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Abstract
In accordancewithRodabaugh’s approach to L-quasi-topology, the aimof this paper is to use the concept of semi-quantales as a
theoretical basis to construct and study the notion of quantale-valued quasi-neighborhood systems as a generalized form of the
resent Höhle–S̆ostak’s L-neighborhood systems. Some properties of such notion and relationships with L-quasi-topologies,
L-quasi-fuzzy topologies, L-quasi-uniform structures and L-fuzzy rough approximation operators are established.
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1 Introduction

In 1986, a non-commutative extension of the concept of
frames (locale) is proposed by Mulvey (1986) under the
name quantale which is an algebraic structure with a strong
connection to Mathematical logic, and so with the purpose
of studying the foundations of quantum mechanics and the
spectrum of non-commutative C∗-algebras. In 2007, Rod-
abaugh (2007) introduced the concept semi-quantale as a
generalization of Mulvey’s quantale and used it as a lattice-
theoretic and algebraic basis for studying the lattice-valued
topological spaces and powerset theories from the view-point
of algebraic theories. The notion of semi-quantale provides a
useful tool to gather various lattice-theoretic notions, which
have been extensively studied in non-commutative struc-
tures; it has a wide application, especially in studying the
non-commutative lattice-valued quasi-topology (Rodabaugh
2007; Höhle 2015; El-Saady 2016a, b; Zhang 2018).
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The problem of characterizing lattice-valued topologies
and fuzzy topologies by means of suitable local structures
has been investigated by many authors since the end of the
seventies. It is easily observed that Pu-Liu’s quasi-coincident
neighborhood system (Liu and Luo 1997) and its generaliza-
tion by Fang (2004, 2006), Wang’s remote-neighborhood
system (Wang 1988) and its generalization (Yang and Li
2012; Yao 2012), Shi’s neighborhood system (Pang and Shi
2014; Shi 2009) and Höhle–S̆ostak’s L-neighborhood sys-
tem and L-fuzzy neighborhood system (Höhle and S̆ostak
1999) are important tools to study lattice-valued topologies
and fuzzy topologies. Recently, the notion of quantale-valued
generalized neighborhood systems is proposed and used to
define a theoryof rough set, called rough approximationoper-
ators based on L-generalized neighborhood systems (Zhao
et al. 2019, 2018). Such quantale-valued generalized neigh-
borhood system-based on approximation operators include
the generalized neighborhood system-based approximation
operators (Syau and Lin 2014; Zhang et al. 2015; Zhao and
Li 2018), the L-fuzzy relation-based approximation opera-
tors (Hao and Huang 2017; She and Wang 2009) and some
of L-fuzzy covering-based approximation operators (Li et al.
2017, 2008) as their special case.

In this paper, we aim to introduce the concept quantale-
valued quasi-neighborhood systems as a generalization of
the well-known Höhle–S̆ostak’s L-neighborhood systems
and providing a common framework for the equivalent
notions: L-interior operators and L-neighborhood systems.
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The induced notion can be considered as another way for
obtaining L-quasi-topologies (Rodabaugh 2007). Some of
their properties will be studied as well as their relation-
ships with L-quasi-topologies, L-quasi-fuzzy topologies,
L-quasi-uniform structures, and L-fuzzy rough approxima-
tion operators will be studied.

The remaining part of this paper is organized as fol-
lows. In Sect. 2, we recall some basic needed concepts. In
Sect. 3, the concepts of L-quasi-interior operators and L-
quasi-neighborhood systems are introduced as well as their
relationships with L-quasi-topologies and L-quasi-fuzzy
topologies are established. In Sect. 4, in accordance with
Rodabaugh’s L-quasi-topology, the concept quantic L-quasi-
uniformity is introduced as a generalized form of the well
known L-quasi-uniformity (Gutiérrez García et al. 2003). A
relationship between such notion and L-quasi-neighborhood
systems is established. In Sect. 5, the concept of rough
approximation operators based on L-quasi-neighborhood
systems is introduced.

2 Preliminaries

Definition 2.1 (Rodabaugh 2007) A semi-quantale (L,≤,∨
,⊗) defined to be a complete lattice (L,≤) equipped

with a binary operation ⊗ : L × L −→ L , with no addi-
tional assumptions. As convention, we denote the join, meet,
top and bottom elements in the complete lattice (L,≤) by
∨

,
∧

,�L and ⊥L , respectively.

Definition 2.2 A semi-quantale L = (L,≤,⊗) is called:

(1) a unital semi-quantale (Rodabaugh 2007, 2008) if the
binary operation ⊗ has an identity element e ∈ L called
the unit. If the unit e of the groupoid (L,⊗) coincides
with the top element� of L , then a unital semi-quantale
is called a strictly two-sided semi-quantale.

(2) a commutative semi-quantale (Rodabaugh 2007) if ⊗ is
commutative, i.e., a ⊗ b = b ⊗ a for every a, b ∈ L .

(3) a quantale (Rosenthal 1990) if the binary operation ⊗ is
associative and satisfies

a ⊗
(

∨

i∈I
bi

)

=
∨

i∈I
(a ⊗ bi ) and

(
∨

i∈I
bi

)

⊗ a

=
∨

i∈I
(bi ⊗ a), for all a ∈ L, {bi }i∈I ⊆ L.

A preserving tensor product mapping h : M −→
L , between semi-quantales (L,≤,⊗) and (M,≤,
), is
said to be a semi-quantale morphism (Rodabaugh 2007) if
h(

∨

i∈I
ai ) = ∨

i∈I
h(ai ); for {ai }i∈I ⊆ L .

If a semi-quantale morphism h : L −→ M additionally
preserves the top (resp., unit) element, i.e., h(�L) = �M

(resp., h(eL) = eM ), then it is said to be strong (resp., unital).
The category SQuant comprises all semi-quantales

together with semi-quantale morphisms. The non-full sub-
category UnSQuant of SQuant comprises all unital semi-
quantales and all unital semi-quantale morphisms. Quant
is the full subcategory of SQuant, which has as objects all
quantales.

StQuant is the full subcategory of Quant, which has as
objects all strictly two-sided ( or integral) quantales, i.e., uni-
tal quantales with e = �.

Every quantale L is left- and right-residuated—i.e., there
exist binary operations ↘ and ↙ on L satisfying the follow-
ing axioms:

a⊗b ≤ c ⇔ b ≤ a ↘ c, and b⊗a ≤ c ⇔ b ≤ c ↙ a

In particular, ↘ and ↙ are determined by a ↘ b = ∨{c :
a ⊗ c ≤ b} and b ↙ a = ∨{c : c ⊗ a ≤ b}, respectively,
providing a single residuum → in case of a commutative
multiplication (resulting complete residuated lattices of Den-
niston et al. 2013).

Lemma 2.3 (Bĕlohlávek and Vychodil 2005; Blount and
Tsinakis 2003; Fang 2010; Georgescu and Popescu 2003;
Rosenthal 1990; Solovyov 2013, 2016) Let (L,≤,⊗) ∈
|Quant|. For each a, b, c, d, ai , bi ∈ L, the following prop-
erties hold:

(1) a ⊗ (a ↘ b) ≤ b,
(2) (a ↘ b) ⊗ (c ↘ d) ≤ (a ⊗ c) ↘ (b ⊗ d) and (d ↙

c) ⊗ (b ↙ a) ≤ (d ⊗ b) ↙ (c ⊗ a).

(3) b ≤ c implies a ↘ b ≤ a ↘ c; and c ↘ a ≤ b ↘ a;
(4) a ↘ c ≤ (b ⊗ a) ↘ (b ⊗ c) and c ↙ b ≤ (c ⊗ a) ↙

(b ⊗ a);
(5)

∨
i∈I (ai ↘ b) ≤ ∧

i∈I ai ↘ b and
∨

i∈I (a ↘ bi ) ≤
a ↘ (∨

i∈I bi
)
;

(6) (
∨

i∈I ai ) ↘ b = ∧
i∈I (ai ↘ b);

(7) a ⊗ ∧
i∈I bi ≤ ∧

i∈I (a ⊗ bi ).

A commutative (L,≤,⊗) ∈ |Quant| is said to satisfy the
double negation law if for any a ∈ L, (a −→ ⊥L) −→
⊥L = a. In the following, we use ¬a to denote a −→ ⊥L .
Furthermore, for any a, b ∈ L , we define a ⊕ b = ¬(¬a ⊗
¬b).

Let X be a non-empty set and L ∈ |SQuant|. An L-fuzzy
subset (or L-subset) of X is a mapping A : X −→ L . The
family of all L-fuzzy subsets on X will be denoted by LX . The
smallest element and the largest element in LX are denoted by
⊥ and �, respectively. By α, we mean the constant function
α : X → L such that α(x) = α. If L ∈ |UnSQuant|with a
unit e ∈ L , by e, we mean the constant function e : X → L
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with value e. The algebraic and lattice-theoretic structures
can be extended from the semi-quantale (L,≤,⊗) to LX

pointwisely:

• A ≤ B ⇔ A(x) ≤ B(x),
• (A ⊗ B)(x) = A(x) ⊗ B(x),

for all x ∈ X .
Obviously, (LX ,≤,⊗) is again a semi-quantale with

respect to the multiplication ⊗ and the joins of a subset
{Ai }i∈I of LX is given by

(
∨

i∈I
Ai

)

(x) =
∨

i∈I
Ai (x) ∀ x ∈ X .

In the case L is unital with unit e, then LX becomes a unital
semi-quantale with the unit e.

For a commutative quantale (L,≤,⊗) and any A, B ∈ LX

the subsethood degree (Bĕlohlávek 2002; Georgescu and
Popescu 2003) S : LX × LX −→ L , of A in B ( and the
intersection degree (Chen and Li 2007) T : LX ×LX −→ L ,
of A and B) given, for any A, B ∈ LX , by S(A, B) =
∧

x∈X (A(x) −→ B(x)) and T (A, B) = ∨
x∈X (A(x) ⊗

B(x)).
The following lemma collects some properties of subset-

hood degree. They can be founded inmany literatures such as
Bĕlohlávek (2002), Bĕlohlávek and Vychodil (2005), Chen
and Li (2007), Fang (2010).

Lemma 2.4 Let (L,≤,⊗) be a commutative unital quantale.
For all A, B,C ∈ LX the following properties hold:

(S1) A ≤ B ⇔ S(A, B) ≥ e;
(S2) S(A, B) ≤ S(C, A) −→ S(C, B);
(S3) If A ≤ B, then S(C, A) ≤ S(C, B) and S(B,C) ≤

S(A,C);
(S4) S(A, B) ⊗ S(C, D) ≤ S(A ⊗ C, B ⊗ D);
(S5) S(A, B) ⊗ S(B,C) ≤ S(A,C);
(S6) S(A, α ⊗ B) ≥ α ⊗ S(A, B).

For an ordinary mapping f : X −→ Y , one can define
the mappings f →

L : LX −→ LY and f ←
L : LY −→ LX

by f →
L (A)(y) = ∨{A(x) : x ∈ X , f (x) = y} for every

A ∈ LX and every y ∈ Y , f ←
L (B) = B◦ f for every B ∈ LY ,

respectively. For more details, we refer to Rodabaugh (1983,
2007).

Lemma 2.5 (Fang 2010) Let (L,≤,⊗) be a commutative
quantale, and let h : X −→ Y be an ordinary mapping.
Then, for A, B ∈ LX ,C, D ∈ LY ,

S(A, B) ≤ S(h→(A), h→(B)) and

S(C, D) ≤ S(h←(C), h←(D)).

Definition 2.6 (Zhao et al. 2019, 2018) Let (L,≤,⊗) be a
commutative quantale. A function N : X −→ LLX

is called
an L-generalized neighborhood system operator on X , where
∀ x ∈ X , N (x) = Nx is non-empty, i.e.,

∨

K∈LX

Nx (K ) = �L .

Usually, Nx is called an L-generalized neighborhood system
of x , and Nx (K ) is interpreted as the degree of K being a
neighborhood of x .

An L-generalized neighborhood system operator N : X −→
LLX

is said to be:

(1) serial, if for any x ∈ X and A ∈ LX , Nx (A) ≤
∨

y∈X
A(y);

(2) reflexive, if for any x ∈ X and A ∈ LX , Nx (A) ≤ A(x);
(3) unary, if for any x ∈ X and A, B ∈ LX ,

Nx (A) ⊗ Nx (B) ≤
∨

G∈LX

{Nx (G) ⊗ S(G, A ⊗ B)};

(3) transitive, if for any x ∈ X and A ∈ LX ,

Nx (A) ≤
∨

B∈LX
⎧
⎨

⎩
Nx (B) ⊗

∧

y∈X

⎛

⎝(B(y)) −→
∨

By∈LX

(Ny(By) ⊗ S(By, A))

⎞

⎠

⎫
⎬

⎭
.

Definition 2.7 (Zhao et al. 2019, 2018) Let (L,≤,⊗) be
a commutative quantale. Let N : X −→ LLX

be an L-
generalized neighborhood system operator on X . Then, for
each A ⊆ LX , the upper and lower approximation operators
N (A) and N (A) are defined as follows: for any x ∈ X ,

N (A)(x) =
∧

K∈LX

{Nx (K ) −→ T (K , A)};

N (A)(x) =
∨

K∈LX

{Nx (K ) ⊗ S(K , A)},

respectively.

Theorem 2.8 (Zhao et al. 2019) Let N : X −→ LLX
be an

L-generalized neighborhood system operator on X and the
quantale (L,≤,⊗) satisfies the double negative law, then

N (A) = ¬N (¬A) and N (A) = ¬N (¬A).

Definition 2.9 (Demirci 2010; Rodabaugh 2007) For L ∈
|SQuant|, an L-quasi-topology on a non-empty set X , is a
subfamily τ ⊂ LX satisfying the following axioms:
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(QT1) A ⊗ B ∈ τ , for all A, B ∈ τ .
(QT2)

∨
i∈I Ai ∈ τ , for all {Ai }i∈I ⊆ τ .

An L-quasi-topology τ on X is called strong if and only if it
satisfies the following axiom:

(QT3) � ∈ τ .

If L is a unital semi-quantale with unit e, a subunital semi-
quantale τ of LX is called an L-topology on X (Rodabaugh
2008); i.e., τ satisfies (QT1),(QT2) and the following:

(QT4) e ∈ τ .

If τ ⊂ LX is an L-quasi-topology (resp., L-topology),
then the pair (X , τ ) is said to be an L-quasi-topological
(resp., L-topological) space. A mapping f : (X , τ1) →
(Y , τ2), between L-quasi-topological spaces, is said to be
L-continuous if {μ ◦ f : μ ∈ τ2} ⊆ τ1.

Definition 2.10 (Rodabaugh 2007) Let (L,≤,⊗) ∈
|SQuant|, and X be a non-empty set.

(i) Amap τ : LX −→ L is called an L-quasi-fuzzy topology
on X iff the next conditions are satisfied for all A, B ∈ LX

and {Ai }i∈I ⊆ LX :

(QT 1) τ (A) ⊗ τ(B) ≤ τ(A ⊗ B),
(QT 2)

∧
i∈I τ(Ai ) ≤ τ(

∨
i∈I Ai ).

(ii) An L-quasi-fuzzy topology is said to be strong iff
τ(�) = �.

(iii) If L is a unital semi-quantale with unit e. An L-quasi-
fuzzy topology is then called an L-fuzzy topology iff
τ(e) = e.

(iv) The pair (X , τ ) is called an L-quasi-fuzzy (resp., strong
L-quasi-fuzzy, L-fuzzy) topological space if τ is an
L-quasi-fuzzy (resp., strong L-quasi-fuzzy, L-fuzzy)
topology on X .

(iv) An L-quasi-fuzzy (resp., strong L-quasi-fuzzy, L-
fuzzy) topology τ on X (Höhle and S̆ostak 1999) is
called enriched iff τ satisfies the subsequent axiom:

τ(A) ≤ τ(α ⊗ A),∀α ∈ L, A ∈ LX .

3 Quantale-valued quasi-neighborhood
systems

In accordance with Rodabaugh’s approach to L-quasi-
topology, we aim to present the concept of L-quasi-
neighborhood systems as a generalization of the Höhle–
S̆ostak’s L-neighborhood systems (Höhle and S̆ostak 1999)

and consider it as another way for obtaining L-quasi-
topologies (Rodabaugh 2007).

Before going ahead to consider this concept, we aim to
present the notion of L-quasi-interior operator as general-
ization of the well-known L-interior operator (Höhle and
S̆ostak 1999) and as an equivalence concept of the L-quasi-
neighborhood systems.

For the rest of this section and furthers, if not otherwise
specified, L = (L,≤,⊗) is always assumed to be a quantale.

Definition 3.1 For a non-empty set X , the mapping I :
LX → LX is called:

(i) An L-quasi-interior operator on X iff I satisfies the
following conditions:
for all A, B ∈ LX .
(I1) I(A) ≤ I(B) whenever A ≤ B;
(I2) I(A) ≤ A;
(I3) I(A) ⊗ I(B) ≤ I(A ⊗ B);
(I4) I(A) ≤ I(I(A)).

(ii) A strong L-quasi-interior operator if it satisfy the fol-
lowing condition:
(I5) I(�) = �.

(iii) An L-interior operator if L ∈ |UnQuant| with unit e
and the following condition is satisfied:
(I6) I(e) = e.
In case where L is a strictly two-sided semi-quantale
(i.e., e = �), the above strong L-quasi-interior operator
coincided with the Höhle’s L-interior operator (Höhle
and S̆ostak 1999).

In the following, we shall characterize the relationship
between L-quasi-topologies and L-quasi-interior operators
as in classical topology.

Proposition 3.2 Every L-quasi-interior operatorI : LX −→
LX induces an L-quasi-topology τI on X given by

τI = {A ∈ LX : I(A) = A}.

Conversely, every L-quasi-topology t on X induces an L-
quasi-interior operator Iτ : LX −→ LX defined by

Iτ (A) =
∨

{B ∈ τ : B ≤ A}.

Proof Straightforward and, therefore, omitted. ��

Remark 3.3 (1) A strong L-quasi-interior operator I :
LX −→ LX induces a strong L-quasi-topology τI on X
since I(�) = � implies� ∈ τI . In addition, a strong L-
quasi-topology τI on X induces a strong L-quasi-interior
operator I : LX −→ LX .
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(2) For L ∈ |UnSQuant|. An L-interior operator I :
LX −→ LX induces an L-topology τI on X since
I(e) = e implies e ∈ τI .

As a consequence of the above, for L ∈ |UnSQuant| with
e = �, we have that the relations IτI = I and τIτ

=
τ hold - i.e. L-quasi-interior (resp., strong L-quasi-interior,
L-interior) operators and L-quasi-topologies (resp., strong
L-quasi-topologies, L-topologies) are equivalent concepts.

To give another example of the relationship between L-
quasi-interior operators and L-quasi-topologies, let us, at first
consider an arbitrary class τ ⊂ LX and define

Iτ (A) =
∨

B∈τ

{B ⊗ S(B, A)}, ∀A ∈ LX (1)

(In particular, Iτ (A) = ⊥ if no B ∈ τ satisfies S(B, A) =
�).

Lemma 3.4 For (L,≤,⊗) be a commutative unital quantale,
the operator Iτ : LX −→ LX satisfies, for all A, B ∈ LX:

(1) S(A, B) ≤ S(Iτ (A), Iτ (B));
(2) Iτ (A) ≤ A;
(3) Iτ (A) ≤ Iτ (Iτ (A)).

Proof (1)

S(Iτ (A), Iτ (B))

=
∧

x∈X
(Iτ (A)(x) −→ Iτ (B)(x))

=
∧

x∈X

⎛

⎝
∨

A1∈τ

(A1(x) ⊗ S(A1, A))

−→
∨

B1∈τ

(B1(x) ⊗ S(B1, B))

⎞

⎠

=
∧

x∈X

∧

A1∈τ

(A1(x) ⊗ S(A1, A)

−→
∨

B1∈τ

(B1(x) ⊗ S(B1, B))) (Lemma 2.3(6))

≥
∧

x∈X

∧

A1∈τ

(S(A1, A) ⊗ A1(x)

−→ S(A1, B) ⊗ A1(x))

≥
∧

x∈X

∧

A1∈τ

(S(A1, A)

−→ S(A1, B)) (by Lemma 2.3(4))

≥ S(A, B) (by Lemma 2.4(S2))

(2) Note that B ⊗ S(B, A) ≤ A hold for all A, B ∈ LX .
Therefore,
Iτ (A) = ∨

B∈τ

(B⊗ S(B, A)) ≤ A is true for all A ∈ LX .

(3) Iτ (Iτ (A)) = ∨

B∈τ

(B ⊗ S(B, Iτ (A))) ≥ Iτ (A) ⊗

S(Iτ (A), Iτ (A))
S1≥ Iτ (A).

��
Proposition 3.5 For (L,≤,⊗) be a commutative quantale.
An L-quasi-topology τ ⊂ LX induces an L-quasi-interior
operator Iτ : LX −→ LX defined by

Iτ (A) =
∨

B∈τ

{B ⊗ S(B, A)}, ∀A ∈ LX . (2)

Proof According to the above lemma, we have to verify only
that the operator Iτ : LX −→ LX satisfies the item (I3) as
follows:

(I3) Iτ (A) ⊗ Iτ (B)

=
∨

A1∈τ

{A1 ⊗ S(A1, A)} ⊗
∨

B1∈τ

{B1 ⊗ S(B1, B)}, ∀A, B ∈ LX

=
∨

A1,B1∈τ

{A1 ⊗ B1 ⊗ S(A1, A) ⊗ S(B1, B)}

≤
∨

A1⊗B1∈τ

{A1 ⊗ B1 ⊗ S(A1 ⊗ B1, A ⊗ B)}

(by Lemma 2.4(S4))

= Iτ (A ⊗ B).

Remark 3.6 For L ∈ |UnQuant| and any A ∈ τ , we observe
that

Iτ (A) =
∨

B∈τ

{B ⊗ S(B, A)} ≥ A ⊗ S(A, A)

S1≥ A or equivalently, Iτ (A) = A.

So that

(1) An L-topology τI on X induces an L-interior operator
since e ∈ τ implies I(e) = e.

(2) A strong L-quasi-topology τ ⊂ LX induces a strong
L-quasi-interior operator.

Now, we are in a position to present the concept of
L-quasi-neighborhood systems as a generalization of the
Höhle–S̆ostak’s L-neighborhood systems (Höhle and S̆ostak
1999).

Definition 3.7 Let X be a non-empty set.

(i) A map N : X −→ LLX
is called an L-quasi-

neighborhood system on X with N (x) = Nx for each
x ∈ X , if Nx satisfies the following conditions: for all
A, B ∈ LX

(N1) Nx (A) ≤ Nx (B) whenever A ≤ B;
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(N2) Nx (A) ≤ A(x) for all A ∈ LX ;
(N3) (Nx (A)) ⊗ (Nx (B)) ≤ Nx (A ⊗ B);
(N4) Nx (A) ≤ ∨

B∈LX

{Nx (B) ⊗ S(B, N−(A))} for all A ∈
LX ,

where N−(A) ∈ LX is defined by [N−(A)](x) = Nx (A) for
each x ∈ X .

(iii) An L-quasi-neighborhood system N : X −→ LLX
is

said to be a strong if

Nx (�) = �.

(iv) If (L,≤,⊗) ∈ |UnQuant| with unit e. An L-
quasi-neighborhood system on X is then called an
L-neighborhood system iff Nx (e) = e.

(v) In case L is an strictly two-sided quantale (i.e., e = �),
the above strong L-quasi-neighborhood system coin-
cided with the Höhle’s L-neighborhood system (Höhle
and S̆ostak 1999).

The pair (X , N ) is called an L-quasi (resp., strong L-quasi,
L)-neighborhood space if N is an L-quasi (resp., strong L-
quasi, L)-neighborhood system on X .

An L-quasi (resp., strong L-quasi, L)-neighborhood sys-
tem on X is called stratified if

(vi) Nx (α ⊗ A) ≥ α ⊗ Nx (A) for all A ∈ LX and α ∈ L .

Now, we give the following easily proven proposition con-
cerning the equivalence between L-quasi-interior (resp., a
strong L-quasi-interior, L-interior) operators and L-quasi-
neighborhood (resp., a strong L-quasi-neighborhood, L-
neighborhood) systems.

Proposition 3.8 (see Höhle and S̆ostak 1999) An L-quasi-
interior (resp., strong L-quasi-interior, L-interior) operator
I : LX → LX , on a non-empty set X, induces an L-
quasi-neighborhood (resp., strong L-quasi-neighborhood,
L-neighborhood) system NI : X → LLX

defined by

NI
x (A) = [I(A)](x); ∀ A ∈ LX , ∀ x ∈ X

Conversely, an L-quasi-neighborhood (resp., strong L-
quasi-neighborhood, L-neighborhood) system on X induces
an L-quasi-interior (resp., strong L-quasi-interior, L-interior)
operators IN : LX → LX defined by

[IN (A)](x) = Nx (A); ∀ A ∈ LX , ∀ x ∈ X .

Remark 3.9 Axiom (N4) can obviously be reformulated in
the following form:
(N

′
4) Nx (A) ≤ Nx (N−(A)) for all A ∈ LX .

Since

Nx (A) ≤
∨

B∈LX

{Nx (B) ⊗ S(B, N−(A))} for all A ∈ LX

≤
∨

B∈LX

{Nx (B) ⊗ S(N−(B), N−(N−(A)))}

=
∨

B∈LX

{

Nx (B) ⊗
∧

x∈X
(Nx (B) −→ Nx (N−(A)))

}

≤
∨

B∈LX

{Nx (B) ⊗ (Nx (B) −→ Nx (N−(A)))}

= {Nx (B) ⊗ (Nx (B) −→ Nx (N−(A)))}
≤ Nx (N−(A)) (by Lemma 2.3(1)).

Remark 3.10 In the case (L,≤,⊗) ∈ |UnQuant| with e =
�, it is known that, for all a, b ∈ L, a ≤ b ⇔ S(a, b) = �
and a⊗� = a, so axiom (N4) can obviously be reformulated
in the following form:

(N
′′
4 ) Nx (A) ≤

∨

B∈LX

{Nx (B) : B(y) ≤ Ny(A),∀ y ∈ X}

for all A ∈ LX .

Definition 3.11 Let (X , N ) and (Y , N∗) be two L-quasi-
neighborhood spaces. A function h : (X , N ) → (Y , N∗)
is called N -continuous at x ∈ X iff N∗

h(x)(A) ≤ Nx (h←(A))

for all A ∈ LY . A function h is N -continuous if it is N -
continuous at every x ∈ X .

Example 3.12 Every L-quasi-neighborhood system N : X −→
LLX

with
∨

K∈LX Nx (K ) = �, is a reflexive, unary and tran-
sitive L-generalized neighborhood system (Zhao et al. 2019,
2018).

Proof From items (N2) and (N3), we have that N : X −→
LLX

is a reflexive and unary L-generalized neighborhood
system.

The transitivity given as follows: For A ∈ LX and from
item (N4), we have that

Nx (A)

≤
∨

B∈LX

{Nx (B) ⊗ S(B, N−(A)}

=
∨

B∈LX

⎧
⎨

⎩
Nx (B) ⊗

∧

y∈X
(B(y) −→ Ny(A))

⎫
⎬

⎭

N4≤
∨

B∈LX

⎧
⎨

⎩
Nx (B) ⊗

∧

y∈X
(B(y)

−→
∨

By∈LX

(Ny(By) ⊗ S(By, N−(A))))

⎫
⎬

⎭
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N2≤
∨

B∈LX

⎧
⎨

⎩
Nx (B) ⊗

∧

y∈X
(B(y)

−→
∨

By∈LX

(Ny(By) ⊗ S(By, A)))

⎫
⎬

⎭ ��
In the sequel, we will introduce the relationship between

L-quasi-neighborhood systems and L-quasi-topologies.

Proposition 3.13 Let N : X −→ LLX
be an L-quasi (resp.,

stratified L-quasi) neighborhood system. A subfamily τN ⊂
LX defined by

τN = {A ∈ LX : A(x) = Nx (A),∀x ∈ X}.

is an L-quasi (resp., stratified L-quasi) topology on X

Proof (1) Let N : X −→ LLX
be an L-quasi-neighborhood

system. Then,

(QT1) Let A1, A2 ∈ τN , then

(A1 ⊗ A2)(x) = A1(x) ⊗ A2(x)

= Nx (A1) ⊗ Nx (A2)

≤ Nx (A1 ⊗ A2)

In addition, from (N3), we have

Nx (A1 ⊗ A2) ≤ (A1 ⊗ A2)(x).

Then, Nx (A1 ⊗ A2) = (A1 ⊗ A2)(x), which means that
A1 ⊗ A2 ∈ τN .

(QT2) Let Ai ∈ τN for all i ∈ I , then Ai (x) = Nx (Ai ).
Therefore,

∨

i∈I
Ai (x) =

∨

i∈I
Nx (Ai ) ≤ Nx

(
∨

i∈I
Ai

)

.

In addition, from (N2), we have

Nx

(
∨

i∈I
Ai

)

≤
(

∨

i∈I
Ai

)

(x),

and therefore,

Nx

(
∨

i∈I
Ai

)

=
(

∨

i∈I
Ai

)

(x).

Then,
∨

i∈I Ai ∈ τN .

Therefore, τN is an L-quasi-topology on X and thus
(X , τN ) is an L-quasi-topological space.

(2) For the case N : X −→ LLX
is a stratified L-quasi-

neighborhood system, let A ∈ τN . Since Nx (α ⊗ A) ≥
α ⊗ Nx (A) = α ⊗ A(x) = (α ⊗ A)(x) and by the
condition (N3), we have α ⊗ A ∈ τN . ��

Remark 3.14 (1) If N : X −→ LLX
is a strong L-quasi-

neighborhood system on X , then for each x ∈ X , τN is a
strong L-quasi-topology, since Nx (�) = �, implies that
� ∈ τN .

(2) If L ∈ |UnQuant| with unit e and if N : X −→ LLX

is an L-neighborhood system, then Nx (e) = e, for each
x ∈ X , and this implies that e ∈ τN which means that τN
is an L-topology.

As a consequence of the above Propositions 3.5 and 3.8,
we have the following result:

Proposition 3.15 Let (X , τ ) be an L-quasi-(resp., enriched
L-quasi-) topological space. A mapping N τ : X → LLX

defined by

N τ
x (A) =

∨

B∈τ

{B(x) ⊗ S(B, A)}.

is an L-quasi (resp., stratified L-quasi) neighborhood system
on X.

In the following proposition,wewill study the relationship
between L-quasi-neighborhood systems and L-quasi-fuzzy
topologies.

Proposition 3.16 Let N : X −→ LLX
be an L-quasi-

neighborhood system. A mapping τN : LX → L, defined
by

τN (A) = S(A, N−(A)).

is an L-quasi-fuzzy topology on X. Moreover, if N is strati-
fied, then τN is enriched.

Proof For the case of L-quasi-neighborhood system:

(i)

τN (A ⊗ B)

= S((A ⊗ B), N−(A ⊗ B)).

=
∧

x∈X
((A ⊗ B)(x) −→ Nx (A ⊗ B)).

≥
∧

x∈X
((A(x) ⊗ B(x)) −→ (Nx (A) ⊗ Nx (B))).

≥
∧

x∈X
((A(x) −→ Nx (A)) ⊗ (B(x) −→ Nx (B)))

(Lemma 2.3(2)).

123



184 K. El-Saady, A. A. Temraz

≥
∧

x∈X
(A(x) −→ Nx (A)) ⊗

∧

x∈X
(B(x) −→ Nx (B)).

= S(A, N−(A)) ⊗ S(B, N−(B)).

≥ τN (A) ⊗ τN (B).

(ii) For {Ai : i ∈ I } ⊆ LX , since Ai ≤ ∨

i∈I
Ai , we have

τN

(
∨

i

Ai

)

= S

((
∨

i

Ai

)

, N−

(
∨

i

Ai

))

.

=
∧

x∈X

((
∨

i

Ai

)

(x) −→ Nx

(
∨

i

Ai

))

.

≥
∧

x∈X

(
∨

i

Ai (x) −→
∨

i

Nx (Ai )

)

.

≥
∧

x∈X

∧

i

(Ai (x) −→ Nx (Ai ))

=
∧

i

∧

x∈X
(Ai (x) −→ Nx (Ai )) =

∧

i

τN (Ai ).

For the case of stratified L-quasi-neighborhood system:

τN (α ⊗ A)

= S(α ⊗ A), N−(α ⊗ A))

=
∧

x∈X
((α ⊗ A)(x) −→ Nx (α ⊗ A)).

≥
∧

x∈X
(α ⊗ A(x)) −→ (α ⊗ Nx (A))

≥
∧

x∈X
(A(x) −→ Nx (A)) (by Lemma 2.3(4)).

= S(A, N−(A)),

= τN (A).
��

As consequences of the above proposition, we have the
following special cases:

(1) In the case where L ∈ |UnSQuant| with a unit e and if
N is an L-neighborhood system on X , then it is clear that

τN (e) = S(e, N−(e)) = S(e, e) ≥ e.

which means that τN is an L-fuzzy topology on X .
(2) In the case (L,≤,⊗) ∈ |UnQuant| with e = � and

if N : X −→ LLX
be a strong L-quasi-neighborhood

system, then

τN (�) = S(�, N−(�)) = S(�,�) = �.

whichmeans that the corresponding L-quasi-fuzzy topol-
ogy τN on X is strong.

Proposition 3.17 Let (X , N ) and (Y , N∗) be two L-quasi-
neighborhood spaces. If amapping h : (X , N ) → (Y , N∗) is
N-continuous, then h : (X , τN ) → (Y , τN∗) is L-continuous

Proof Since N∗
h(x)(A) ≤ Nx (h←(A)) for all A ∈ LY , by

Proposition 3.16, we have

τN∗(A) = S(A, N∗−(A))

=
∧

y∈Y
(A(y) −→ N∗

y (A))

≤
∧

x∈X
(h←(A)(x) −→ N∗

h(x)(A))

≤
∧

x∈X
(h←(A)(x) −→ Nx (h

←(A)))

= S(h←(A), N−(h←(A)))

= τN (h←(A)).

��

4 L-quasi-uniformities and
L-quasi-neighborhood systems

In this section, we will present a concept of a fuzzy
(quasi-)uniformity which is in accordance with Rodabaugh’s
L-quasi-topology and study the relationship between it and
L-quasi-neighborhood systems.

Definition 4.1 Let X be a non-empty set.

(i) A mapping U : LX×X −→ L is called a quantic L-
quasi-uniformity on X × X if it satisfies the following
conditions, for d, d1, d2 ∈ LX×X :
(U1) If d1 ≤ d2, then U(d1) ≤ U(d2);
(U2) U(d1 ⊗ d2) ≥ U(d1) ⊗ U(d2);
(U3) U(d) ≤ ∧

x∈X (d(x, x));
(U4) U(d) ≤ ∨{U(d1) ⊗ U(d2) ⊗ S((d2 ◦ d1), d)},
(where (d2 ◦ d1)(x, y) = ∨

z∈X
{d1(x, z) ⊗ d2(z, y)}).

(ii) A quantic L-quasi-uniformity on X × X is said to be a
strong if it satisfies the additional axiom:
(U5) U(�X×X ) = �.

(iii) If L ∈ |UnSQuant| with unit e, a quantic L-quasi-
uniformity on X × X is called L-quasi-uniformity if it
satisfies the following condition:
(U6) U(eX×X ) ≥ e.
In case (L,≤,⊗) is an strictly two-sided semi-quantale,
strong quantic L-quasi-uniformity coincides with L-
quasi-uniformity in the sense of Gutiérrez García et al.
(2003).
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(iii) A quantic L-quasi-uniformity (resp., a strong quantic
L-quasi-uniformity, an L-quasi-uniformity) U on X is
called a quantic L-uniformity (resp., a strong quantic
L-uniformity, L-uniformity) if

U(d) ≤ U(d−1) f or each d ∈ LX×X ,

where d−1(x, y) = d(y, x).

In this case, the pair (X ,U) is called a quantic L-
uniform (resp., a strong quantic L-uniform, L-uniform)
space.

Remark 4.2 (see Gutiérrez García (2000)) Not that for any
quantic L-quasi-uniformity U : LX×X −→ L , item (U4)

can be rewritten in the following form for any d ∈ LX×X :

(U
′
4) U(d) ≤ ∨{U(d1)⊗U(d2)⊗α : d1, d2 ∈ LX×X , α ∈

L and (d2 ◦ d1) ⊗ α ≤ d},

Proof For any α ∈ L satisfying (d2 ◦ d1) ⊗ α ≤ d, we have

α ≤
∧

x,y

(d2 ◦ d1)(x, y) −→ d(x, y) = S((d2 ◦ d1), d)

and so

U(d1) ⊗ U(d2) ⊗ α ≤ U(d1) ⊗ U(d2) ⊗ S((d2 ◦ d1), d).

which means that (U
′
4) implies (U4).

On the other hand, since (d2 ◦ d1) ⊗ S((d2 ◦ d1), d) ≤ d,
then (U4) implies (U

′
4). ��

In the following theorem, we shall see in which way a
quantic L-quasi-uniformity U : LX×X −→ L induces an L-
quasi-topology. In order to do it, we consider the collection
{NU

x }x∈X defined for each an L-set A ∈ LX as follows:

NU
x (A) =

∨
{U(d) ⊗ S(d(x,−), A)} , d ∈ LX×X ,

(where d(x,−)(y) = d(x, y) for each y ∈ X ).

Theorem 4.3 Let U : LX×X −→ L be a quantic L-quasi-
uniformity on X, the mapping NU : X → LLX

defined by

NU
x (A) =

∨
{U(d) ⊗ S(d(x,−), A)} , d ∈ LX×X

for each x ∈ X and A ∈ LX is an L-quasi-neighborhood
system on X.

Proof

(N1)

S(NU− (A),NU− (B))

=
∧

x∈X

(NU
x (A) −→ NU

x (B)
)

=
∧

x∈X

{∨
(U(d) ⊗ S(d(x,−), A))

−→
∨

(U(d) ⊗ S(d(x,−), B))
}

=
∧

x∈X

∧
{(U(d) ⊗ S(d(x,−), A))

−→
∨

(U(d) ⊗ S(d(x,−), B))
}

(by Lemma 2.3(6))

≥
∧

x∈X

∧
{(U(d) ⊗ S(d(x,−), A))

−→ (U(d) ⊗ S(d(x,−), B))}
(by Lemma 2.3(5))

≥
∧

x∈X

∧
{S(d(x,−), A) −→ S(d(x,−), B)}

(by Lemma 2.3(4))

≥ S(A, B)} (by Lemma 2.4(S2)).

(N2)

NU
x (A) ⊗ NU

x (B)

=
∨

{U(d1) ⊗ S(d1(x,−), A)}
⊗

∨
{U(d2) ⊗ S(d2(x,−), B)}

=
∨

{U(d1) ⊗ U(d2) ⊗ S(d1(x,−), A)

⊗S(d2(x,−), B)}
≤

∨
{U(d1) ⊗ U(d2) ⊗ S(d1(x,−)

⊗d2(x,−), A ⊗ B)}(by Lemma 2.4(S4))

≤
∨

{U(d1 ⊗ d2) ⊗ S(d1 ⊗ d2(x,−), A ⊗ B)}
= NU

x (A ⊗ B)

(N3)

NU
x (A)

=
∨

{U(d) ⊗ S(d(x,−), A)}
≤

∨
{d(x, x) ⊗ S(d(x,−), A)}

=
∨

{

d(x, x) ⊗
∧

x∈X
d(x, x) −→ A(x))

}

≤
∨ ∧

x∈X
{(d(x, x) ⊗ (d(x, x) −→ A(x))}

≤ A(x) (by Lemma 2.3(1)).

(N4) According to Remark 3.9, we will prove the that
NU

x (A) ≤ NU
x (NU− (A)) for all A ∈ LX :

NU
x (NU− (A))
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=
∨

d1∈LX×X

{
U(d1) ⊗ S(d1(x,−),NU− (A))

}

=
∨

d1∈LX×X

{

U(d1) ⊗
∧

z∈X

(
d1(x, z) −→ NU

z (A)
)
}

=
∨

d1∈LX×X

{

U(d1) ⊗
∧

z∈X
(d1(x, z) −→

⎡

⎣
∨

d2∈LX×X

{U(d2) ⊗ S(d2(z,−), A)}
⎤

⎦

⎞

⎠

⎫
⎬

⎭

(S6)≥
∨

d1,d2∈LX×X

{U(d1) ⊗ U(d2)

⊗
∧

z∈X
(d1(x, z) −→ S(d2(z,−), A))

}

=
∨

d1,d2∈LX×X

{

U(d1) ⊗ U(d2) ⊗
∧

z∈X
⎛

⎝d1(x, z) −→
∧

y∈X
(d2(z, y) −→ A(y))

⎞

⎠

⎫
⎬

⎭

=
∨

d1,d2∈LX×X

⎧
⎨

⎩
U(d1) ⊗ U(d2) ⊗

∧

y∈X
(

∧

z∈X
[d1(x, z) ⊗ d2(z, y)] −→ A(y)

)}

≥
∨

d1,d2∈LX×X

⎧
⎨

⎩
U(d1) ⊗ U(d2) ⊗

∧

y∈X
(

∨

z∈X
[d1(x, z) ⊗ d2(z, y)] −→ A(y)

)}

(by Lemma 2.3(3))

=
∨

d1,d2∈LX×X

{U(d1) ⊗ U(d2)

⊗
∧

y∈X
([d2 ◦ d1](x, y) −→ A(y))

⎫
⎬

⎭

=
∨

d1,d2∈LX×X

{U(d1) ⊗ U(d2)

⊗S ((d2 ◦ d1)(x,−), A))}
(S5)≥

∨

d1,d2,d∈LX×X

{U(d1) ⊗ U(d2)

⊗ S((d2 ◦ d1)(x,−), d(x,−)) ⊗ S(d(x,−), A)}

≥
∨

d∈LX×X

{U(d) ⊗ S (d(x,−), A)} = NU
x (A).

��
As a consequence of the above theorem and by Proposi-
tion 3.16, for a quantic L-quasi-uniformityU on a non-empty
set X a mapping τU : LX → L , defined by

τU (A) = S(A, NU− (A))

is an L-quasi-fuzzy topology on X .

Definition 4.4 Let (X ,U) and (Y ,V) be quantic L-quasi-
uniform spaces. A map h : (X ,U) → (Y ,V) is called quasi-
uniformly continuous if for ν ∈ LY×Y , V(ν) ≤ U((h ×
h)←(ν)).

Proposition 4.5 Let (X ,U) and (Y ,U) be two quantic L-
quasi-uniform spaces. If a map h : (X ,U) → (Y ,U) is
quasi-uniformly continuous, then the mapping h : (X , NU

x )

→ (Y , NV
h(x)) is N-continuous.

Proof

NV
h(x)(A) =

∨
{V(d) ⊗ S(d(h(x),−), A)}

≤
∨

{U ((h × h)←(d))

⊗S((h × h)←(d)(x,−), h←(A))}
≤ NU

x (h←(A)) .

��

5 Rough approximation operators based on
L-quasi-neighborhood systems

In this section, we conclude this paper by introducing an
application of L-quasi-neighborhood systems in the area of
rough sets and approximation operators.

Proposition 5.1 Let N : X −→ LLX
be an L-quasi-

neighborhood system on X. Then, for any A, B ∈ LX , the
lower approximation operator

N (A)(x) =
∨

K∈LX

{Nx (K ) ⊗ S(K , A)}

satisfies the following properties:

(1) If A ≤ B, then N (A) ≤ N (B);
(2) N (A) ≤ A;
(3) N (A) ≤ N (N (A));
(4) N (A ⊗ B) ≥ N (A) ⊗ N (B);
(5) N (�) = �, where (L,≤,⊗) be a commutative unital

quantal with e = �.
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Proof We prove only item (4) and the proof of items (1),
(2), (3) and (5) is the same as given in Propositions 3.8, 4.5
and 4.11 (Ref. Zhao et al. 2019). Let N : X −→ LLX

be an
L-quasi-neighborhood system. For any A, B ∈ LX and any
x ∈ X .

(N (A) ⊗ N (B))(x)

=
∨

K∈LX

{Nx (K ) ⊗ S(K , A)} ⊗
∨

V∈LX

{Nx (V ) ⊗ S(V , B)}

=
∨

K ,V∈LX

{Nx (K ) ⊗ S(K , A) ⊗ Nx (V ) ⊗ S(V , B)}

=
∨

K ,V∈LX

{Nx (K ) ⊗ Nx (V ) ⊗ S(K , A) ⊗ S(V , B)}

≤
∨

K⊗V∈LX

{Nx (K ⊗ V ) ⊗ S(K ⊗ V , A ⊗ B)}

= N (A ⊗ B)(x). ��
Proposition 5.2 Let N : X −→ LLX

be an L-quasi-
neighborhood system on X. Then, the upper approximation
operator

N (A)(x) =
∧

K∈LX

{Nx (K ) −→ T (K , A)},

satisfies the following properties:for any A, B ∈ LX

(1) If A ≤ B, then N (A) ≤ N (B);
(2) A ≤ N (A);

If the quantale (L,≤,⊗) satisfies the double negative
law, then

(3) N (A) ≥ N (N (A)),
(4) N (A ⊕ B) ≤ N (A) ⊕ N (B).

Proof The proof of items (1) and (2) is the same as the proof
of Propositions 3.8 and 4.6 (Ref. Zhao et al. 2019). The proof
of items (3) and (4) follows by Theorem 2.8 and Proposi-
tions 5.1. ��
Theorem 5.3 For an operator g : LX −→ LX , there exists
an L-quasi-neighborhood system N : X −→ LLX

such that
g = N if and only if g satisfies the following properties:

(L1) g(A) ≤ g(B) whenever A ≤ B;
(L2) g(A) ≤ A;
(L3) g(A) ≤ g(g(A));
(L4) g(A ⊗ B) ≥ g(A) ⊗ g(B);
(L5) g(�) = �, where (L,≤,⊗) be a commutative unital

quantal with e = �.

Proof (⇒) Let g = N , it follows immediately from Zhao
et al. (2018) Theorem 3.1, we can get that g : LX −→ LX

satisfies the condition (L1) and from Proposition 5.1 we can
get that g : LX −→ LX satisfies the conditions (L2)–(L5).

(⇐) Let g : LX −→ LX be an operator satisfies the
conditions (L1)–(L5) and let the operator Ng : X −→ LLX

as defined in Zhao et al. (2018) as follows:

Ng
x (A) =

∨

B∈LX

{g(B)(x) ⊗ S(B, A)}, ∀ x ∈ X , A ∈ LX .

As given in Theorem 3.1 of Zhao et al. (2018), we know that
Ng = g holds. To complete the proof, we need to show that
Ng : X −→ LLX

is an L-quasi-neighborhood system. To
this end:

(N1) Let A ≤ B, then

Ng
x (A) =

∨

K∈LX

{g(K ) ⊗ S(K , A)}

L1≤
∨

K∈LX

{g(K ) ⊗ S(K , B)}

= Ng
x (B)

(N2)

Ng
x (K ) ⊗ Ng

x (V )

=
∨

B∈LX

{g(B)(x) ⊗ S(B, K )}

⊗
∨

C∈LX

{g(C)(x) ⊗ S(C, V )}

=
∨

B,C∈LX

{g(B)(x) ⊗ S(B, K )

⊗ g(C)(x) ⊗ S(C, V )}
=

∨

B,C∈LX

{g(B)(x) ⊗ g(C)(x)

⊗ S(B, K ) ⊗ S(C, V )}
S4≤

∨

B,C∈LX

{g(B)(x) ⊗ g(C)(x)

⊗ S(B ⊗ C, K ⊗ V )}
L5≤

∨

B⊗C∈LX

{g(B ⊗ C)(x)

⊗ S(B ⊗ C, K ⊗ V )}
≤ Ng

x (K ⊗ V ).

(N3) The proof of the condition Ng
x (K ) ≤ K (x) is the same

as presented in the second part of Theorem 3.4 in Zhao
et al. (2018).

(N4) The proof of this item is the same as presented in the
second part of Theorem 3.6 in Zhao et al. (2018). ��

Theorem 5.4 For a commutative (L,≤,⊗) ∈ |Quant| with
the law of double negative and an operator g : LX −→

123



188 K. El-Saady, A. A. Temraz

LX , then there exists an L-quasi-neighborhood system N :
X −→ LLX

such that g = N if and only if g satisfies the
following properties:

(U1) g(A) ≤ g(B) whenever A ≤ B;
(U2) A ≤ g(A);
(U3) g(g(A)) ≤ g(A);
(U4) g(A ⊕ B) ≤ g(A) ⊕ g(B).

Proof (⇒) Let g = N , it follows immediately from Zhao
et al. (2018) Theorem 3.7 we can get that g : LX −→ LX

satisfies the condition (U1) and from Proposition 5.2 we can
get that g : LX −→ LX satisfies the conditions (U2)–(U4).

(⇐) Let g : LX −→ LX be an operator satisfies the
conditions (U1)–(U4) and let the operator Ng : X −→ LLX

as defined in Zhao et al. (2018) as follows:

Ng
x (A) =

∨

K∈LX

{¬g(¬K )(x) ⊗ S(K , A)}, ∀ x ∈ X , A ∈ LX .

As given in Theorem 3.7 of Zhao et al. (2018) we know that
N

g = g holds. To complete the proof, we need to show that
Ng : X −→ LLX

is an L-quasi-neighborhood system. To
this end:

(N1) Let A ≤ B, then

Ng
x (A) =

∨

K∈LX

{¬g(¬K ) ⊗ S(K , A)}

L1≤
∨

K∈LX

{¬g(¬K ) ⊗ S(K , B)}

= Ng
x (B)

(N2)

Ng
x (K ) ⊗ Ng

x (V )

=
∨

B∈LX

{¬g(¬B)(x) ⊗ S(B, K )}

⊗
∨

C∈LX

{¬g(¬C)(x) ⊗ S(C, V )}

=
∨

B,C∈LX

{¬g(¬B)(x) ⊗ S(B, K )

⊗¬g(¬C)(x) ⊗ S(C, V )}
=

∨

B,C∈LX

{¬g(¬B)(x) ⊗ ¬g(¬C)(x)

⊗ S(B, K ) ⊗ S(C, V )}
S4≤

∨

B,C∈LX

{¬g(¬B)(x) ⊗ ¬g(¬C)(x)

⊗ S(B ⊗ C, K ⊗ V )}

=
∨

B,C∈LX

{¬[g(¬B)(x) ⊕ g(¬C)(x)

⊗ S(B ⊗ C, K ⊗ V )}
U4≤

∨

B,C∈LX

{¬g(¬B) ⊕ ¬C)(x)

⊗ S(B ⊗ C, K ⊗ V )}
=

∨

B,C∈LX

{¬g(¬(B ⊗ C))(x)

⊗ S(B ⊗ C, K ⊗ V )}
≤ Ng

x (K ⊗ V ).

(N3) The proof of the condition Ng
x (K ) ≤ K (x) is the same

as presented in the second part of Theorem 3.9 in Zhao
et al. (2018).

(N4) The proof of this item is the same as presented in the
second part of of Theorem 3.11 in Zhao et al. (2018).

��
6 Conclusion

In this paper, based on the concept of semi-quantales as a the-
oretical basis,weproposed a theory of quantale-valued quasi-
neighborhood systems as a generalized form of the resent
Höhle–S̆ostak’s L-neighborhood systems and investigate its
basic properties. Then, the relation between quantale-valued
quasi-neighborhood systems and other many valued topo-
logical notions such as L-quasi-topologies, L-quasi-interior
operators, L-generalized neighborhood operator systems and
L-quasi-uniform structures. In addition, the relationship
between quantale-valued quasi-neighborhood systems and
L-fuzzy rough approximation operators is investigated. In
future work, we plan to combine the ideas of quantale-valued
quasi-neighborhood systems, multigranulation rough set,
variable precision rough set and fuzzy rough set. In addition,
we plan to introduce optimistic, pessimistic, and compro-
mise models for multigranulation variable precision fuzzy
rough set based on quantale-valued quasi-neighborhood sys-
tems.
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