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Abstract
In p-algebras, the concepts of δ-ideals and principal δ-ideals are presented, and some of their respective properties are
discussed. It is observed that the set I δ(L) of all δ-ideals of a p-algebra L is a bounded lattice, and the class I δ

p(L) of all
principal δ-ideals forms a bounded sublattice of I δ(L) and a Boolean algebra on its own. A characterization of a δ-ideal in
terms of principal δ-ideals, in p-algebras, is given. Also, the concept of comaximality of δ-ideals is discussed in p-algebras.
After that, a number of properties of the homomorphic image of δ-ideals are considered.

Keywords Pseudo-complemented lattices (p-algebras) · δ-ideals · Principal δ-ideals · Comaximality · �-Comaximality

1 Introduction

In distributive lattices and semi-lattices, Birkhoff (1948) and
Frink (1962) presented the notion of pseudo-complements.
Many authors later, such as Balbes and Horn (1970); Frink
(1962) and Grätzer (1971), have characterized pseudo-
complements in Stone algebras. In distributive p-algebras,
Sambasiva Rao (2012) introduced and characterized the
notion of δ-ideals which was extended by Badawy (2016a)
to the concept of MS-algebras.

In this article, we continue studying δ-ideals (principal
δ-ideals) in p-algebras and present a number of their main
important properties. The contents of our work are organized
as follows: in Sect. 2, we list some notions and notations that
are needed for this topic. In Sect. 3,we introduce the notion of
δ-ideals and establish some of their properties. It is proven
that the set I δ(L) of all δ-ideals of a p-algebra L forms a
bounded lattice. In Sect. 4, we introduce the notion of prin-
cipal δ-ideals. It is proven that the set I δ

p(L) of all principal
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δ-ideals of a p-algebra L forms a bounded sublattice of I δ(L)

and a Boolean algebra on its own. A characterization of a δ-
ideal via principal δ-ideals, in p-algebras, is given. Section
5 is devoted to the comaximality of δ-ideals in p-algebras
and some related properties. Finally, in Sect. 6, some proper-
ties of the homomorphic images and inverse homomorphic
images of δ-ideals are studied.

2 Preliminaries

Here are some definitions and important results that we will
use for the development of the paper.

Definition 2.1 (Davey and Priestley 2002) Let L be a lattice.
Then,

(i) A nonempty subset J of L is called an ideal of L if

(1) z, y ∈ J implies z ∨ y ∈ J ,

(2) f or a ∈ L, z ∈ J , a ≤ z imply a ∈ J . Moreover,
J is called a proper ideal of L if J �= L . The set of
all ideals of L is denoted by I (L). Also, (z] = {c ∈
L : c ≤ z} is called the principal ideal generated by
z.

(ii) Dually, a nonempty subset G of L is called a filter of
L if
(1) z, y ∈ G implies z ∧ y ∈ G,
(2) f or a ∈ L, z ∈ G, a ≥ z imply a ∈ G.
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Moreover, G is called a proper filter of L if G �= L . F(L)

denotes to the set of all filters of L . Also, [z) = {c ∈ L : c ≥
z} is called the principal filter generated by z.

For a lattice L , (I (L); ∧,∨) is the lattice of all ideals of L
which is called the ideal lattice of L , where J1∧ J2 = J1∩ J2
and

J1 ∨ J2 = {z ∈ L : z ≤ j1 ∨ j2 f or some j1 ∈ J1, j2 ∈ J2}
∀ J1, J2 ∈ I (L).

Dually, (F(L); ∧,∨) is the filter lattice of L(the lattice of all
filters of L), where G1 ∧ G2 = G1 ∩ G2 and

G1 ∨ G2 = {z ∈ L : z ≥ g1 ∧ g2 f or some g1 ∈
G1, g2 ∈ G2},∀ G1,G2 ∈ F(L).

Furthermore, (I (L); ∧,∨) and (F(L); ∧,∨) are distributive
(modular) lattices if and only if L is a distributive (modular)
lattice.

An ideal J1 of a lattice L is called a prime ideal if z∧y ∈ J1
implies z ∈ J1 or y ∈ J1.

Definition 2.2 (Blyth 2005; Grätzer 1971) The element a∗
is the pseudo-complement of the element a of the lattice L
with 0 if

a ∧ x = 0 i f f x ≤ a∗.

A lattice L with 0 is called a pseudo-complemented lattice (or
a p-algebra) if each element of L has a pseudo-complement.
A modular (distributive) p-algebra L is a p-algebra, when-
ever L is a modular (distributive) lattice. If L satisfies the
Stone identity, c∗ ∨ c∗∗ = 1 for all c ∈ L , then L is called
an S-algebra. A Stone algebra L is an S-algebra, whenever
L is a distributive lattice.

Theorem 2.3 (Blyth 2005; Katriňák and Mederly 1974) Let
L1 be a p-algebra. For z1, y1 ∈ L1. We have

(1) z1 ≤ y1 ⇒ y∗
1 ≤ z∗1 ⇒ z∗∗

1 ≤ y∗∗
1 ,

(2) z∗1 = z∗∗∗
1 ,

(3) z1 ∧ (z1 ∧ y1)∗ = z1 ∧ y∗
1 ,

(4) (z1 ∧ y1)∗∗ = z∗∗
1 ∧ y∗∗

1 ,
(5) (z1 ∨ y1)∗ = z∗1 ∧ y∗

1 . Also, if L1 is an S-algebra, then
(6) (z1 ∧ y1)∗ = z∗1 ∨ y∗

1 ,
(7) (z1 ∨ y1)∗∗ = z∗∗

1 ∨ y∗∗
1 .

A subset B(L1) = {c ∈ L1 : c = c∗∗} of a p-algebra L1

consists of all closed elements of L1, and a subset D(L1) =
{z ∈ L1 : z∗ = 0} consists of all dense elements of L1.

Lemma 2.4 (Blyth 2005; Haviar 1995) Let L1 be a p-
algebra. Then,

(1) (B(L1); ∧, ,∗ , 0, 1) is a Boolean algebra, where z1 
z2 = (z1 ∨ z2)∗∗ = (z∗1 ∧ z∗2)∗,∀ z1, z2 ∈ B(L1).

(2) D(L1) is a filter of L1.

A minimal prime ideal J1 of a distributive p-algebra L is a
prime ideal J1 of L such that for z ∈ J1 there exists y /∈ J1,
z ∧ y = 0.

Definition 2.5 (Grätzer 1971) Let L and L1 be two bounded
lattices. A map h : L −→ L1 is said to be a (0, 1)-lattice
homomorphism if it preserves 0, 1,∧ and ∨.
Definition 2.6 Let h : L −→ L1 be a (0, 1)-lattice homo-
morphism from a bounded lattice L into a bounded lattice L1.
The Kernel of h (briefly Ker h) and Cokernel of h (briefly
Coker h) are defined by

Ker h = {z ∈ L : h(z) = 0}, and Coker h = {z ∈ L :
h(z) = 1}, respectively.
Definition 2.7 A (0, 1)-lattice homomorphism h : B1 −→
B2, between Boolean algebras B1 = (B1; ∨,∧,′ , 0, 1) and
B2 = (B2; ∨,∧,′ , 0, 1) is said to be a Boolean homomor-
phism if

h(z′) = h(z)′, ∀ z ∈ B1.

For more information about ideals, filters, intervals and p-
algebras, we refer the readers to Badawy (2016a, b, 2017,
2018), Badawy and Atallah (2015, 2019), Badawy and Sam-
basiva Rao (2014), Badawy and Shum (2014), Sambasiva
Rao (2012), Sambasiva Rao and Badawy (2014, 2017);
Badawy and Helmy (2023); Badawy and Shum (2017).

3 ı-ideals of p-algebras

Definition 3.1 For any filterG of a p-algebra L , the set δ(G)

is defined as follows:

δ(G) = {z ∈ L : z∗ ∈ G}.

Now, we study the properties of δ(G).

Lemma 3.2 Let L be a p-algebra. Then for any filter G of L,
δ(G) is an ideal of L.

Proof Since 0∗ = 1 ∈ G, then 0 ∈ δ(G). Let a, b ∈ δ(G).
Then, a∗, b∗ ∈ G. Hence, (a ∨ b)∗ = a∗ ∧ b∗ ∈ G. Thus,
a ∨ b ∈ δ(G). Now, let x ∈ L, x ≤ a for a ∈ δ(G). Then,
a∗ ∈ G. Hence x∗ ≥ a∗ ∈ G. Thus x ∈ δ(G). Then, we
conclude that δ(G) is an ideal of L . ��
Lemma 3.3 For any two filters F,G of a p-algebra L, we
have

(1) (G is a proper filter of L) ⇒ G ∩ δ(G) = ∅,

123



δ-ideals of p-algebras 4717

(2) x ∈ δ(G) ⇒ x∗∗ ∈ δ(G),
(3) x ∈ G ⇒ x∗ ∈ δ(G),
(4) G ⊆ F ⇒ δ(G) ⊆ δ(F),
(5) δ(D(L)) = {0},
(6) G ⊆ D(L) ⇒ δ(G) = {0},
(7) G = L ⇔ δ(G) = L.

Proof (1) Assume that y ∈ G ∩ δ(G). Then, y ∈ G and
y∗ ∈ G. Thus, 0 = y∧ y∗ ∈ G and hence G = L , which
is a contradiction. Therefore, G ∩ δ(G) = φ.

(2) Let y ∈ δ(G). Since y∗∗∗ = y∗ ∈ G, then y∗∗ ∈ δ(G).
(3) Let y ∈ G. Then, y∗∗ ∈ G. Thus, y∗ ∈ δ(G)bydefinition

of δ(G).
(4) Let F ⊆ G and z ∈ δ(F). Then, z∗ ∈ F ⊆ G and hence

z∗ ∈ G. Thus, z ∈ δ(G). Therefore, δ(F) ⊆ δ(G).
(5) δ(D(L)) = {z ∈ L : z∗ ∈ D(L)} = {z ∈ L : z∗∗ =

0} = {z ∈ L : z∗ = 1} = {0}.
(6) Let G ⊆ D(L). By (4) and (5), we get δ(G) ⊆

δ(D(L)) = {0}. Thus, δ(G) = {0}.
(7) Let L = G. Then,

L = G ⇔ 0∗∗ = 0 ∈ G ⇔ 1 = 0∗ ∈ δ(G) ⇔ δ(G) = L.

��
Definition 3.4 Assume that L is a p-algebra. An ideal J of
L is said to be a δ-ideal if J = δ(G) for some filter G of L .

Lemma 3.5 In a p-algebra, every prime ideal without a
dense element is a δ-ideal.

Proof Let J be a prime ideal without a dense element. Then,
(L − J ) is a prime filter. Let z ∈ J . Clearly, z ∧ z∗ = 0 ∈ J ,
and z ∨ z∗ is a dense element. Hence, z ∨ z∗ /∈ J . Since J is
an ideal of L and z ∈ J , we get z∗ /∈ J and hence z∗ ∈ L− J .
Thus, z ∈ δ(L − J ). Therefore, J ⊆ δ(L − J ).

Conversely, let z ∈ δ(L − J ). Then, z∗ ∈ L − J . Thus,
z∗ /∈ J . Since 0 = z ∧ z∗ ∈ J , and J is a prime ideal, we
get z ∈ J . Hence, δ(L − J ) ⊆ J . Thus, J = δ(L − J ).
Therefore, J is a δ-ideal. ��
Lemma 3.6 A proper δ-ideal J of a p-algebra L contains no
dense element.

Proof Assume that J is a proper δ-ideal of L and z ∈ J .
Suppose that z ∈ D(L), since z ∈ J = δ(G1) for some filter
G1 of L . Hence, 0 = z∗ ∈ G1, which is a contradiction.
Thus, J ∩ D(L) = φ. ��
Let I δ(L) denote the set of all δ-ideals of L . The following
example shows that I δ(L) is not a sublattice of I (L).

Example 3.7 Consider a p-algebra L = B4 ⊕ M3 in Fig. 1,
where B4 = {0 < x, y < d} is the four Boolean lattice and
M3 = {z, a, b, c, 1} is the diamond lattice, and ⊕ stands for

Fig. 1 L = B4 ⊕ M5 is a
modular p-algebra

the ordinal sum. Let J1 = {0, x}, J2 = {0, y} be two ideals of
L , and G1 = {y, d, z, a, b, c, 1}, G2 = {x, d, z, a, b, c, 1}
two filters of L . Clearly, δ(G1) = J1 and δ(G2) = J2.
Therefore, J1 and J2 are δ-ideals of L . Now, we observe
that δ(G1) ∨ δ(G2) = {0, x, y, d}, which is not a δ-ideal of
L but δ(G1) ∩ δ(G2) = J1 ∩ J2 = {0} = δ(D(L)) is a δ-
ideal of L . Consequently, (I δ(L); ∩,∨) is not a sublattice of
I (L), but (I δ(L); ∩) is a∧-subsemilattice of the semi-lattice
(I (L); ∩).

Theorem 3.8 For a p-algebra L, (I δ(L); ∩,�) forms a
bounded lattice, where

δ(G1)∩δ(G2) = δ(G1∩G2) and δ(G1)�δ(G2) =
δ(G1 ∨ G2).

Proof Let G1 and G2 be two filters of a p-algebra L . We
prove that the infimum and supremum of both δ(G1) and
δ(G2) in I δ(L) are δ(G1∩G2) and δ(G1∨G2), respectively,
that is,

δ(G1) ∩ δ(G2) = δ(G1 ∩ G2) and δ(G1) � δ(G2)

= δ(G1 ∨ G2).

Since G1 ∩ G2 ⊆ G1,G2, δ(G1 ∩ G2) ⊆ δ(G1), δ(G2).
Thus, δ(G1 ∩ G2) is a lower bound of δ(G1) and δ(G2).
Assume δ(H) is another lower bound of δ(G1) and δ(G2).
Then, δ(H) ⊆ δ(G1), δ(G2). Let z ∈ δ(H). Then, z ∈
δ(G1), δ(G2) and hence z∗ ∈ G1 ∩ G2. Thus, z ∈ δ(G1 ∩
G2). So δ(H) ⊆ δ(G1 ∩ G2) and hence δ(G1 ∩ G2) is the
greatest lower bound of both δ(G1) and δ(G2) in I δ(L).
Clearly, δ(G1 ∨ G2) is an ideal. Now, we prove that δ(G1 ∨
G2) is the least upper bound of δ(G1) and δ(G2) in I δ(L).
SinceG1,G2 ⊆ G1∨G2, then δ(G1), δ(G2) ⊆ δ(G1∨G2).
Thus, δ(G1 ∨ G2) is an upper bound of δ(G1) and δ(G2).
Let δ(H) be another upper bound of δ(G1) and δ(G2). Then,
δ(G1), δ(G2) ⊆ δ(H). Let z ∈ δ(G1 ∨ G2). Then, z∗ ∈
G1 ∨ G2 and hence z∗ ≥ g1 ∧ g2 for some g1 ∈ G1 and
g2 ∈ G2. This implies g∗

1 ∈ δ(G1) and g∗
2 ∈ δ(G2). Since

δ(G1), δ(G2) ⊆ δ(H), then g∗
1 , g

∗
2 ∈ δ(H). Now,
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g∗
1 ∈ δ(H), g∗

2 ∈ δ(H) ⇒ g∗
1 ∨ g∗

2 ∈ δ(H)

⇒ (g∗
1 ∨ g∗

2)
∗∗ ∈ δ(H)

⇒ (g∗∗
1 ∧ g∗∗

2 )∗ ∈ δ(H)

⇒ z∗∗ ≤ (g1 ∧ g2)
∗ = (g1 ∧ g2)

∗∗∗ = (g∗∗
1 ∧ g∗∗

2 )∗ ∈ δ(H)

⇒ z∗∗ ∈ δ(H)

⇒ z ∈ δ(H).

Thus, δ(G1 ∨ G2) ⊆ δ(H). Therefore, δ(G1 ∨ G2) is the
least upper bound of δ(G1) and δ(G2) in I δ(L). Then, sup
{δ(G1), δ(G2)} = δ(G1 ∨G2). It is clear that δ(L) = L and
δ([1)) = {0} = (0] are the greatest and smallest members of
I δ(L), respectively. Thus, (I δ(L); ∩,�) is a bounded lattice.

��

4 Principal ı-ideals of a p-algebra

In this section, we introduce and investigate the basic prop-
erties of principal δ-ideals of a p-algebra L .

Lemma 4.1 Let L be a p-algebra. Then for each z ∈ L, (z∗]
is a δ-ideal of L.

Proof We prove that (z∗] = δ([z)). To this end, let a ∈ (z∗].
Then, a ≤ z∗ and hence a∗ ≥ z∗∗ ≥ z ∈ [z). So a ∈ δ([z)).
Therefore, (z∗] ⊆ δ([z)). On the other hand, let a ∈ δ([z)).
Then,a∗ ∈ [z). Thus,a∗ ≥ z. Sincea ≤ a∗∗ ≤ z∗ ∈ (z∗],we
get a ∈ (z∗]. Thus, δ([z)) ⊆ (z∗]. Therefore, (z∗] = δ([z)).

��
Definition 4.2 A δ-ideal of the form δ([z)) = (z∗] for z ∈ L
is called a principal δ-ideal of L .

Theorem 4.3 For a p-algebra L,we have the following state-
ments:

(1) δ([z)) = δ([z∗∗)), ∀ z ∈ L.
(2) δ([d)) = {0}, ∀ d ∈ D(L).
(3) if z ≤ y, then δ([y)) ⊆ δ([z)), but the converse is not

hold.
(4) for a filter G of L , δ([z)) ⊆ δ(G) for all z ∈ G.

Proof (1) From Lemma 4.1, δ([z)) = (z∗] = (z∗∗∗] =
δ([z∗∗)).

(2) for all d ∈ D(L), δ([d)) = (d∗] = (0] = {0}.
(3) Let z ≤ y. Then, [y) ⊆ [z). By (4) of Lemma 3.3, we get

δ([y)) ⊆ δ([z)). For the converse, consider the p-algebra
in Fig. 2. Clearly, {0} = δ([c)) ⊆ δ([e)) = {0, a}, but
c � e and e � c.

(4) For all z ∈ G, suppose that a ∈ δ([z)). Now,

a ∈ δ([z)) ⇒ a∗ ∈ [z)

Fig. 2 L is a stone algebra

⇒ a∗ ≥ z ∈ G

⇒ a∗ ∈ G

⇒ a ∈ δ(G).

Thus, δ([z)) ⊆ δ(G).
��

Theorem 4.4 Let L be a p-algebra. Then, the following are
equivalent:

(1) L is an S-algebra.
(2) For any z1, z2 ∈ L, (z1 ∧ z2)∗ = z∗1 ∨ z∗2.
(3) For any two filters G1,G2 of L, δ(G1)∨δ(G2) = δ(G1∨

G2).
(4) I δ(L) is a bounded sublattice of I (L).

Proof (1) ⇒ (2): It is clear from (6) of Theorem 2.3. (2) ⇒
(3): Assume (2) holds and G1,G2 ∈ L . Since G1,G2 ⊆
G1 ∨ G2, then δ(G1), δ(G2) ⊆ δ(G1 ∨ G2). Thus, δ(G1) ∨
δ(G2) ⊆ δ(G1 ∨ G2).

Conversely, let z ∈ δ(G1 ∨G2). Then, z∗ ∈ G1 ∨G2 and
hence z∗ ≥ g1 ∧ g2 for some g1 ∈ G1 and g2 ∈ G2 implies
g∗
1 ∈ δ(G1) and g∗

2 ∈ δ(G2). Now,

z∗ ≥ g1 ∧ g2 ⇒ z∗∗ ≤ (g1 ∧ g2)
∗ = g∗

1 ∨ g∗
2 ∈ δ(G1) ∨ δ(G2)

⇒ z∗∗ ∈ δ(G1) ∨ δ(G2)

⇒ z ∈ δ(G1) ∨ δ(G2) (as z ≤ z∗∗)

Thus, δ(G1 ∨ G2) ⊆ δ(G1) ∨ δ(G2). Therefore, δ(G1) ∨
δ(G2) = δ(G1 ∨ G2).
(3) ⇒ (4): Assume (3) holds. It is clear that δ(L) and δ([1))
are the greatest and smallest members of I δ(L), respectively.
Let δ(G1), δ(G2) ∈ I δ(L). Then, δ(G1)∨ δ(G2) = δ(G1 ∨
G2) ∈ I δ(L) and δ(G1) ∩ δ(G2) = δ(G1 ∩ G2) ∈ I δ(L).
Thus, I δ(L) is a bounded sublattice of I (L).
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(4) ⇒ (1): Assume (4). Since (z∗] and (z∗∗] are δ-ideals of
L , we have

(z∗ ∨ z∗∗] = (z∗] ∨ (z∗∗]
= δ([z)) ∨ δ([z∗))
= δ([z) ∨ [z∗)) (by (3))

= δ([z ∧ z∗))
= δ([0))
= (0∗]
= (1].

Thus, z∗ ∨ z∗∗ = 1. Therefore, L is an S-algebra. ��
Now, we characterize the concept of δ-ideals in terms of
principal δ-ideals.

Theorem 4.5 Let J be a δ-ideal of a p-algebra L. Then,

(1) j ∈ J ⇔ j∗∗ ∈ J .
(2) δ([ j∗)) ⊆ J ,∀ j ∈ J .
(3) J = ⋃

j∈J δ([ j∗)).

Proof (1) Let j ∈ J . Since J is a δ-ideal of L , then j ∈ J =
δ(G) for some filter G of L . Hence, j∗∗∗ = j∗ ∈ G.
Thus, j∗∗ ∈ δ(G) = J . The converse implication follows
from the fact that j ≤ j∗∗.

(2) Let j be an element of J and let x ∈ δ([ j∗)). Then,
x∗ ∈ [ j∗) and hence x ≤ x∗∗ ≤ j∗∗ ∈ J ( by (1)). Thus,
x ∈ J . Therefore, δ([ j∗)) ⊆ J .

(3) Since J is a δ-ideal, we get J = δ(G) for some filter G
of L . Let z ∈ J . Then,

z ∈ J = δ(G) ⇒ z∗ ∈ G

⇒ z∗ ∈ [z∗) ⊆ G

⇒ z∗∗ ∈ δ([z∗)) ⊆ δ(G)

⇒ z ≤ z∗∗ ∈ δ([z∗))
⇒ z ∈ δ([z∗)) ⊆

⋃

j∈J

δ([ j∗)) (as z ∈ J )

Then, J ⊆ ⋃
j∈J δ([ j∗)).

Conversely, let z ∈ ⋃
j∈J δ([ j∗)). Then,

z ∈
⋃

j∈J

δ([ j∗)) ⇒ z ∈ δ([k∗)), k ∈ J

⇒ z ∈ δ([k∗)) = (k∗∗] ⊆ J (as k∗∗ ∈ J )

⇒ z ∈ J .

Thus,
⋃

j∈J δ([ j∗)) ⊆ J . Therefore, J = ⋃
j∈J δ([ j∗)). ��

Now, a characterization of δ-ideals is given.

Theorem 4.6 Let L be a p-algebra. Then, for an ideal J of
L, the following statements are equivalent:

(1) J is a δ-ideal.
(2) For any a, b ∈ L, δ([a∗)) = δ([b∗)) and a ∈ J imply

b ∈ J .
(3) J = ⋃

c∈J δ([c∗)).

Proof (1) ⇒ (2): Let J be a δ-ideal of L . Suppose that
δ([a∗)) = δ([b∗)) and a ∈ J . Then, a ∈ J = δ(G) for some
filter G of L . Hence, a∗ ∈ G. (a∗∗] = δ([a∗)) = δ([b∗)) =
(b∗∗] implies a∗∗ = b∗∗. Then, b∗ = a∗ ∈ G. Therefore,
b ∈ δ(G) = J .
(2) ⇒ (3): Assume (2) holds and a ∈ J . Since a∗∗ ∈ (a∗∗],
we get a ≤ a∗∗ ∈ (a∗∗] = δ([a∗)). Thus, a ∈ δ([a∗)) ⊆
⋃

c∈J δ([c∗)) ( as a ∈ J ). Therefore, J ⊆ ⋃
c∈J δ([c∗)).

Conversely, let a ∈ ⋃
c∈J δ([c∗)). Then, a ∈ δ([b∗)) for

some b ∈ J . Since a ∈ δ([b∗)) = δ([b∗∗∗)) and b ∈ J , then
b∗∗ ∈ J by (2). Since a ∈ δ([b∗)), we get a∗ ∈ [b∗) and
hence a∗ ≥ b∗ which implies a ≤ a∗∗ ≤ b∗∗ ∈ J . Thus,
a ∈ J . Therefore,

⋃
c∈J δ([c∗)) ⊆ J . So J = ⋃

c∈J δ([c∗)).
(3) ⇒ (1): At first, we need to prove that

⋃
c∈J [c∗) is a

filter of L . Since 1 = 0∗ ∈ [0∗) ⊆ ⋃
c∈J [c∗), we get 1 ∈⋃

c∈J [c∗).Let a, b ∈ ⋃
c∈J [c∗). Then, a ∈ [x∗), b ∈ [y∗)

for some x, y ∈ J and hence a ∧ b ≥ x∗ ∧ y∗ = (x ∨ y)∗.
Thus, a∧b ∈ [(x ∨ y)∗) ⊆ ⋃

c∈J [c∗) ( as x ∨ y ∈ J ). Now,
let z ≥ b ∈ ⋃

c∈J [c∗). Then, z ≥ b ∈ [x∗) for some x ∈ J .
Thus, z ∈ [x∗) ⊆ ⋃

c∈J [c∗). Therefore,
⋃

c∈J [c∗) is a filter
of L .

Secondly, we prove that δ(
⋃

c∈J [c∗)) = ⋃
c∈J δ([c∗)).

Since [c∗) ⊆ ⋃
c∈J [c∗), then δ([c∗)) ⊆ δ(

⋃
c∈J [c∗)). Thus,

⋃
c∈J δ([c∗)) ⊆ δ(

⋃
c∈J [c∗)).

Conversely, let a ∈ δ(
⋃

c∈J [c∗)). Then,

a ∈ δ(
⋃

c∈J

[c∗)) ⇒ a∗ ∈
⋃

c∈J

[c∗)

⇒ a∗ ∈ [x∗) (for some x ∈ J )

⇒ a ∈ δ([x∗)) ⊆
⋃

c∈J

δ([c∗)) (as x ∈ J )

Then, δ(
⋃

c∈J [c∗)) ⊆ ⋃
c∈J δ([c∗)). Thus, δ(

⋃
c∈J [c∗)) =

⋃
c∈J δ([c∗)). Now, we prove (3) ⇒ (1). Assume that J =

⋃
c∈J δ([c∗)). Then, J = ⋃

c∈J δ([c∗)) = δ(
⋃

c∈J [c∗)).
Hence, J is a δ-ideal of L . ��
Let I δ

p(L) = {(z∗] : z ∈ L} = {δ([z)) : z ∈ L} be the set of
all principal δ-ideals of L .

Theorem 4.7 Let L be a p-algebra. Then,

(1) (I δ
p(L); ∧,�, (0], L) is a bounded sublattice of I δ(L).

(2) I δ
p(L) is a Boolean algebra.

(3) I δ
p(L) is a homomorphic image of L.
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(4) B(L) is isomorphic of I δ
p(L).

Proof (1) Let (x∗], (y∗] ∈ I δ
p(L). Then,

(x∗] ∧ (y∗] = (x∗ ∧ y∗] = ((x ∨ y)∗] ∈ I δ
p(L)

and

(x∗] � (y∗] = δ([x)) � δ([y)) = δ([x) ∨ [y))
= δ([x ∧ y)) = ((x ∧ y)∗] ∈ I δ

p(L).

We observe that L , (0] ∈ I δ
p(L) which are the greatest

and least elements of I δ
p(L), respectively. Thus, I δ

p(L) is
a bounded sublattice of I δ(L).

(2) Let (x∗], (y∗], (z∗] ∈ I δ
p(L). We observe that

(x∗] � (y∗] = δ([x)) � δ([y))
= δ([x) ∨ [y))
= δ([x ∧ y))

= ((x ∧ y)∗]
= ((x ∧ y)∗∗∗]
= ((x∗∗ ∧ y∗∗)∗]
= (x∗�y∗].

Now, we prove that I δ(L) is a distributive lattice.

(x∗] ∩ ((y∗] � (z∗]) = (x∗] ∩ (y∗�z∗]
= (x∗ ∧ (y∗�z∗)]
= ((x∗ ∧ y∗)�(x∗ ∧ z∗)] (as x∗, y∗, z∗ ∈ B(L))

= ((x ∨ y)∗�(x ∨ z)∗]
= ((x ∨ y)∗] � ((x ∨ z)∗]
= (x∗ ∧ y∗] � (x∗ ∧ z∗]
= ((x∗] ∩ (y∗]) � ((x∗] ∩ (z∗]).

Thus, I δ
p(L) is a bounded distributive sublattice of I δ(L).

Wehave (z∗]∧(z∗∗] = (z∗∧z∗∗] = (0] and (z∗]�(z∗∗] =
δ([z))�δ([z∗)) = δ([z)∨[z∗)) = δ([z∧z∗)) = δ([0)) =
L . Thus, (z∗∗] is the complement of (z∗], and we can
write ((z∗])′ = (z∗∗]. Hence, (I δ

p(L); ∧,�,′ , (0], L) is a
Boolean algebra.

(3) Define α : L −→ I δ
p(L) by α(z) = (z∗∗]. Clearly, α

is a well-defined map, and α(0) = (0], α(1) = L . Let
z, y ∈ L . Then,

α(z ∧ y) = ((z ∧ y)∗∗]
= (z∗∗ ∧ y∗∗]
= (z∗∗] ∧ (y∗∗]
= α(z) ∧ α(y)

and

α(z ∨ y) = ((z ∨ y)∗∗]
= ((z∗ ∧ y∗)∗]
= δ([z∗ ∧ y∗))
= δ([z∗) ∨ [y∗))
= δ([z∗)) � δ([y∗))
= (z∗∗] � (y∗∗]
= α(z) � α(y).

Now, α(z∗) = (z∗∗∗] = ((z∗∗])′ = (α(z))′. Thus, α is a
homomorphism of L into I δ

p(L). Now, for every (z∗∗] ∈
I δ
p(L), there exists z ∈ L such that α(z) = (z∗∗]. Thus,

α is an onto map. Moreover, α is not a one-to-one map,
because of δ([a)) = δ([b)) implies a∗ = b∗ and a �= b.

(4) Define h : B(L) −→ I δ
p(L) by h(z) = (z]. Clearly, h is

a well-defined map. Let z, y ∈ B(L). Then,

h(z ∧ y) = (z ∧ y]
= (z] ∧ (y]
= h(z) ∧ h(y)

and

h(z�y) = (z�y]
= ((z ∨ y)∗∗]
= ((z∗ ∧ y∗)∗]
= δ([z∗ ∧ y∗))
= δ([z∗) ∨ [y∗))
= δ([z∗)) � δ([y∗))
= (z∗∗] � (y∗∗]
= (z] � (y] (as z, y ∈ B(L))

= h(z) � h(y).

We have h(0) = (0], h(1) = L , and h(z∗) = (z∗] =
(z∗∗∗] = ((z∗∗])′ = ((z])′ = (h(z))′. For every (z∗∗] ∈
I δ
p(L), there exists a ∈ B(L) such that a = z∗∗. Then,
h(a) = (a] = (z∗∗] = (z]. Also, let h(z) = h(y). Then,
(z] = (y] and hence z = y. Thus, h is one to one. Therefore,
h is an isomorphism from B(L) into I δ

p(L). ��

Corollary 4.8 Assume that L is an S-algebra. Then, (I δ
p(L);

∧,∨, (0], L) is a bounded sublattice of I (L).

5 Comaximality of ı-ideals

This section is devoted to introducing the notion of comaxi-
mality of δ-ideals and studying some related properties.
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Fig. 3 L = B4 ⊕ N5 is a
non-modular p-algebra

Let us recall that two ideals J1 and J2 of a p-algebra L
are called comaximal if J1 ∨ J2 = L.

Now, we introduce the �-comaximality of δ-ideals of a p-
algebra L .

Definition 5.1 Two δ-ideals J1 and J2 of a p-algebra L are
called �-comaximal if J1 � J2 = L.

Lemma 5.2 Any two comaximal δ-ideals of a p-algebra L
are �-comaximal.

Proof Let J1 and J2 be two comaximal δ-ideals of a p-
algebra L . Then, J1 ∨ J2 = L . Since J1 = δ(G1) and
J2 = δ(G2) for some filters G1 and G2 of L , we get
L = δ(G1) ∨ δ(G2). Now,

L = δ(G1) ∨ δ(G2) ⊆ δ(G1 ∨ G2) = δ(G1) � δ(G2) = J1 � J2.

Thus, J1 and J2 are �-comaximal. ��

The following example shows that the converse of the above
lemma is not true.

Example 5.3 Consider a p-algebra L = B4 ⊕ N5 in Fig. 3,
where B4 = {0 < a, b < d} is the four Boolean lattice
and N5 = {c, x, y, z, 1} is the Pentagon lattice. We observe
that (a] and (b] are �-comaximal δ-ideals, but they are not
comaximal as (a] � (b] = (b∗] � (a∗] = δ([b)) � δ([a)) =
δ([b) ∨ [a)) = δ([b ∧ a)) = δ([0)) = L , and (a] ∨ (b] =
(a ∨ b] = (d] �= L .

The converse of the above lemma holds in the following
special case:

Corollary 5.4 Any two�-comaximal δ-ideals of an S-algebra
L are comaximal.

Lemma 5.5 Let L be a p-algebra. If z, y ∈ L such that z ∧
y = 0, then δ([z)) and δ([y)) are �-comaximal in L.

Proof Let z, y ∈ L with z ∧ y = 0. Then,

δ([z)) � δ([y)) = δ([z) ∨ [y)) = δ([z ∧ y)) = δ([0)) = L.

Therefore, δ([z)) and δ([y)) are �-comaximal in L . ��
Theorem 5.6 Let L be a distributive p-algebra. Then,

(1) Every prime δ-ideal of L is a minimal prime ideal.
(2) Any two distinct prime δ-ideals of L are �-comaximal.

Proof (1) Let J1 be a prime δ-ideal of L . Then, J1 = δ(G1)

for some filter G1 of L , let z ∈ J1 = δ(G1). Then,
z∗ ∈ G1.We have 0 = z∧z∗ ∈ J1. Suppose that z∗ ∈ J1.
Then, z∗ ∈ G1 ∩ δ(G1) �= φ which contradicts with (1)
of Lemma 3.3. Hence, z∗ /∈ J1, that is, for z ∈ J1, there
exists y = z∗ /∈ J1 such that z ∧ y = 0. Thus, J1 is a
minimal prime ideal.

(2) Let J1 and J2 be two distinct prime δ-ideals of L . Then by
(1), J1 and J2 are minimal prime ideals. Let a ∈ J1 − J2
and b ∈ J2 − J1. Since J1 and J2 are two minimal prime
ideals, then there exist x /∈ J1 and y /∈ J2 such that
a ∧ x = 0 = b ∧ y. Since x /∈ J1 and b /∈ J1, then
b∧ x /∈ J1( as J1 is a prime ideal ), similarly a∧ y /∈ J2.
By definition of pseudo-complement and the fact that J1
is a prime ideal, we get (b ∧ x)∗ ∈ J1. Thus, δ([b ∧
x)) = ((b∧ x)∗] ⊆ J1. Similarly, δ([a∧ y)) ⊆ J2. Now,
(b ∧ x) ∧ (a ∧ y) = (a ∧ x) ∧ (b ∧ y) = 0 ∧ 0 = 0.
Then by Lemma 5.5, we get δ([a ∧ y)) and δ([b ∧ x))
are �-comaximal. Hence,

L = δ([a ∧ y)) � δ([b ∧ x)) ⊆ J1 � J2.

Thus, J1 � J2 = L . Therefore, J1 and J2 are �-
comaximal.

��
Let J be an ideal of a p-algebra L . For any z ∈ L , consider

δJ ([z)) = { j ∈ J : j∗ ∈ [z)}.

Lemma 5.7 Let J be an ideal of p-algebra L. Then,

(1) δJ ([z)) = J ∩ δ([z)) is an ideal of J .
(2) δJ ([z)) is a δ-ideal of L, whenever J is a δ-ideal of L.

Proof (1) It is clear that δJ ([z)) = { j ∈ J : j ∈ δ([z))} =
J ∩ δ([z)), and hence, δJ ([z)) is an ideal of J .

(2) Since δJ ([z)) = J ∩δ([z)) and J , δ([z)) are two δ-ideals
of L , then δJ ([z)) is a δ-ideal of L .

��
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Theorem 5.8 (1) Let J be a principal δ-ideal of a p-algebra
L. Then for any z, y ∈ L with z ∧ y = 0, δJ ([z)) and
δJ ([y)) are �-comaximal in J .

(2) Let J be a δ-ideal of a distributive p-algebra L. Then for
any z, y ∈ L with z ∧ y = 0, δJ ([z)) and δJ ([y)) are
�-comaximal in J .

Proof (1) Let J = δ([a)) be a principal δ-ideal of a p-
algebra L and z, y ∈ L with z ∧ y = 0. Then by Lemma
5.5, we have δ([z)) � δ([y)) = L . Now,

δJ ([z)) � δJ ([y)) = (J ∩ δ([z))) � (J ∩ δ([y)))
= (δ([a)) ∩ δ([z))) � (δ([a)) ∩ δ([y))) (as J = δ([a)))

= ((a∗] ∩ (z∗]) � ((a∗] ∩ (y∗])
= (a∗] ∩ ((z∗] � (y∗]) (as I δ

p(L) is distributive )

= δ([a)) ∩ (δ([z)) � δ([y)))
= δ([a)) ∩ L (as δ([z)) � δ([y)) = L)

= J ∩ L

= J

Therefore, δJ ([z)) and δJ ([y)) are �-comaximal in J .

(2) Using a similar way of (1), one can prove that δJ ([z))
and δJ ([y)) are �-comaximal in J .

��

6 Homomorphic images of ı-ideals

This section discusses the properties of images and the
inverse images of δ-ideals ( principal δ-ideals ) with respect
to a homomorphism of two p-algebras. By a homomorphism
on a p-algebra L , we mean a lattice homomorphism h satis-
fying (h(x))∗ = h(x∗) for all x ∈ L .

Theorem 6.1 Assume that h : L1 −→ L2 is an onto homo-
morphism of a p-algebra L1 to a p-algebra L2. Then,

(1) The image of a principal δ-ideal is a principal δ-ideal,
that is, for any z ∈ L1, h(δ[z)) = δ([h(z))).

(2) for any filter G1 of L1, h(δ(G1)) = δ(h(G1)).
(3) for any δ-ideal J1 of L1, h(J1) is a δ-ideal of L2.
(4) for any δ-ideal J of L1, h(J ) = ⋃

j∈J δ([(h( j))∗)).

Proof (1) For all z ∈ L1, we get

h(δ([z))) = h((z∗]) = h{c ∈ L1 : c ≤ z∗}
= {h(c) ∈ L2 : h(c) ≤ h(z∗)}
= {h(c) ∈ L2 : h(c) ≤ h(z)∗}
= (h(z)∗] = δ([h(z))).

(2) For any filter G1 of L1, let z ∈ δ(h(G1)). Then,

z ∈ δ(h(G1)) ⇒ z∗ ∈ h(G1)

⇒ z∗ = h( j1) f or j1 ∈ G1

⇒ z ≤ z∗∗ = (h( j1))
∗ = h( j∗1 ) ∈ h(δ(G1))

⇒ z ∈ h(δ(G1)) (as h(δ(G1))is an ideal)

⇒ δ(h(G1)) ⊆ h(δ(G1)).

Conversely, let z ∈ h(δ(G1)). Then,

z ∈ h(δ(G1)) ⇒ z = h(y) f or y ∈ δ(G1)

⇒ y∗ ∈ G1

⇒ z∗ = (h(y))∗ = h(y∗) ∈ h(G1)

⇒ z ∈ δ(h(G1))

⇒ h(δ(G1)) ⊆ δ(h(G1))

Thus, h(δ(G1)) = δ(h(G1)).
(3) Let J1 be a δ-ideal of L1. Then, J1 = δ(G1) for some

filter G1 of L1. Now,

h(J1) = h(δ(G1))

= h{z ∈ L1 : z∗ ∈ G1}
= {h(z) ∈ L2 : h(z∗) ∈ h(G1)}
= {h(z) ∈ L2 : h(z)∗ ∈ h(G1)}
= δ(h(G1)).

Thus, h(J1) is a δ-ideal of L2.
(4) For any δ-ideal J of L1, J = ⋃

j∈J δ([ j∗)) from (3)
Theorem 4.6. Let z ∈ h(J ). Then, z = h( j) for some j ∈
J . Then, z ≤ z∗∗ ∈ (z∗∗] = δ([z∗)) = δ([(h( j))∗)) ⊆
⋃

j∈J δ([(h( j))∗)). Thus, h(J ) ⊆ ⋃
j∈J δ([(h( j))∗)).

Conversely, let z ∈ ⋃
j∈J δ([(h( j))∗)). Now,

z ∈
⋃

j∈J

δ([(h( j))∗)) ⇒ z ∈ δ([(h(c))∗)), c ∈ J

⇒ z ∈ ((h(c))∗∗]
⇒ z ≤ ((h(c))∗∗ = h(c∗∗) ∈ h(J ) (as c∗∗ ∈ J )

⇒ z ∈ h(J ) (as h(J )is an ideal)

Thus,
⋃

j∈J δ([(h( j))∗)) ⊆ h(J ). Therefore, h(J ) =⋃
j∈J δ([(h( j))∗)).

��
Theorem 6.2 Let h : L1 → L2 be a homomorphism of a
p-algebra L1 into a p-algebra L2. Then,

(1) Ker h is a δ-ideal of L1.
(2) For any δ-ideal K of L2, h−1(K ) is a δ-ideal of L1 con-

taining Ker h.

Proof (1) Since h is a homomorphism of a p-algebra L1 into
a p-algebra L2, then Ker h = {z ∈ L1 : h(z) = 0 } and
Coker h = {z ∈ L1 : h(z) = 1 } are an ideal and a filter
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of L1, respectively. We show that Ker h = δ(Coker h).
Let z ∈ Ker h. Then,

z ∈ Ker h ⇔ h(z) = 0

⇔ (h(z))∗ = h(z∗) = 1

⇔ z∗ ∈ Coker h

⇔ z ∈ δ(Coker h)

Thus, Ker h = δ(Coker h).
(2) Let K be a δ-ideal of L2. Then, K = δ(G1) for some

filterG1 of L2. Since h−1(K ) is an ideal of L1. We prove
that h−1(K ) = δ(h−1(G1)). So let z ∈ h−1(K ). Then,

z ∈ h−1(K ) ⇔ h(z) = c, c ∈ K = δ(G1)

⇔ h(z)∗ = h(z∗) = c∗ ∈ G1 (as c ∈ δ(G1) ⇒ c∗ ∈ G1)

⇔ z∗ ∈ h−1({c∗}) ⊆ h−1(G1)

⇔ z ∈ δ(h−1(G1))

Thus, h−1(K ) = δ(h−1(G1)). Therefore, h−1(K ) is a
δ-ideal of L1. Let z ∈ Ker h. Then, h(z) = 0 ∈ K =
δ(G1), and hence, h(z∗) = h(z)∗ = 1 ∈ G1 implies
z∗ ∈ h−1(G1). Thus, z ∈ δ(h−1(G1)). Therefore, Ker
h ⊆ δ(h−1(G1)).

��
Theorem 6.3 Let h : L1 −→ L2 be an onto homomorphism
of a p-algebra L1 to a p-algebra L2. Then,

(1) α : I δ
p(L1) −→ I δ

p(L2), α(δ([z))) = δ([h(z))), ∀δ([z))
∈ I δ

p(L1) is a Boolean homomorphism.

(2) α : I δ(L1) −→ I δ(L2), α(δ(G)) = δ(h(G)), ∀ δ(G) ∈
I δ(L1) is a homomorphism.

Proof (1) Define α : I δ
p(L1) −→ I δ

p(L2) by α(δ([z))) =
δ([h(z))). Clearly,α iswell-defined.α(L1) = α(δ([0L1)))

= δ([h(0L1))) = δ([0L2)) = δ(L2) = L2 and α{0L1} =
α(δ([1L1))) = δ([h(1L1))) = δ([1L2)) = {0L2}. Let
δ([a)), δ([y)) ∈ I δ

p(L1). Then,

α(δ([z)) ∧ δ([y))) = α(δ([z) ∧ [y)))
= α(δ([z ∨ y)))

= δ([h(z ∨ y))

= δ([h(z) ∨ h(y)))

= δ([h(z)) ∧ [h(y)))

= δ([h(z))) ∧ δ([h(y)))

= α(δ([z))) ∧ α(δ([y)))

and

α(δ([z)) � δ([y))) = α(δ([z) ∨ [y)))

= α(δ([z ∧ y)))

= δ([h(z ∧ y))

= δ([h(z) ∧ h(y)))

= δ([h(z)) ∨ [h(y)))

= δ([h(z))) � δ([h(y)))

= α(δ([z))) � α(δ([y))).

Since I δ
p(L1) and I δ

p(L2) are Boolean algebras, we get
(α(δ([z)))∗ = (α((z∗]))∗ = (α((z∗]))′. Thus,

α((δ([z)))∗) =α(((z∗])∗)
= α((z∗∗])
= α(δ([z∗)))
= δ([h(z∗))
= δ([(h(z))∗))
= ((h(z))∗∗]
= (((h(z))∗])∗
= (δ([h(z))))∗

= (α(δ([z))))∗.

Therefore, α is a Boolean homomorphism of I δ
p(L1) into

I δ
p(L2).

(2) Define α : I δ(L1) −→ I δ(L2) by α(J1) = δ(h(G))

where J1 = δ(G). Clearly, α is well-defined and
α{0L1} = {0L2}, α(L1) = L2. Let J1, J2 ∈ I δ(L1).
Then, J1 = δ(G1) and J2 = δ(G2) for some filters G1

and G2 of L1. Then, we get

α(J1 ∧ J2) = α(δ(G1) ∧ δ(G2))

= α(δ(G1 ∧ G2))

= δ(h(G1 ∧ G2))

= δ(h(G1)) ∧ δ(h(G2))

= α(J1) ∧ α(J2)

and

α(J1 � J2) = α(δ(G1) � δ(G2))

= α(δ(G1 ∨ G2))

= δ(h(G1 ∨ G2))

= δ(h(G1)) � δ(h(G2))

= α(J1) � α(J2).

Therefore, α is a homomorphism of I δ(L1) into I δ(L2).
��
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