen, die von hochporösem, tonreichem, zerklüftetem und

erdähnlichem bis hin zu niedrigporösem, hochfestem,

sprödem und massivem Gestein reichen. Auf der Grundla-

ge einer Reihe von Studien in verschiedenen geologischen

Umgebungen, zeigt die in diesem Artikel vorgestellte Ar-

beit die Beziehung zwischen geologischen Merkmalen

und mechanischen Parametern von Vulkangestein. Diese

werden dann mit den sich daraus ergebenden Herausfor-

derungen für den Tunnelbau in Verbindung gebracht, die

mit dem mechanischen Verhalten vulkanischer Gesteine

und Gesteinsmassen verbunden sind.

Schlüsselwörter: Felsmechanik, Porosität, Laborversuche,

Verformung, Charakterisierung

1. Characteristics of Volcanic Rocks and
Rock Masses

It is reasonably well understood that composition and tex-

turewill affect rock physical andmechanical properties (e.g.

[1]). Because of thedynamic systems inwhich volcanic rock

masses are typically generated (Fig. 1), composition and

texture arehighly spatially and temporally variable, with in-

terplay between primary composition and texture, as well

as external processes, leading to a variety of different sec-

ondary compositions and textures (Fig. 2). In hydrothermal

systems, often associated with volcanic environments, the

temperature of the hydrothermal fluids plays a key role in

the typeof alteration, andhence theporosityandsecondary

mineralisation, that will occur (Fig. 3). Alteration can affect

porosity by infilling pores and fractures as well as dissolv-

ing primaryminerals [2], leading to high compositional and

textural variability.

This macro-scale variability is associated with variabil-

ity in the mechanical properties of volcanic rocks, in partic-
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Fig. 1: Example2-Dschematics—ageologicalgroundmodelshowingmaterialpropertiesandvolcanicandhydrologicalprocessesinWhakaarivolcano,
NewZealand [3];bConceptualmodelofaconventional, hot, liquiddominatedgeothermalfield. Themodelhasbeensplit into thealteration zones typ-
ical for ageothermalfield,with temperatureprofilesandsurfaceexpressions [4]. Smectitic alteration refers to low temperaturealterationdominated
bysmectite clays,whilepropylitic alteration refers tohigh temperaturealterationdominatedbychlorite, epidoteandquartz. Argillic alterationoccurs
between the two,and isalso claydominated,but in this casewith illite clays

Fig. 2: Examplesofvolcanictextures;aoutcropscaledenseandesitedykeunalteredintrusion(UI)intovariablydensityandesitelavaflows,Mt. Ruapehu,
NewZealand;boutcropscalebasaltshowingunaltereddensecoherentlava(DCL)andbrecciatedlavamargins(BLM)consistingoflavablocksinamatrix
withhigherporosity, Iceland;cedificescaleanisotropy in Icelandicbasalt lavaflows

ular with respect to differences in porosity and secondary

mineralogy associated with alteration. Porosity describes

the proportion of voids in a rock, and for a similar miner-

alogy, porosity will have a direct relationship with density.

The presence of pore (connected and not connected) neg-

atively impacts uniaxial compressive strength (Fig. 4) and

Young’smodulus (Fig. 5), twoof the keymechanical param-

eters used for excavation design. These two relationships

are well established in the rock physics and rock mechanics

literature, as highlighted by [6]. Both relationships show

high variability, which demonstrates that, while porosity is

important, it is not theonly characteristic affecting these pa-

rameters. The variability is particularly high at lowporosity,

suggesting that, at low porosity, the other geological char-

acteristics are more important than porosity. Conversely,

Poisson’s ratio is not sensitive to porosity [7].

While theelasticmoduli and intact compressivestrength

are important for tunnel design using analytical techniques,

numerical modelling of tunnel behaviour requires full fail-

ure criteria, such as Mohr-Coulomb or Hoek-Brown. The

failure criteria are also highly dependent on the texture,

porosity and alteration of volcanic rocks (Fig. 6). To build

failure criteria, the Hoek-Brown parameter, mi, and/or the

Mohr-Coulomb parameters, cohesion and friction angle,

are derived from curve-fitting the failure criterion to triaxial

test data [11]. Triaxial testing is not always possible during

site investigation for tunnel design and the Hoek-Brown pa-

rameter mi, which controls the steepness and curvature of

the failure envelope, is often extracted from tables in the

literature [12]. demonstrate that the commonly used tabu-

lated mi values (e.g. those based on Hoek and Brown, 1997

[11]) fail to capture the wide variability in these values, es-

pecially in volcanic rocks. ReadandRichards (2011) [12] also

highlight that different mi will result in vastly different fail-

ure criteria even with the same intact uniaxial compressive

strength (Fig. 7). [13] and [14] provide transfer functions to

estimate mi, as well as cohesion and friction angle, in the
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Fig. 3: Examplealterationhalosat contactsbetween: aa rhyolite intrusion (red) andbasalt (dark grey)with analterationhalo (black) between them,
Barnafossar,Húsafell, Iceland; (right)Alterationhalocomposedofsecondarymineralogy(leftandcentre) associatedwithhotfluidsadjacent toprimary
mineralogyb in rhyolitedyke, LakeCityCaldera,USA [5]

Fig. 4: Uniaxial compressivestrengthversusporositya for volcanics fromtheTaupō volcanic zone (modified from[8]; andb Impactofalterationon the
porosity-UCS relationships [9]

Fig. 5: RelationshipsbetweenconnectedporosityandYoung’smodulus in avarietyofvolcanic rock types;astaticmodulus (BAF—blockandashflow
[7]),bdynamicmodulus fromseismicwavevelocities (basedondata from[10]and [8])
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Fig. 6: Effectofalterationand
porosityon theHoek-Brown
failurecriteria for threediffer-
entandesite textures (mod-
ified from[15]). UBLMunal-
teredbrecciated lavamargin
(highporosity),ABLMaltered
brecciated lavamargin (mod-
erateporosity),UDCLunal-
tereddensecoherentlava(very
lowporosity),ADCLaltered
densecoherent lava (mod-
erateporosity),UIunaltered
intrusion (very lowporosity),
AIaltered intrusion (lowporos-
ity),arrows show thechange
in the failurecriterion fromthe
unaltered to thealtered rock

Fig. 7: Exampleofdifferences inHoek-Brown failurecriteria (inprinci-
pal stress space) for two ignimbriteswith thesameuniaxial compressive
strength [12]

absence of laboratory triaxial data using porosity, an easily

and commonly measured value (Fig. 8).

2. Mechanical Behaviour of Volcanic Rocks
and Rock Masses

[16] demonstrated that geothermal systemexploitation can

sufficiently disturb the induced stresses through drilling,

fluid extraction and injection that, depending on their

strength, the rocks near the wellbore can either compact,

thereby causing large deformations, or be induced to

tensile failure, possibly leading to instability (Fig. 9). Tun-

nellingwill induce similar stress changes by inducing zones

of increased and decreased stress at the tunnel face, crown,

sides and invert, and further changes to effective stress will

occur if the rock masses are dewatered during excavation.

What is important to consider is that depending on the

texture, porosity and alteration, different rock units will

respond differently to these induced stresses, depending

on the magnitude of the induced stresses compared to the

strength.

[17] show that altered volcanic and volcano-sedimen-

tary rocks contain clayminerals, such as smectites and zeo-

lites, which can lead to significant swelling potential. They

suggest that simple tests, such as the ethylene glycol dura-

bility index, can be useful to identify rocks with potential

for swelling, which could then be further tested using the

oedometer swelling test to estimate swelling pressure.

The rapidly changing lithologies, often resulting inweak,

soft lithologies adjacent to strong, stiff lithologies can lead

to various design and construction issues, including those

associated with mixed-face and mixed-wall conditions,

such as heterogeneous deformation, blocky ground, and

stress concentration in strong, stiff rock masses. While

swelling and squeezing are clear challenges in weak,

porous and altered volcanic rocks, spalling and strain burst

are also key challenges in strong, massive volcanic rocks

at high depth depending on stress magnitude and stress

ratios, as observed at the Olmos tunnel in Peru [18]. Partic-

ularly relevant to volcanic rock masses is their commonly

layered nature (Fig. 2), which can result in layer buckling

and rock fall under low stress conditions, or buckling and

unpredictable dynamic release under high stress [19].
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Fig. 8: Transfer functionswithporosity for: amiwithmean function (red) and95%confidence interval (blue) [14];b cohesion; c frictionangle [13]

Fig. 9: Principalstressplotshowingthein-situstressesinawellat2200m
depth compared to the failurecriteria forRotokawaandesite samples
withporositiesof0.096, 0.151, and0.178. Initial stress state represents
theundisturbed reservoir conditions; reinjectionandextraction in-
ducedstresses represent theperturbed reservoir stresses resulting from
changesinporepressuresduringreservoirutilisation[16]. Analogiescan
bemade to inducedstresses in tunnel excavation

3. Site Investigation and Design in Volcanic
Rocks and Rock Masses

[20] highlighted many lessons learned from the Majes tun-

nelling project in Peru, and suggest that a qualified geolo-

gist should be involved in the site investigation to correctly

identify the different lithologies and their associated nega-

tive behaviours. [21] also highlight that careful site inves-

tigation is needed to determine as closely as possible the

different rock and rock mass types that will be encountered

by the tunnel.

Asdemonstrated in theprevious sections, volcanic rocks

and rock masses are highly variable, in particular with re-

spect to macro texture, porosity, and composition. Labo-

ratory experiments must be carefully planned and under-

taken to characterise as many of the anticipated lithologies

as possible since empirical and published values cannot

capture this variability. The work regarding the impact of

porosity on mechanical parameters provides a means for

estimating these parameters using simple porosity mea-

surements [20]. also show the potential for originally dry

units to be wetted during and after excavation, with result-

ing slaking and swelling. They suggest that all lithologies

should be tested for swelling and slaking, regardless of ex-

pected water ingress.

[21] show that tunnelling in volcanic rock masses re-

quires modification to existing techniques to take into con-

sideration the particular characteristics associated with vol-

canic processes. For example, rock mass classification,

such as the Q system, needs to be adjusted to reduce the

impact of columnar jointing in basalt lava, and transition-

ing away from rock mass classification in highly porous or

poorly lithified rock masses, such as scoria and unwelded

tuff. [22] also conclude that rock mass classification sys-

temsshouldonlybeusedwithcaution in these rockmasses,

and that while many rock units are not sampleable for lab-

oratory testing, they must be taken into account in the de-

sign. [23] also say that rock mass classification schemes

need to be modified for volcanic rock masses, and that ad-

vance borings in the tunnel face are an important tool for

reducing the risk of encountering unexpected poor geolog-

ical conditions.

Adaptable tunnellingmethods, whether conventional or

mechanised, are best suited to the highly variable geologi-

cal conditions as highlighted by [24]. These methods must

be capable ofmitigating behaviour ranging fromhigh plas-

tic deformations to dynamic brittle rupture, often within

close succession. Support types also need to consider the

wide range of expected behaviour, particular the potential

for high pressures on the lining.
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