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Abstract
We consider fuzzy rough sets defined on De Morgan Heyting algebras. We present a theorem that can be used to obtain
several correspondence results between fuzzy rough sets and fuzzy relations defining them. We characterize fuzzy rough
approximation operators corresponding to compositions of reflexive, transitive, mediate, Euclidean and adjoint fuzzy relations
defined on De Morgan Heyting algebras using only a single axiom.
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1 Introduction

Rough sets were introduced by Pawlak (1982) to deal with
concepts that cannot be defined precisely in terms of our
knowledge. In rough set theory, knowledge about objects
U is given in terms of an indistinguishability relation E ,
which is an equivalence E on U, interpreted so that two ele-
ments are E-related if we cannot distinguish them in terms
of the knowledge E . For each subset X, the lower approxi-
mation XE is the set of elements whose E-equivalence class
is included in X . The set XE is interpreted as the set of ele-
ments that certainly belong to X in view of the knowledge
E . The upper approximation X E consists of elements whose
E-class intersects with X . The set XE can be seen as the
set of elements which possibly belong to X . This means that
every vague concept can be approximated from below and
above by two sets that are definable by the knowledge E .
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In the literature, numerous studies can be found in which
equivalences are replaced by an arbitrary binary relation
reflecting, for instance, similarity or preference between
the elements; see Orłowska (1998), Yao and Lin (1996),
for example. Also, in such a generalized setting, the lower
approximation XR consists of elements which necessarily
are in X and X R is the set of elements which possibly are in
X , in the view on knowledge R.

Fuzzy sets introduced by Zadeh (1965) are generaliza-
tions of traditional sets, such that the set-memberships are
expressed by a real number of the interval [0, 1]. Similarly,
Zadeh defined fuzzy relations as generalizations of tradi-
tional binary relations. Soon after Zadeh’s paper, Goguen
(1967) defined the so-called L-fuzzy sets and L-fuzzy rela-
tions, in which the [0, 1]-interval is replaced by a complete
lattice L having 0 as the smallest and 1 as the greatest ele-
ments. Since then, all kinds of structures, such as Heyting
algebras or residuated lattices, have been presented as a basis
for fuzzy sets (Pavelka 1979).

The first approach to integrate rough set theory and fuzzy
set theory is the paper by Dubois and Prade (1990), where
they introduced fuzzy rough sets. A comprehensive evalua-
tion of the most relevant fuzzy rough set models proposed in
the literature can be found in D’eer et al. (2015).

Correspondences are understood as conditions that con-
nect the properties of relations to the properties of approx-
imation operations. For instance, if R is an arbitrary binary
relation on U , then R is symmetric if and only if (XR)R ⊆
X ⊆ (X R)R holds for all subsets X of U . Correspondences
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for binary relations are well studied in the literature. For
instance, reflexive, symmetric, and transitive relations are
characterized in Järvinen (2005). In Yao and Lin (1996),
the authors considered serial, reflexive, symmetric, transitive,
and Euclidean relations. Correspondences for serial, reflex-
ive, mediate, transitive, and alliance relations are given in
Zhu (2007). However, there seems to be a problem in the
characterization of alliance relations, and we consider this
issue in Example 3.27.

As noted above, there are several ways to generalize rough
sets to fuzzy rough sets. This means that there are various
types of correspondence results in the literature depending on
the setting. For instance, in Radzikowska and Kerre (2004),
the authors considered L-fuzzy rough approximations in
the case L is a complete residuated lattice. They character-
ized serial, reflexive, symmetric, Euclidean, and transitive
L-fuzzy relations. In Wu and Zhang (2004), the authors pre-
sented correspondences for reflexive, symmetric, transitive,
and Euclidean [0, 1]-fuzzy relations. Similar study of [0, 1]-
fuzzy rough sets can be found in Liu (2008). Some other
recent types of fuzzy rough approximations and their cor-
respondences are considered in Jin and Ling-Qiang (2023),
Sun et al. (2020), Sun and Shi (2023), Wei et al. (2021), Xu
et al. (2023), Zhao and Shi (2021), for example.

In Pang et al. (2019), the authors consider such L-fuzzy
relations that L is a Heyting algebra provided with an anti-
tone involution ′. This means that L is a so-called DeMorgan
Heyting algebra. Three new types (mediate, Euclidean, and
adjoint) of L-fuzzy rough approximation operators were
characterized in that paper. In this work, we adopt their
approach. We will present a new uniform method in The-
orem 3.2 which covers the results in Pang et al. (2019), and
several others.

Liu (2013) initiated the study of characterizing fuzzy
rough set approximations by only one axiom. In Pang
et al. (2019), the authors provided an axiomatic approach
to L-fuzzy rough approximation operators, where L is
a De Morgan Heyting algebra. They also presented sin-
gle axioms to characterize L-fuzzy rough approximation
operators corresponding to mediate, Euclidean, and adjoint
L-fuzzy relations as well as their compositions. In that work,
they gave the following open problem: “Using single axioms
to characterize L-fuzzy rough approximation operators cor-
responding to compositions of serial, reflexive, symmetric,
transitive,mediate, Euclidean and adjoint L-fuzzy relations.”
In this work, we present a general solution to this problem,
which covers also other types of relations and their compo-
sitions.

The paper is structured as follows. In Sect. 2, we recall
from the literature notions and basic results used in this work.
More precisely, in Sect. 2.1, we consider the essential corre-
spondence results related to (crisp) binary relations and rough
approximation operations. In this work, we consider fuzzy

rough sets on De Morgan Heyting algebras, and Sect. 2.2
covers the basic facts of these types of algebras.

Section 3 is devoted to the correspondence results char-
acterizing properties of L-fuzzy relations in terms of fuzzy
rough approximation operators. In Sect. 3.1, we present a
result which is frequently used in other subsections to prove
correspondences. We present correspondence for reflexive
and symmetric (Sect. 3.2), transitive and mediate (Sect. 3.3),
Euclidean and adjoint (Sect. 3.4), and functional and posi-
tive alliance relations (Sect. 3.5). There are several ways to
generalize serial relations to their fuzzy counterparts, and in
Sect. 3.6, we consider three such generalizations.

Finally, in Sect. 4, we solve the problem given in Pang
et al. (2019) and some concluding remarks end the work.

2 Preliminaries

In this section, we first recall correspondences between
(crisp) binary relations and rough approximation operations.
The second part of this section considers DeMorganHeyting
algebras and fuzzy rough approximation operations defined
on them.

2.1 Binary relations and rough approximation
operators

A binary relation onU is a set of ordered pairs (x, y), where
x and y are elements ofU . If x and y are R-related, then this
is denoted by x R y or (x, y) ∈ R.

Let us introduce some general properties of binary rela-
tions. A binary relation R on U is

(i) serial, if for all x ∈ U , there is y ∈ U , such that x R y,
(ii) reflexive, if x R x for all x ∈ U ,
(iii) symmetric, if x R y, then y R x for all x, y ∈ U ,
(iv) transitive, if x R y and y R z, then x R z for all x, y, z ∈

U ,
(v) mediate, if x R y for some x, y ∈ U , there is z ∈ U ,

such that x R z and z R y,
(vi) Euclidean, if x R y and x R z, then y R z for all x, y, z ∈

U .

Next, we recall (see, e.g., Järvinen 2005; Yao and Lin
1996) rough approximation operations defined by arbitrary
relations. For any subset X ⊆ U , the lower approximation
of X is defined as

XR = {x ∈ U | x R y implies y ∈ X}.

The upper approximation of X is

X R = {x ∈ U | there exists y ∈ X, such that x R y }.
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The following correspondence results can be found in the lit-
erature; see Järvinen (2005), Yao andLin (1996), Zhu (2007),
for instance:

(i) R is serial ⇐⇒ UR = U ⇐⇒ ∅R = ∅ ⇐⇒
(∀X ⊆ U ) XR ⊆ X R ,

(ii) R is reflexive ⇐⇒ (∀X ⊆ U ) XR ⊆ X ⇐⇒
(∀X ⊆ U ) X ⊆ X R ,

(iii) R is symmetric ⇐⇒ (∀X ⊆ U ) (XR)R ⊆ X ⇐⇒
(∀X ⊆ U ) X ⊆ (X R)R ,

(iv) R is transitive ⇐⇒ (∀X ⊆ U ) (X R)R ⊆ X R ⇐⇒
(∀X ⊆ U ) XR ⊆ (XR)R .

(v) R is mediate ⇐⇒ (∀X ⊆ U ) X R ⊆ (X R)R ⇐⇒
(∀X ⊆ U ) (XR)R ⊆ XR .

(vi) R is Euclidean ⇐⇒ (∀X ⊆ U ) X R ⊆ (X R)R ⇐⇒
(∀X ⊆ U ) (XR)R ⊆ XR .

In this work, we consider similar correspondences in the
setting of L-fuzzy rough sets when a complete De Morgan
Heyting algebra is defined on L .

2.2 Approximation operators in DeMorgan Heyting
algebras

We begin by recalling some definitions from Castaño and
Santis (2011). A Heyting algebra is an algebra

(H ,∨,∧,⇒, 0, 1)

of type (2, 2, 2, 0, 0) for which (H ,∨,∧, 0, 1) is a bounded
distributive lattice and ⇒ is the operation of relative pseu-
docomplementation, that is, for a, b, c ∈ H , a ∧ c ≤ b iff
c ≤ a ⇒ b.

A De Morgan Heyting algebra is an algebra

L = (L,∨,∧,⇒,′ , 0, 1)

of type (2, 2, 2, 1, 0, 0), such that (L,∨,∧,⇒, 0, 1) is a
Heyting algebra and ′ is an antitone involution, that is,
(x ∧ y)′ = x ′ ∨ y′ and x ′′ = x for all x ∈ L .

Example 2.1 Let us consider the four-element lattice L :=
0 < a, b < 1 in which the elements a and b are incom-
parable. Then, (L,∨,∧,⇒, 0, 1) is a well-known Heyting
algebra.

There are two ways to define the operation ′ in L . We can
define

0′ = 1, a′ = b, b′ = a, 1′ = 0.

It is also possible to define

0′ = 1, a′ = a, b′ = b, 1′ = 0.

In both cases, we have a DeMorgan Heyting algebra defined
on L .

A complete lattice L satisfies the join-infinite distributive
law if for any S ⊆ L and x ∈ L

x ∧ ( ∨
S
) =

∨
{x ∧ y | y ∈ S}. (JID)

The dual condition is the meet-infinite distributive law,
(MID). It iswell known that a complete lattice defines aHeyt-
ing algebra if and only if it satisfies (JID). Each De Morgan
Heyting algebra L defined on a complete lattice L satisfies
both (JID) and (MID), because ′ is an order isomorphism
between (L,≤) and its dual (L,≥). In this work, De Mor-
gan Heyting algebras defined on a complete lattice are called
complete De Morgan Heyting algebras.

Let L be a complete De Morgan Heyting algebra and U
a universe. An L-fuzzy set on U is a mapping A : U → L .
We often drop the word ‘fuzzy’ and speak about L-sets. The
family of all L-sets on U is denoted by FL(U ).

The set FL(U ) may be ordered pointwise by setting for
A, B ∈ FL(U ), A ≤ B if and only if A(x) ≤ B(x) for all
x ∈ U . If L is a complete De Morgan Heyting algebra, then
FL(U ) forms a complete De Morgan Heyting algebra, such
that for all {Ai }i∈I ⊆ FL(U ) and x ∈ U

(∨

i
Ai

)
(x) =

∨

i
Ai (x) and

(∧

i
Ai

)
(x) =

∧

i
Ai (x).

The operations ⇒ and ′ are defined for A, B ∈ FL(U ) and
x ∈ U by

(A ⇒ B)(x) = A(x) ⇒ B(x) and A′(x) = A(x)′.

The map 0 : x �→ 0 is the smallest and 1 : x �→ 1 is the
greatest element of FL(U ), respectively.

An L-fuzzy relation R onU is amappingU×U → L .We
often use the term “L-relation” instead of “L-fuzzy relation”.
The following definition of L-approximations can be found
in Pang et al. (2019).

Definition 2.2 LetL be a complete DeMorganHeyting alge-
bra, R an L-relationonU and A ∈ FL(U ). Theupper L-fuzzy
approximation and lower L-fuzzy approximation of A are
defined by

U(A)(x) =
∨

y

(
R(x, y) ∧ A(y)

)
and

L(A)(x) =
∧

y

(
R(x, y)′ ∨ A(y)

)
,

respectively.

If there is no danger of confusion, we may denote U(A) and
L(A) simply by UA and LA. In addition, L-fuzzy approxi-
mations are called simply L-approximations.
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In Pang et al. (2019), the following properties of L-
approximations generalizing well-known properties of crisp
rough approximations are proved.

Proposition 2.3 Let U be a set, L a complete De Morgan
Heyting algebra, and R an L-relation on U. For {Ai }i∈I ⊆
FL(U ), A ∈ FL(U ) and x ∈ U, the following assertions
hold:

(1) L0 = 0 and U1 = 1;
(2) (UA)′ = L(A′) and (LA)′ = U(A′);
(3) U(

∨
i Ai ) = ∨

iU(Ai ) and L(
∧

i Ai ) = ∧
iL(Ai );

(4) U(
∧

i Ai ) ≤ ∧
iU(Ai ) and L(

∨
i Ai ) ≥ ∨

iL(Ai ).

For a ∈ L , we define a ‘constant’ L-set a by

a(x) = a for all x ∈ U .

This means that 0 = 0 and 1 = 1. For any x ∈ U , we define
a map Ix by

Ix (y) =
{
1 if x = y,

0 otherwise.

The idea is that the map Ix corresponds to the singleton {x}.
For any x, y ∈ U ,U(Iy)(x) = ∨

z(R(x, z)∧ Iy(z)). Because
Iy(z) = 1 iff z = y, we obtain the following equality, which
will be used frequently in this work:

(∀x, y ∈ U )U(Iy)(x) = R(x, y). (2.1)

It is noted in Pang et al. (2019) that each A ∈ FL(U ) can
be written in two ways

A =
∨

x

(
A(x) ∧ Ix

) =
∧

x

(
A(x) ∨ (Ix )

′). (2.2)

Note that (Ix )′ corresponds the set-theoretical complement
U\{x} of the singleton {x}, and the latter equality is clear by
Lemma 3.17 of Pang et al. (2019). The following facts were
also proved in Pang et al. (2019).

Lemma 2.4 Let L be a complete DeMorganHeyting algebra
and R an L-relation on U. For all a ∈ L and A ∈ FL(U )

(1) U(a) ≤ a ≤ L(a);
(2) U(a ∧ A) = a ∧ U(A) and L(a ∨ A) = a ∨ L(A);
(3) U(a ∨ A) ≤ a ∨ U(A) and L(a ∧ A) ≥ a ∧ L(A).

3 Correspondence results

In this section, we assume that L is a complete De Morgan
Heyting algebra, U is a universe, and R is an L-relation on
U .

3.1 A general result

In this subsection, we present a general result which can be
used to obtain several correspondence results. Let S be a
finite combination of rough approximation operators L and
U. Because the operators L and U are order-preserving, the
operator S is order-preserving. From this, it follows that:

∨

i
S(Ai ) ≤ S

(∨

i
Ai

)
and

∧

i
S(Ai ) ≥ S

(∧

i
Ai

)
.

Lemma 3.1 For all a ∈ L

ā ∧ S(Ix ) ≤ S(ā ∧ Ix ).

Proof We prove the claim by induction. If n = 1, then the
two cases ā ∧U(Ix ) ≤ U(ā ∧ Ix ) and ā ∧ L(Ix ) ≤ L(ā ∧ Ix )
are clear by Lemma 2.4 by setting A = Ix .

Suppose that the claim holds for all combinations consist-
ing of n L and U operators. Let S be a combination n + 1
operators. Then, S = U ◦ S1 or S = L ◦ S2, where S1 and
S2 are combinations of U and L of length n.

If S = U ◦ S1, then

a ∧ S(Ix ) = a ∧ U(S1(Ix )) = U(a ∧ S1(Ix )) ≤ U(S1(ā ∧ Ix ))

= S(ā ∧ Ix ).

If S = L ◦ S2, then

a ∧ S(Ix ) = a ∧ L(S2(Ix )) ≤ L(a ∧ S2(Ix )) ≤ L(S2(ā ∧ Ix ))

= S(ā ∧ Ix ).

��
Theorem 3.2 Let S be a finite combination of rough approx-
imation operators L and U. If U(Ix ) ≤ S(Ix ) for all x ∈ U,
then U(A) ≤ S(A) for all A ∈ FL(A).

Proof Assume that U(Ix ) ≤ S(Ix ) for all x ∈ U . Then

U(A) = U
(∨

x
(A(x) ∧ Ix )

)
(by (2.2))

=
∨

x
U(A(x) ∧ Ix ) (by Prop. 2.3(3))

=
∨

x

(
A(x) ∧ U(Ix )

)
(by Lemma 2.4(2))

≤
∨

x

(
A(x) ∧ S(Ix )

)
(by assumption)

≤
∨

x
S(A(x) ∧ Ix ) (by Lemma 3.1)

≤ S
(∨

x
A(x) ∧ Ix

)
(S preserves ≤)

= S(A) (by (2.2)).

��
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3.2 Reflexive and symmetric relations

Let us start with the following definition.

Definition 3.3 An L-relation R is reflexive, if

(∀x ∈ U ) R(x, x) = 1.

The following lemma gives a characterization of reflexiv-
ity.

Lemma 3.4 An L-relation R is reflexive if and only if for all
x ∈ U, Ix ≤ U(Ix ).

Proof If R is reflexive,U(Ix )(x) = R(x, x) = 1 = Ix (x) for
all x ∈ U . If R is not reflexive, then there is x ∈ U , such that
R(x, x) �= 1. Now, Ix (x) = 1 and U(Ix )(x) = R(x, x) �= 1,
giving Ix � U(Ix ). ��
Proposition 3.5 LetL complete DeMorgan Heyting algebra
and R an L-relation on U. Then, the following are equiva-
lent:

(1) R is reflexive;
(2) (∀A ∈ FL(U )) A ≤ UA;
(3) (∀A ∈ FL(U )) LA ≤ A.

Proof Suppose that R is reflexive. Then, by Lemma 3.4, Ix ≤
U(Ix ) for all x ∈ U . We have that for A ∈ FL(U )

A =
∨

x

(
A(x) ∧ Ix

)
≤

∨

x

(
A(x) ∧ U(Ix )

)

=
∨

x
U

(
A(x) ∧ Ix

)

= U
(∨

x
(A(x) ∧ Ix )

)
= UA.

Thus, (1) implies (2). Suppose that (2) holds. Then, for all
x ∈ U , Ix ≤ U(Ix ), which by Lemma 3.4 yields that R is
reflexive. Thus, also (2) implies (1).

Weprove that (2) and (3) are equivalent.Assume (2) holds.
Then, for any A ∈ FL(U ), A′ ≤ U(A′) = (LA)′, which
implies LA ≤ A. Similarly, if (3) holds, then L(A′) ≤ A′
implies A ≤ (L(A′))′ = U(A). ��

A binary relation ρ is symmetric whenever, for all x, y ∈
U , x ρ y implies y ρ x . The symmetry condition can be
expressed in the form (x ρc y) ∨ (yρ x), where ρc denotes
the complement of the relation ρ, that is, ρc = (U ×U ) \ ρ.
Based on this fact, we present the following definition.

Definition 3.6 An L-relation R symmetric if (∀x, y ∈
U ) R(x, y)′ ∨ R(y, x) = 1.

We can now express symmetry in terms of Ix and L-
approximations.

Lemma 3.7 An L-relation R is symmetric if and only if for
all x ∈ U, Ix ≤ LU(Ix ).

Proof For all x ∈ U

LU(Ix )(x) =
∧

y
(R(x, y)′ ∨ U(Ix )(y))

=
∧

y
(R(x, y)′ ∨ R(y, x)).

If R is symmetric, then LU(Ix )(x) = 1, which means that
LU(Ix )(x) ≥ Ix (x). On the other hand, if LU(Ix ) ≥ Ix , then
LU(Ix )(x) = 1 and

∧
y(R(x, y)′ ∨ R(y, x)) = 1. This gives

that for each y, R(x, y)′ ∨ R(y, x) = 1. ��
We can now write the following characterization of sym-

metric L-relations.

Proposition 3.8 LetL complete DeMorgan Heyting algebra
and R an L-relation on U. Then, the following are equiva-
lent:

(1) R is symmetric;
(2) (∀A ∈ FL(U )) A ≤ LUA;
(3) (∀A ∈ FL(U ))ULA ≤ A.

Proof Suppose that R is symmetric. Then, by Lemma 3.7,
Ix ≤ LU(Ix )(x) for each x ∈ U . We have that

A =
∨

x

(
A(x) ∧ Ix

)
≤

∨

x

(
A(x) ∧ LU(Ix )

)

≤
∨

x
L
(
A(x) ∧ U(Ix )

)

=
∨

x
LU

(
A(x) ∧ Ix

)
≤ LU

(∨

x
(A(x) ∧ Ix )

)
= LUA.

This means that (1) implies (2). If we set A = Ix in (2), we
get that Ix ≤ LU(Ix ) for x ∈ U . Hence, R is symmetric. The
equivalence of (2) and (3) follows easily by the duality of
approximation operations. ��

We end this subsection by the following remark.

Remark 3.9 For a fuzzy relation R, symmetry is typically
expressed by a condition

(∀x, y ∈ U ) R(x, y) = R(y, x). (S*)

Let us briefly consider how this relates to the symmetry of
Definition 3.6.

The three-element chain 3 := 0 < u < 1 is a well-known
Heyting algebra. The operation ′ is defined by 0′ = 1, u′ = u,
and 1′ = 0. Assume thatU = {x, y}. Let us define a 3-fuzzy
relation R on U in such a way that R(x, y) = R(y, x) = u,
R(x, x) = 0 and R(y, y) = 1. Now, the relation satisfies
(S*). However, R(x, y)′ ∨ R(y, x) = u ∨ u = u, so (S*)
does not imply symmetry in the sense of Definition 3.6.
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On the other hand, consider the 4-elementHeyting algebra
L := 0 < a, b < 1, where a and b are incomparable. Let
the operation ′ be defined by 0′ = 1, a′ = a, b′ = b, and
1′ = 0. Assume U = {x, y} and define the L-relation R by
R(x, x) = 1, R(y, y) = 0, R(x, y) = a, R(y, x) = b. Now,
R is symmetric in the sense of Definition 3.6, but R(x, y) �=
R(y, x), that is, (S*) does not hold.

It remains an open problemwhether (S*) be characterized
in terms of fuzzy rough approximation operations.

3.3 Transitive andmediate relations

Definition 3.10 An L-relation is transitive, if (∀x, y, z ∈
U ) R(x, z) ∧ R(z, y) ≤ R(x, y).

Obviously, transitivity is equivalent to that (∀x, y ∈
U )

∨
z(R(x, z) ∧ R(z, y)) ≤ R(x, y).

Lemma 3.11 An L-relation R is transitive if and only if for
all x ∈ U, UU(Ix ) ≤ U(Ix ).

Proof For all x ∈ U

UU(Ix )(y) =
∨

z
(R(y, z) ∧ U(Ix )(z))

=
∨

z
(R(y, z) ∧ R(z, x)),

which is below R(y, x) = U(Ix )(y) by the transitivity of R.
On the other hand, for all x, y ∈ U

UU(Iy)(x) =
∨

z
(R(x, z) ∧ R(z, y)) and U(Iy)(x) = R(x, y).

If UU(Iy) ≤ U(Iy), then the transitivity condition holds for
x and y, which completes the proof. ��

The next proposition characterizes transitive L-relations
in terms of approximation operations.

Proposition 3.12 Let L be a complete De Morgan Heyting
algebra and R an L-relation on U. Then, the following are
equivalent:

(1) R is transitive;
(2) (∀A ∈ FL(U ))UUA ≤ UA;
(3) (∀A ∈ FL(U )) LA ≤ LLA.

Proof Assume that R is transitive.ByLemma3.11,UU(Ix ) ≤
U(Ix ) for x ∈ U . We get that

UUA = UU
((∨

x
(A(x) ∧ Ix )

))

= U
(∨

x
U(A(x) ∧ Ix )

)

= U
(∨

x
(A(x) ∧ U(Ix )

)

=
(∨

x
(A(x) ∧ UU(Ix )

)
≤

∨

x
(A(x) ∧ U(Ix ))

= U
(∨

x
(A(x) ∧ Ix )

)

= UA.

Thus, (2) holds. Conversely, if (2) holds, then UU(Ix ) ≤
U(Ix ) for all x ∈ U and R is transitive. The equivalence of
(2) and (3) is clear. ��

We recall the following definition from Pang et al. (2019).

Definition 3.13 An L-relation R is calledmediate if (∀x, y ∈
U ) R(x, y) ≤ ∨

z(R(x, z) ∧ R(z, y)).

Lemma 3.14 An L-relation R is mediate if and only if for all
x ∈ U, UU(Ix ) ≥ U(Ix ).

Proof For all x, y ∈ U

U(Iy)(x) ≤ UU(Iy)(x) ⇐⇒ R(x, y)

≤
∨

z
(R(x, z) ∧ R(z, y)),

which completes the proof. ��
We may now write the following proposition.

Proposition 3.15 Let L be a complete De Morgan Heyting
algebra and R an L-relation on U. Then, the following are
equivalent:

(1) R is mediate;
(2) (∀A ∈ FL(U ))UA ≤ UUA;
(3) (∀A ∈ FL(U )) LLA ≤ LA.

Proof Assume that R is mediate. By Lemma 3.14, U(Ix ) ≤
S(Ix ) = UU(Ix ) for all x ∈ U ,whereS denotes the combina-
tion UU. Therefore, UA ≤ S(A) = UUA for all A ∈ FL(U )

follows directly from Theorem 3.2. Therefore, (2) implies
(1). By applying A = Ix , it is immediate that (2) implies (1).

The equivalence of (2) and (3) can be proved as in our
earlier proofs. ��

3.4 Euclidean and adjoint relations

A binary relation ρ is Euclidean if x ρ y and x ρ z imply
y ρ z. Obviously, x ρ y and x ρ z imply also z ρ y. As noted
in Pang et al. (2019), this is equivalent to that x ρ z and z ρc y
imply x ρc y.

Definition 3.16 An L-relation R on U is called Euclidean if

(∀x, y, z ∈ U ) R(x, y)′ ≥ R(x, z) ∧ R(z, y)′.

Obviously, being Euclidean is equivalent to the condition

(∀x, y ∈ L) R(x, y)′ ≥
∨

z
(R(x, z) ∧ R(z, y)′). (euc)
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Lemma 3.17 An L-relation R is Euclidean if and only if for
all x ∈ U, U(Ix ) ≤ LU(Ix ).

Proof Let x, y ∈ U . As we have noted, U(Iy)(x) = R(x, y)
and

LU(Iy)(x) = ∧
z(R(x, z)′ ∨ U(Iy)(z))

= ∧
z(R(x, z)′ ∨ R(z, y)).

If R is Euclidean, then R(x, y)′ ≥ ∨
z(R(x, z) ∧ R(z, y)′),

which implies

R(x, y) = R(x, y)′′ ≤
(∨

z
(R(x, z) ∧ R(z, y)′)

)′

=
∧

z
(R(x, z) ∧ R(z, y))′

=
∧

z
(R(x, z)′ ∨ R(z, y)′′)

=
∧

z
(R(x, z)′ ∨ R(z, y)).

This means that U(Iy) ≤ LU(Iy).
On the other hand, if U(Iy) ≤ LU(Iy), then for all x ∈ U ,

U(Iy)(x) ≤ LU(Iy)(x), and thus,

R(x, y) ≤
∧

z
(R(x, z)′ ∨ R(z, y)).

Applying De Morgan operation ′ for the both sides of the
relation, we obtain that (euc) holds. ��

The next proposition characterizes Euclidean L-relations
in terms of approximations.

Proposition 3.18 Let L be a complete De Morgan Heyting
algebra and R be an L-relation on U. Then, the following
are equivalent:

(1) R is Euclidean;
(2) (∀A ∈ FL(U ))UA ≤ LUA;
(3) (∀A ∈ FL(U ))ULA ≤ LA.

Proof If R is Euclidean, then U(Ix ) ≤ LU(Ix ) for all x ∈ U .
By Theorem 3.2, UA ≤ LUA for all A ∈ FL(U ). Thus, (2)
implies (1). By applying A = Ix , we see that (2) implies (1).
The equivalence of (2) and (3) is obvious. ��

We recall from Pang et al. (2019) the definition of adjoint
relations.

Definition 3.19 An L-relation R on U is adjoint if

(x, y ∈ U ) R(x, y)′ ≥
∧

z

∨

w �=y
(R(x, z)′ ∨ R(z, w)).

We can now characterize adjoint relations in terms of Ix
and fuzzy approximations operations.

Lemma 3.20 An L-relation R is adjoint if and only if for all
x ∈ U, U(Ix ) ≤ UL(Ix ).

Proof For all x, y ∈ U , we have the following equality:

∧

z

∨

w �=y
(R(x, z)′ ∨ R(z, w))

=
∧

z

(
R(x, z)′ ∨

∨

w �=y
R(z, w)

)

=
∧

z

(
R(x, z)′ ∨

∨

w
(R(z, w) ∧ Iy

′(w)
)

=
∧

z

(
R(x, z)′ ∨ U(Iy

′)(z)
)

= LU(Iy
′)(x)

= (UL(Iy)(x))′.

If R is adjoint, then

(U(Iy)(x))
′ = R(x, y)′ ≥ (UL(Iy)(x))′,

which is equivalent to U(Iy)(x) ≤ UL(Iy)(x). Hence,
U(Iy) ≤ UL(Iy) for all y ∈ U . Conversely, if U(Iy) ≤
UL((Iy) for all y ∈ U , then by the above equality, R is adjoint.

��
We can now extend Lemma 3.20 to the following corre-

spondence for adjoint relations using our Theorem 3.2.

Proposition 3.21 Let L be a complete De Morgan Heyting
algebra and R an L-relation on U. Then, the following are
equivalent:

(1) R is adjoint;
(2) (∀A ∈ FL(U ))UA ≤ ULA;
(3) (∀A ∈ FL(U )) LUA ≤ LA.

Proof If R is adjoint, then U(Ix ) ≤ UL(Ix ) for all x ∈ U .
Theorem 3.2 gives thatUA ≤ ULA for all A ∈ FL(U ). Thus,
(1) implies (2). By applying A = Ix , we see that (2) implies
(1).

The equivalence of (2) and (3) is clear by the duality. ��

3.5 Functional and alliance relations

A binary relation ρ is functional when each x ∈ U is ρ-
related to at most one element. This means that x ρ y implies
that for all z ∈ (U\{y}), x ρc y. Based on this, we present
the following definition.

Definition 3.22 Thus, an L-relation R on U is functional if

(∀x, y) R(x, y) ≤
∧

z �=y

R(x, z)′.

The condition means that R(x, y) ≤ R(x, z)′ holds for all
x, y ∈ U and z �= y.
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Lemma 3.23 An L-relation R is functional if and only if for
all x ∈ U, U(Ix ) ≤ L(Ix ).

Proof For all x, y ∈ U , U(Iy)(x) = R(x, y) and

L(Iy)(x) =
∧

z
(R(x, z)′ ∨ (Iy)(z))

=
(∧

z �=y
(R(x, z)′ ∨ 0)

)
∧ (R(x, y)′ ∨ 1)

=
(∧

z �=y
R(x, z)′

)
∧ 1 =

∧

z �=y
R(x, z)′.

Because for all y ∈ U , U(Iy) ≤ L(Iy) is equivalent to that
U(Iy)(x) ≤ L(Iy)(x) for all x, y ∈ U , the claim is proved. ��

Proposition 3.24 Let L be a complete De Morgan Heyting
algebra and R an L-relation on U. Then, the following are
equivalent:

(1) R is functional;
(2) (∀A ∈ FL(U ))UA ≤ LA.

Proof If R is functional, then U(Ix ) ≤ L(Ix ) for all x ∈ U .
By Theorem 3.2, we obtain UA ≤ LA for all A ∈ FL(U ).
Conversely, if UA ≤ LA for any A ∈ FL(U ), then U(Ix ) ≤
L(Ix ) for all x ∈ U . ��

‘Positive alliance’ relations were defined in Zhu (2007) by
stating that a binary relation ρ is a positive alliance if for any
elements x, y ∈ U , such that x ρc y, there is z ∈ U satisfying
x ρ z, but z ρc y.

It is clear that each reflexive relation is positive alliance,
because if a ρc b, then a ρ a and a ρc b hold trivially.

The following facts can be found in Ma et al. (2015), but
for the sake of completeness, we give a proof.

Lemma 3.25 Let ρ be a serial and transitive binary relation
on U. Then, the following conditions hold:

(1) ρ is a positive alliance;
(2) for all X ⊆ U, (Xρ)ρ ⊆ Xρ .

Proof (1) Suppose a ρc b. Because ρ is serial, there is c, such
that a ρ c. Now, c ρ b is not possible, because that would
imply a ρ b, contradicting a ρc b. Thus, c ρc b.

(2) If ρ is a serial binary relation on U , then Xρ ⊆ Xρ for
all X ⊆ U . In particular, (Xρ)ρ ⊆ (Xρ)ρ . If ρ is also
transitive, then (Xρ)ρ ⊆ Xρ . Thus, if ρ is serial and
transitive, (Xρ)ρ ⊆ Xρ .

��

On the other hand, it is clear that if ρ is a positive alliance,
then it is serial. However, there are positive alliance relations
that are not transitive.

Fig. 1 Positive alliance relation
ρ. Elements of U = {1, 2, 3, 4}
are represented with circles, and
if an element x is ρ-related to an
element y, there is an arrow
from the circle representing x to
the circle representing y

Example 3.26 Let U = {a, b, c} and let ρ = {(a, b),
(b, b), (c, a), (c, c)}. Then, ρ is serial, but not transitive,
because c ρ a and a ρ b, but c ρc b. Now, we have that:

• a ρca, and there is b such a ρ b and b ρc a;
• a ρcc, and there is b such a ρ b and b ρc c;
• b ρca, and there is b such b ρ b and b ρc a;
• b ρcc, and there is b such b ρ b and b ρc c;
• c ρcb, and there is c such c ρ c and c ρc b.

Hence, ρ is a positive alliance.

It is clear that for all x, y ∈ U , y ∈ {x}ρ ⇐⇒ y ρ x .
Therefore

y ∈ ({x}ρ)c ⇐⇒ y ρc x and

y ∈ (({x}ρ)c)ρ ⇐⇒ (∃z)y ρ z & z ρc x .

As proved in Zhu (2007), ρ is a positive alliance if and only
if ({x}ρ)c ⊆ (({x}ρ)c)ρ for all x ∈ U . Note that the latter
condition is equivalent to that ({x}ρ)ρ ⊆ {x}ρ for all x ∈ U .

Example 3.27 It is commonly accepted (see Ma et al. 2015;
Zhu 2007, for instance) that for any binary relation ρ, the
following are equivalent:

(1) ρ is a positive alliance;
(2) for all X ⊆ U , (Xρ)ρ ⊆ Xρ .

It is now clear that (2) implies (1) by the fact that ρ is a
positive alliance if and only if ({x}ρ)ρ ⊆ {x}ρ for all x ∈ U .
Next, we give a counter example, showing that (1) does not
imply (2).
Let the relationρ begiven inFig. 1. The relationρ is a positive
alliance, because:

• 1 ρc1, and there is 4 such 1 ρ 4 and 4 ρc 1;
• 1 ρc2, and there is 4 such 1 ρ 4 and 4 ρc 2;
• 1 ρc3, and there is 4 such 1 ρ 4 and 4 ρc 3;
• 2 ρc1, and there is 2 such 2 ρ 2 and 2 ρc 1;
• 2 ρc4, and there is 2 such 2 ρ 2 and 2 ρc 4;
• 3 ρc3, and there is 1 such 3 ρ 1 and 1 ρc 3;
• 3 ρc4, and there is 2 such 3 ρ 2 and 2 ρc 4;
• 4 ρc1, and there is 4 such 4 ρ 4 and 4 ρc 1;
• 4 ρc2, and there is 4 such 4 ρ 4 and 4 ρc 2;
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• 4 ρc3, and there is 4 such 4 ρ 4 and 4 ρc 3.

We have that

ρ(1) = {4}, ρ(2) = {2, 3}, ρ(3) = {1, 2}, ρ(4) = {4}.

Let us consider the set {3, 4}. Now, {3, 4}ρ = {1, 2, 4} and
({3, 4}ρ)ρ = {1, 2, 4}ρ = {1, 3, 4}. This means that

({3, 4}ρ)ρ � {3, 4}ρ.

This obviously implies that there is a positive alliance ρ, such
that

({3, 4}ρ)c � (({3, 4}ρ)ρ)c = (({3, 4}ρ)c)ρ,

contradicting Theorem 2(5) in Ma et al. (2015).

For L-relations, we can present the following generalized
definition.

Definition 3.28 An L-relation R is said to be a positive
alliance if

R(x, y)′ ≤
∨

z
(R(x, z) ∧ R(z, y)′).

We can now write the following lemma characterizing posi-
tive alliance relations in terms of the approximations of the
identity functions. But as in the case of (crisp) binary rela-
tions, we obviously cannot present a full correspondence
result.

Lemma 3.29 An L-relation R is a positive alliance if and
only if for all x ∈ U, U(Ix ) ≥ LU(Ix ).

Proof Let x, y ∈ I . We have

LU(Iy)(x) =
∧

z
(R(x, z)′ ∨ U(Iy(z)))

=
∧

z

(
R(x, z)′ ∨ R(z, y)

)
.

Thus

(LU(Iy)(x))
′ =

(∧

z
(R(x, z)′ ∨ R(z, y))

)′

=
∨

z

(
R(x, z) ∧ R(z, y)′

)
.

Now,U(Ix ) ≥ LU(Ix ) for all x ∈ U if and only ifU(Iy)(x) ≥
LU(Iy)(x) for all x, y ∈ U if and only if (U(Iy)(x))′ ≤
(LU((Iy)(x))′ for all x, y ∈ U , and the equivalence follows
from this. ��

3.6 Serial relations

A binary relation ρ on U is serial if, for all x ∈ U , there
exists y ∈ U , such that x R y. It is known that being serial is
equivalent to the fact that Xρ ⊆ Xρ for all X ⊆ U .

Our aim of this section is to find a definition for serial
L-relations on U , such that a relation is serial if and only if

(∀A ∈ FL(U )) LA ≤ UA. (3.1)

In this subsection, we consider three definitions. Let us begin
with the following one.

Definition 3.30 An L-relation is serial if (∀x ∈ U )(∃y ∈
U ) R(x, y) = 1.

Lemma 3.31 If an L-relation is serial in the sense of Defini-
tion 3.30, then (3.1) holds.

Proof Let x ∈ U . There exists z ∈ U , such that R(x, z) = 1.
Now

L(A)(x) =
∧

y

(
R(x, y)′ ∨ A(y)

) ≤ R(x, z)′ ∨ A(z)

= 1′ ∨ A(z) = 0 ∨ A(z) = A(z).

On the other hand

U(A)(x) =
∨

y
(R(x, y) ∧ A(y)) ≥ R(x, z) ∧ A(z)

= 1 ∧ A(z) = A(z).

We have that L(A)(x) ≤ A(z) ≤ U(A)(x) and the claim is
proved. ��

The converse implication does not hold, as shown in our
following example.

Example 3.32 Let us consider the four-element lattice L :=
0 < a, b < 1, where a and b are incomparable. If we define
0′ = 1, a′ = b, b′ = a, and 1′ = 0, then L forms a complete
De Morgan Heyting algebra.

Note that L is now a Boolean algebra. This means that for
all elements x and y of L , the join x ′ ∨ y coincides with x ⇒
y, where ⇒ is the Heyting implication of L . Hence, for any
L-relation R, L(A) = ∧

y(R(x, y) ⇒ A(y)). Therefore, we
can apply Proposition 3 of Radzikowska and Kerre (2004).

Let U = {x, y} and define R(x, x) = R(y, y) = a and
R(x, y) = R(y, x) = b. Thus, R(x, x)∨ R(x, y) = a∨b =
1 and R(y, y)∨ R(y, x) = 1. Now, (Radzikowska and Kerre
2004, Proposition 3) implies that LA ≤ UA for all A ∈ FA.
But now, R is not serial in the sense of Definition 3.30.

Wehave now showed that seriality ofDefinition 3.30 is not
equivalent to condition (3.1). Let us try a different approach,
expressed in the following definition.

123



912 J. Järvinen, M. Kondo

Definition 3.33 An L-relation is serial if

(∀x, y ∈ U ) R(x, y)′ ≤
∨

z �=y
R(x, z).

Obviously, also this definition can be seen as a fuzzy gener-
alization of serial binary relations. Indeed, let ρ be a serial
binary relation on U . If x ρ y does not hold some y, then
there exists z �= y, such that x R z holds.

Proposition 3.34 An L-fuzzy relation is serial in the sense of
Definition 3.33 if and only if

(∀x ∈ U ) L(Ix ) ≤ U(Ix ). (3.2)

Proof For all x, y ∈ U

L(Iy)(x) =
∧

z
(R(x, z)′ ∨ Iy(z)).

If z �= y, R(x, z)′ ∨ Iy(z) = R(x, y)′, and if z = y, then
R(x, z)′ ∨ Iy(z) = 1. Thus

L(Iy)(x) =
(∧

z �=y
R(x, z)′

)
∧ 1 =

(∧

z �=y
R(x, z)′

)

=
(∨

z �=y
R(x, z)

)′
.

On the other hand, by (2.1),U(Iy)(x) = R(x, y) for all x, y ∈
U . Therefore, (3.2) is equivalent to

(∀x, y ∈ U )
(∨

z �=y
R(x, z)

)′ ≤ R(x, y).

By applying the operation ′ to both sides of the inequality,
we obtain the condition of Definition 3.33. ��

Unfortunately, (3.2) is not equivalent to (3.1), as can be
seen in the following example.

Example 3.35 Let L := 0 < a, b < 1, where a and b are
incomparable. Define 0′ = 1, a′ = a, b′ = b, and 1′ = 0.
We set U = {x, y} and define the L-relation R on U by
R(x, x) = R(x, y) = a and R(y, x) = R(y, y) = b.

Let us consider the L-set 0 defined by x �→ 0. We have
that

L(0)(x) =
∧

w
(R(x, w)′ ∨ 0(w))

= (R(x, x)′ ∨ 0(x)) ∧ (R(x, y)′ ∨ 0(y))

= R(x, x)′ ∧ R(x, y)′ = a′ ∨ a′ = a ∨ a = a

and

U(0)(x) =
∨

w
(R(x, w) ∧ 0(w)) = 0.

This means that L(0) � U(0). On the other hand

U(Ix )(x) = R(x, x) = a,

U(Ix )(y) = R(y, x) = b,

U(Iy)(x) = R(x, y) = a,

U(Iy)(y) = R(y, y) = b

and

L(Ix )(x) =
∧

z
(R(x, z)′ ∨ Ix (z))

= (R(x, x)′ ∨ Ix (x)) ∧ (R(x, y)′ ∨ Ix (y))

= 1 ∧ R(x, y)′ = R(x, y)′ = a′ = a,

L(Ix )(y) =
∧

z
(R(y, z)′ ∨ Ix (z))

= (R(y, x)′ ∨ Ix (x)) ∧ (R(y, y)′ ∨ Ix (y))

= 1 ∧ R(y, y)′ = R(y, y)′ = b′ = b,

L(Iy)(x) =
∧

z
(R(x, z)′ ∨ Iy(z))

= (R(x, x)′ ∨ Iy(x)) ∧ (R(x, y)′ ∨ Iy(y))

= R(x, x)′ ∧ 1 = R(x, x)′ = a′ = a,

L(Iy)(y) =
∧

z
(R(y, z)′ ∨ Iy(z))

= (R(y, x)′ ∨ Iy(x)) ∧ (R(y, y)′ ∨ Iy(y))

= R(y, x)′ ∧ 1 = R(y, x)′ = b′ = b.

We have shown that L(Ix ) ≤ U(Ix ) for all x ∈ U . This means
that (3.2) is not equivalent to (3.1).

In case of binary relations, it is also true that a relation ρ is
serial if and only ifUρ = U . We end this section by showing
that we can have a simple correspondence generalizing this.

Definition 3.36 An L-relation R is serial if (∀x ∈ U )
∨

y
R(x, y) = 1.

Now, we can write to following characterization.

Lemma 3.37 An L-relation R is serial if and only if U(1) =
1.

Proof Because

U(1)(x) =
∨

y
(R(x, y) ∧ 1(y)) =

∨

y
R(x, y),

the claim is obvious. ��
It is clear that the seriality of Definition 3.30 implies the

seriality of Definition 3.36. The converse is not true. For
instance, the L-relation R of Example 3.32 is serial in the
sense of Definition 3.36, but R(x, y) �= 1 for all x, y ∈ U .

We also proved in Lemma 3.31 that the seriality of Defini-
tion 3.30 implies (3.1). Our final example of this subsection
shows that seriality of Definition 3.36 does not imply (3.1).
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Example 3.38 Let L be the 4-element lattice 0 < a, b < 1,
where a and b are incomparable. If we define 0′ = 1,
a′ = a, b′ = b, and 1′ = 0, then we have a complete
De Morgan Heyting algebra. Let U = {x, y} and define
R(x, x) = R(y, y) = a and R(x, y) = R(y, x) = b.
It is now clear that R is serial in the sense of Defini-
tion 3.36, because R(x, x) ∨ R(x, y) = a ∨ b = 1 and
R(y, x) ∨ R(y, y) = b ∨ a = 1.

LetU = {a, b} and define an L-set A : U → L by A(x) =
b and A(y) = a. Now

L(A)(x) = (R(x, x)′ ∨ A(x)) ∧ (R(x, y)′ ∨ A(y))

= (a′ ∨ b) ∧ (b′ ∨ a)

= (a ∨ b) ∧ (b ∨ a) = 1 ∧ 1 = 1.

and

U(A)(x) = (R(x, x) ∧ A(x)) ∨ (R(x, y) ∧ A(y))

= (a ∧ b) ∨ (b ∧ a) = 0 ∨ 0 = 0.

Therefore, L(A) � U(A).

4 From L-approximations to L-relations

In the previous section, we defined the L-approximations LA
and UA for any A ∈ FL(U ) in terms of an L-relation R on
U . In this section, we consider a converse problem, that is,
whether we can define an L-relation of certain type for a dual
pair of L-fuzzy operators. As we already noted in Sect. 2.2,
for every L-relation R on U , we have

U(Iy)(x) = R(x, y),

for all x, y ∈ U and A ∈ FL(U ). This provides a ‘rule’ for
defining relations when upper approximations are known.
We call any map on FL(U ) as an L-fuzzy operator on U .

Lemma 4.1 Let U be an L-fuzzy operator. For any a ∈ L,
A ∈ FL(U ) and {Ai }i∈I ⊆ FL(U ), the following are equiv-
alent:

(1) U(A) = ∨
x

(
A(x) ∧ U(Ix )

)
;

(2) U(a ∧ ∨
i Ai ) = a ∧ ∨

i U(Ai ).

Proof (1)⇒(2): Suppose that (1) holds. Then

U(a ∧ A) =
∨

x

(
(a ∧ A)(x) ∧ U(Ix )

)

=
∨

x

(
a ∧ A(x) ∧ U(Ix )

)

=
∨

x

(
a ∧ A(x)) ∧ U(Ix )

)

= a ∧
∨

x

(
A(x)) ∧ U(Ix )

)

= a ∧ U(A)

and

U
(∨

i
Ai

) =
∨

x

((∨

i
Ai

)
(x) ∧ U(Ix )

)

=
∨

x

(∨

i
(Ai )(x) ∧ U(Ix )

)

=
∨

x

∨

i

(
Ai (x) ∧ U(Ix )

)

=
∨

i

∨

x

(
Ai (x) ∧ U(Ix )

)

=
∨

i
U(Ai ).

Combining these two, we obtain that

U
(
a ∧

∨

i
Ai

)
= a ∧ U

(∨

i
A
)

= a ∧
∨

i
U(Ai ).

(2)⇒(1): Suppose that (2) holds. Since A = ∨
x (A(x)∧ Ix ),

we have that

U(A) = U
(∨

x

(
A(x) ∧ Ix

))
= U

(
1 ∧

∨

x

(
A(x) ∧ Ix

))

= 1 ∧
∨

x
U

(
A(x) ∧ Ix

)
=

∨

x
U

(
A(x) ∧ Ix

)

=
∨

x

(
A(x) ∧ U(Ix )

)
.

��
Theorem 4.2 Let U be an L-fuzzy operator on U and let
each S j , 1 ≤ j ≤ n, be an L-fuzzy operator on U, such that
U ≤ S j . Then, there exists a unique L-fuzzy relation R on
U, such that U(A) = U(A) for all A ∈ FL(U ) if and only if

U(a ∧
∨

i
Ai )

= a ∧
∨

i
(U(Ai ) ∧ S1(Ai ) ∧ · · · ∧ Sn(Ai )) (4.1)

for a ∈ L and {Ai }i∈I ⊆ FL(U ).

Proof (⇒) Since U ≤ S j , for all j ≤ n, we have U ≤
S1 ∧ · · · ∧ Sn , and hence

U = U ∧ S1 ∧ · · · ∧ Sn .

Suppose that there is an L-relation R, such thatU(A) = U(A)
for all A ∈ FL(U ). Then

U
(
a ∧

∨

i
Ai

) = U
(
a ∧

∨

i
Ai

)

=
(
a ∧ (∨

i
U(Ai )

)) = a ∧
∨

i
U(Ai )

= a ∧
∨

i
U(Ai ) = a ∧

∨

i
(U(Ai ) ∧ S1(Ai ) ∧ · · · ∧ Sn(Ai )).

(⇐) Suppose that (4.1) holds for a ∈ L and {Ai }i∈I ⊆
FL(U ). This gives

U
(∨

i
Ai

)
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= U
(
1 ∧

∨

i
Ai

) = 1 ∧
∨

i
U(Ai ) =

∨

i
U(Ai ),

and U(a ∧ A) = a ∧ U(A) for all a ∈ L and A ∈ FL(U ),
which are essential properties of upper approximation oper-
ators.

Let us define an L-relation R onU by setting for all x, y ∈
U

R(x, y) = U(Iy)(x).

Then, U(Iy)(x) = R(x, y) = U(Iy)(x) for all x, y ∈ U , and
hence U(Ix ) = U(Ix ) for all x ∈ U . For A ∈ FL(U )

U(A) = U
(∨

x

(
A(x) ∧ Ix

)) =
∨

x
U

(
A(x) ∧ Ix

)

=
∨

x
(A(x) ∧ U(Ix )) =

∨

x
(A(x) ∧ U(Ix ))

=
∨

x
U
(
A(x) ∧ Ix

) = U
(∨

x

(
A(x) ∧ Ix

))

= UA.

It is also clear that the induced relation R is unique, since if
there is an L-relation Q, such that UQ(A) = U(A) for all
A ∈ FL(U ), we have R(x, y) = U(Iy)(x) = UQ(Iy)(x) =
Q(x, y) for all x, y ∈ U , and thus, R = Q. ��

Let U and L be L-fuzzy operators. We say that U and L
are dual if U(A′) = (L(A))′ for all A ∈ FL(U ). Note that
this is equivalent to L(A′) = (U(A))′ for all A ∈ FL(U ).
Notice also that we used the notion of dual operations already
in Sect. 2, even it was not defined there. The dual operators
define each other uniquely, that is

U(A) = (L(A′))′ and L(A) = (U(A′))′,

for all A ∈ FL(U ).

Remark 4.3 Suppose that the L-fuzzy operators U and L on
U are dual. Theorem 4.2 can be equivalently expressed in
terms of L. Indeed, let for any 1 ≤ j ≤ n, each S j be an
L-fuzzy operator on U , such that S j (A) ≤ L(A) for any
A ∈ FL(A). Then, there exists a unique L-fuzzy relation
R on U , such that LA = L(A) and UA = U(A) for all
A ∈ FL(U ) if and only if

L
(
a ∨

∧

i
Ai

) = a ∨
∧

i
(L(Ai ) ∨ S1(Ai ) ∨ · · · ∨ Sn(Ai ))

for all a ∈ L and A ∈ FL(U ).

As a corollary of 4.2, we can get easily the following
results, which were presented in Pang et al. (2019) (see The-
orems 4.2–4.6). Note that case (5) is a new result.

Corollary 4.4 Let U and L be dual L-fuzzy operators on U.

(1) There exists a unique L-relation R on U, such that U
and L coincide with the upper and lower approximation
operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
U(Ai )

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).
(2) There exists a unique mediate L-relation R on U, such

that U and L coincide with the upper and lower approx-
imation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∧ U(U(Ai )))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).
(3) There exists a unique Euclidean L-relation R on U, such

that U and L coincide with the upper and lower approx-
imation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∧ L(U(Ai )))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).
(4) There exists a unique adjoint L-relation R on U, such

that U and L coincide with the upper and lower approx-
imation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∧ U(L(Ai )))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).
(5) There exists a unique functional L-relation R on U, such

that U and L coincide with the upper and lower approx-
imation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∧ L(Ai ))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).

Proof (1) This follows directly from Theorem 4.2 by
selecting n = 1 and S1 = U.

(2) By Proposition 3.15, R is mediate if and only if UA ≤
UUA for any A ∈ FL(U ) fromwhich the result follows
by Theorem 4.2 by setting n = 1 and S1 = UU.

(3) The relation R is Euclidean if and only if for all A ∈
FL(U ), UA ≤ LUA by Proposition 3.18. If we set n =
1 and S1 = LU, the claim follows from Theorem 4.2.

(4) By Proposition 3.21, R is adjoint if and only if for all
A ∈ FL(U ), UA ≤ ULA and the claim follows from
this by Theorem 4.2.

(5) The relation R is functional if and only if UA ≤ LA
for any L-set A on U by Proposition 3.24. The result
is now clear by this.

��
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Using Theorem 4.2, we can also give conditions for com-
positions of properties (cf. Theorems 4.8, 4.9, 4.10, and 4.12
in Pang et al. 2019). The proof of the following proposition
is clear.

Corollary 4.5 Let U and L be dual L-fuzzy operator on U.
There exists a unique mediate, Euclidean, and adjoint L-
relation R on U, such that U and L coincide with the upper
and lower approximation operators of R, respectively, if and
only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai )

∧ U(U(Ai )) ∧ L(U(Ai )) ∧ U(L(Ai )))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).

In Pang et al. (2019), the authors presented the following
problem: “Using single axioms to characterize L-fuzzy rough
approximation operators corresponding to compositions of
serial, reflexive, symmetric, transitive, mediate, Euclidean
and adjoint L-fuzzy relations.” Next, we solve this problem,
so that only the parts concerning serial and symmetric rela-
tions remain open.

Our following theorem is closely related to Theorem 4.2.

Theorem 4.6 Let U be an L-fuzzy operator on U and let
each Tk , 1 ≤ k ≤ m, be an L-fuzzy operator on U, such that
U ≥ Tk . Then, there exists a unique L-fuzzy relation R on
U, such that UA = U(A) for all A ∈ FL(U ) if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∨ T1(Ai ) ∨ · · · ∨ Tm(Ai ))

(4.2)

for a ∈ L and {Ai }i∈I ⊆ FL(U ).

Proof (⇒) Since U ≥ Tk , for all k ≤ m, we have U ≤
T1 ∨ · · · ∨ Tm , and hence

U = U ∨ T1 ∨ · · · ∨ Tm .

If there is an L-relation R, such that UA = U A for all A ∈
FL(U ), then

U
(
a ∧

∨

i
Ai

)
= U

(
a ∧

∨

i
Ai

)

=
(
a ∧ U

(∨

i
Ai

))
= a ∧

∨

i
U(Ai )

= a ∧
∨

i
U(Ai ) = a ∧

∨

i
(U(Ai ) ∨ T1(Ai )

∨ · · · ∨ Tm(Ai )).

The direction (⇐) is proved as in Theorem 4.2. ��
Now,we canwrite the following corollary of Theorem4.6.

Corollary 4.7 Let U and L be dual L-fuzzy operators on U.

(1) There exists a unique reflexive L-relation R on U, such
that U and L coincide with the upper and lower approx-
imation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∨ Ai ))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).
(2) There exists a unique transitive L-relation R on U, such

that U and L coincide with the upper and lower approxi-
mation operators of R, respectively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
(U(Ai ) ∨ U(U(Ai )))

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).

Proof (1) By Proposition 3.5, R is reflexive if and only if
A ≤ UA for any A ∈ FL(U ) from which the result
follows by Theorem 4.6 by setting n = 1 and T1(A) =
A.

(2) By Proposition 3.12, R is transitive if and only if
UUA ≤ UA for any A ∈ FL(U ) from which the result
follows byTheorem 4.6 by setting n = 1 and T1 = UU.

��
Let U be an L-fuzzy operator onU . Assume that each S j ,

1 ≤ j ≤ n, is an L-fuzzy operator on U , such that U ≤ S j

and suppose each Tk , 1 ≤ k ≤ m is an L-fuzzy operator on
U , such that U ≥ Tk . Now, we have that

U = (U ∧ S1 ∧ · · · ∧ Sn) ∨ (T1 ∨ · · · ∨ Tm). (4.3)

We can now write the following theorem. Its proof is clear,
because (⇒) part follows from (4.3), and (⇐) can be proved
as in Theorem 4.2.

Theorem 4.8 LetU be an L-fuzzy operator onU and let each
S j , 1 ≤ j ≤ n and Tk , 1 ≤ k ≤ m, be L-fuzzy operators
on U, such that U ≤ S j and U ≥ Tk . Then, there exists a
unique L-fuzzy relation R on U, such that UA = U(A) for
all A ∈ FL(U ) if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i
((U(Ai ) ∧ S1(Ai ) ∧

· · · ∧ Sn(Ai )) ∨ (T1(Ai ) ∨ · · · ∨ Tm(Ai )))

for a ∈ L and {Ai }i∈I ⊆ FL(U ). ��
We end this work by the following example of a single

condition for a combination of certain relation types.

Corollary 4.9 Let U and L be dual L-fuzzy operators on U.
There exists a reflexive, transitive, mediate, Euclidean, and
adjoint L-relation R on U, such that U and L coincide with
the upper and lower approximation operators of R, respec-
tively, if and only if

U(a ∧
∨

i
Ai ) = a ∧

∨

i

(
(U(Ai ) ∧ U(U(Ai )) ∧ L(U(Ai ))
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∧U(L(Ai ))) ∨ (Ai ∨ U(U(Ai )))
)

for all a ∈ L and {Ai }i∈I ⊆ FL(U ).

Some concluding remarks

In this work, we were able to solve the open problem pre-
sented in Pang et al. (2019), so that only the parts concerning
serial and symmetric relations remain open.

One obvious reason for this is that we do not have a
condition for symmetry or seriality which is of the suitable
form, so that the theorems given in Sect. 4 could be applied.
Interestingly, seriality and symmetry are also such that there
are some issues how to generalize them as fuzzy relations, at
least in case of De Morgan Heyting algebras.
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