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Abstract
The application of digital technologies to facilitate farming activities has been on the rise in recent years.Among different tasks,
the classification of weeds is a prerequisite for smart farming, and various techniques have been proposed to automatically
detect weeds from images. However, many studies deal with weed images collected in the laboratory settings, and this
might not be applicable to real-world scenarios. In this sense, there is still the need for robust classification systems that can
be deployed in the field. In this work, we propose a practical solution to recognition of weeds exploiting two versions of
EfficientNet as the recommendation engine. More importantly, to make the learning more effective, we also utilize different
transfer learning strategies. The final aim is to build an expert system capable of accurately detecting weeds from lively
captured images. We evaluate the approach’s performance using DeepWeeds, a real-world dataset with 17,509 images. The
experimental results show that the application of EfficientNet and transfer learning on the considered dataset substantially
improves the overall prediction accuracy in various settings. Through the evaluation, we also demonstrate that the conceived
tool outperforms various state-of-the-art baselines. We expect that the proposed framework can be installed in robots to work
on rice fields in Vietnam, allowing farmers to find and eliminate weeds in an automatic manner.

1 Introduction

In recent years, there has been an increasing number of
computer-aided applications deployed to help farmers per-
form their daily work (Rehman et al. 2019), attempting
to deal with challenges caused by climate change. Robots
equipped with object detection techniques have been used
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in various tasks (Dhaya et al. 2021), such as plant disease
detection (Ampatzidis et al. 2017), pest classification (Then-
mozhi and Reddy 2019), managing water resources (Reis
et al. 2019), to name a few. Such tools help improve both
effectiveness and efficiency of farming work (Pilarski et al.
2002; Lehnert et al. 2017; Bargoti and Underwood 2017) as
they can fulfill these tasks in a short time and obtain a high
accuracy (Deepa and Ganesan 2019).

Vietnam is a developing country, and despite the recent
structural transformation process, agriculture still remains a
staple element of the country’s economy. Nevertheless, there
is a worryingly increasing lack of labor in the agriculture
sector (Sabzi et al. 2017; Liu et al. 2020), as descendants
of farmers prefer to seek their fortune in big cities, rather
than continuing the tradition. In fact, Vietnam is among the
world’s major rice exporters, and rice accounts for around
90% of the food production (Tam and Shimada 2019). How-
ever, due to the country’s geographical position and weather
conditions, rice fields in Vietnam severely suffer from the
invasion of pets and, in particular, several types of wild
weeds. The country has sought different countermeasures to
improve crops and combat pets and weeds, including fertiliz-
ers and herbicides. Still, the effectiveness of herbicides is far
from optimal as weeds quickly adapt and become resilient to
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these means. Moreover, an abusive use of herbicides would
cause contamination and harm to the environment. Given the
circumstances, there is a need for automatic techniques and
tools to deal with the lack of labor, as well as to support the
detection and elimination ofweeds. Having a sound technical
background to recognize weeds is an important prerequisite
to deploy in-field automatic robots.

The classification ofweeds under realistic conditions turns
out to be a daunting task. Although various studies have been
conducted to recognize weeds and good results have been
obtained, most of the existing studies deal with detection of
weeds in a laboratory setting. As a matter of fact, the classifi-
cation of weeds in rangeland environments has not received
adequate attention (Olsen et al. 2019a). In reality, images cap-
tured from fields are heterogeneous and they contain noise in
the background. In this respect, there is the need for robust
mechanisms for detecting weeds in situ.

Machine learning (ML) has made profound progress in
the past decade, thanks to the proliferation of several disrup-
tive deep learning algorithms (Duong et al. 2023). There is
a rise of applications exploiting ML across several domains.
Among others, ML techniques have been used to solve dif-
ferent issues in the agriculture sector (Espejo-Garcia et al.
2021; Duong et al. 2020).

In this work, we propose a practical solution to weeds
recognition, in terms of efficiency and effectiveness. We
made use of two variants of the EfficientNet family (Tan
and Le 2019) as the classification engine. More importantly,
we incorporated different optimization functions and transfer
learning strategies, aiming to find the best configuration. The
performance of our approach has been evaluated using a real
weed dataset, i.e., DeepWeeds (Olsen 2020). The results we
got so far are promising: for all configurations, the obtained
accuracy is always larger than 97%, with 99.62% being the
maximum accuracy. Compared to two state-of-the-art base-
lines, our approach achieves a better prediction performance
with respect to various qualitymetrics. The aimof ourwork is
to build an expert system, which paves the way for a machine
that is able to automatically detect and eliminate weeds from
rice fields.

In this sense, our papermakes the following contributions:

– A practical solution to weed classification adopting
cutting-edge deep neural network and transfer learning
techniques.

– A comprehensive evaluation of the conceived framework
on a real dataset. This also aims to compare it with two
well-established baselines, namely ResNet-50 (Olsen
et al. 2019a) and Inception-V3 (dos Santos Ferreira et al.
2019).

– A software prototype provided as a mobile app is ready
for download.1

1 https://github.com/linhduongtuan/DeepWeeds_Classifier_WebApp.

The paper is organized as follows. In Sect. 2, we provide
a literature review on the related topics. Afterward, Sect. 3
presents in detail the proposed approach. In Sect. 4, we
explain the dataset and metrics used for evaluation. Section5
presents themain results and discussions, as well as the prob-
able threats to validity of the outcome. Finally, we present
future work and conclude the paper in Sect. 6.

2 Related work

In this section, we present a literature review on the related
topics. In particular, we review work for automation in agri-
culture, and notable studies on weed classification.

Recently, different techniques have been conceived to
solve issues in agriculture (Deepa and Ganesan 2019). A
survey on studies exploiting Deep Learning in agriculture
and food production has been recently conducted (Kamilaris
et al. 2018). By means of a detailed examination on various
agricultural problems, it has been shown that Deep Learn-
ing algorithms help obtain a better prediction accuracy and
they outperform conventional image processing techniques.
Similarly, Rehman et al. (2019) present a survey on machine
learning techniques for various agricultural areas. The work
summarizes the pros and cons of statistical machine learning
techniques for certain purposes. Furthermore, it also provides
a discussions on future trends of statistical machine learning
technology applications.

Convolutional neural network models (Ferentinos 2018)
have been applied to help farmers detect plant diseases. The
approach has been evaluated using an open database with 25
different plants. The framework achieved a high prediction
accuracy, and this suggests that the model can be used to
support an identification system working in real-world sce-
narios. Our approach presented in this paper is relevant to
this work, as we also attempt to assist farmers in their daily
tasks, usingDeep Learning techniques.We suppose that Effi-
cientNet can also be used to automatically recognize plant
diseases.

A survey (Zhao et al. 2016) presented themajor techniques
used in fruit or vegetable harvesting robots, and provided dis-
cussions on the challenges and trends of deploying different
automatic techniques in robots. The exists an approach to
identification of soybean leaves and herbivorous pest from
images captured by unmanned aerial vehicles (Amorim et al.
2019). The system aims to support specialists and farmers in
pest control management in soybean fields, especially when
there is a limited amount of labeled instances. We assume
that our approach build on top of EfficientNet and transfer
learning can be used to tackle the issue (Amorim et al. 2019).

The automatic identification of tree species have great
potential in agriculture, and there is a tree species recog-
nition method based on the fusion of multiple deep learning
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models (Hu et al. 2018). The dataset was built based on the
published image datasets on the Internet and autonomous
photography. The experimental results showed that the
recognition accuracy of the tree species in the complex back-
ground with the proposed method reached 93.75%. A recent
work (Sharpe et al. 2020) leveraged the advantages of tiny-
YouOnlyLookOnce3 (YOLOv3-tiny) as a potential detector
to aid goosegrass identification and spraying in situ. The
approach was evaluated by two annotation techniques, i.e.,
annotation of the entire plant (EP) and annotation of partial
sections of the leaf blade. The reported performance is as fol-
lows: F1-score 0.75 and 0.85 for the EP and LB of goosegrass
detection in strawberry.

To assist farmers in their daily tasks, a number of
approaches have been conceived to classify fruits classifica-
tion, making use of various machine learning techniques. For
instance, a feature learning-based algorithm has been used to
build a systems for classifying fruits (Hung et al. 2015). The
algorithm extracts the most representative features of fruit
images by means of pixel classification. Similarly, a deep
neural network to detect fruit was conceived (Sa et al. 2016),
aiming to support yield estimation and automated harvesting.
A multi-modal Faster R-CNN model (Ren et al. 2015) was
designed and implemented, and it achieves improvement in
accuracy compared to various state-of-the-art approaches.
Furthermore, the approach is also timing efficient, as it
requires boundingbox annotation instead of pixel-level anno-
tation. The model was retrained to detect seven fruits, and
the entire process takes 4 h to annotate and train the new
model for a fruit. In our recent work (Duong et al. 2020),
we proposed a workable solution to fruit classification using
EfficientNet and MixNet . The experimental results show
that our proposed approach obtains a high prediction accu-
racy, thereby outperforming a well-established baseline.

Recently, several studies have focused on boosting pro-
ductivity in agriculture. In a recent work (Olsen et al. 2019b),
the authors proposed an approach to recognize various weed
species in the complicated range land environment. Thework
introduced a baseline for weeds classification task using deep
learning model, Inception-v3 and ResNet-50 on the Deep-
Weeds dataset including 17,509 images of eightweed species
across northern Australia. The proposed framework gained
an average classification accuracy of 95.1% and 95.7%.

A deep learning architecture named Graph Weeds Net
(GWN) (Hu et al. 2020) has been recently introduced to
detect multiple types of weeds from images. The proposed
method improved the performance of weed identification
tasks by establishing fine-grained level deep representation
and specified the high probability of the true-positive weed
rather than the others. The problem of plant recognition is
still challenging due to background noise from the living
environment. The proposed technique (Zhu et al. 2019) is
able to recognize plants on four datasets, i.e., Malayakew,

ICL, Flowers 102, and CFH plant, by exploiting the two-
way attentionmodelwith deep convolutional neural network.
The approach obtained accuracy of 99.8%, 99.9%, 97.2%,
and 79.5% for the aforementioned datasets. The first atten-
tion way is based on taxonomy of plants to recognize plant’s
family, whereas the second attention way focuses on the dis-
criminative features of plants image based on the feature
maps generated by convolutional neural networks. Due to
the compatibility of two-way attention, the discriminative
feature learning and part-based attention are combined and
they obtained promising results.

3 A practical solution to weeds classification

This section introduces the proposed approach based on Effi-
cientNet (Tan and Le 2019), EfficientNet -Lite4, and transfer
learning (Huang et al. 2017; Weiss et al. 2016). We system-
atically present the related technologies, i.e., EfficientNet in
Sect. 3.1, and transfer learning in Sect. 3.2. The architecture
conceptualized to build an expert system to automatically
recognize weeds is presented in Sect. 3.3.

3.1 EfficientNet

EfficientNet (Tan and Le 2019) is a recently developed
family of deep neural network, with the aim of transcend-
ing the main limitations of the existing CNN technologies
related to prediction accuracy. EfficientNet imposes a bal-
ance between all network dimensions, i.e., width, depth, and
resolution by means of a set of fixed scaling coefficients that
meet some specific constraints (Tan and Le 2019). The Effi-
cientNet family is made of different versions, and the most
simple one is EfficientNet -B0. The other EfficientNet con-
figurations are generated fromEfficientNet -B0with different
scaling values. For illustration purposes only, the most com-
pact configuration, i.e., EfficientNet -B0, is shown in Fig. 1:
It consists of 18 convolution layers in total and each of them
uses a kernel either k(3,3) or k(5,5). Input images are made
of three color channels, i.e., R, G, B, and each of them is
scaled to the size of 224×224. The next layers are reduced in
resolution, but increased in width to enhance accuracy. For
example, the second convolutional layer is equipped with
W=16 filters, and by its next layer, the number of filters is
W=24. The maximum number of filters is D=1, 280 by the
last layer which is fed to the fully connected layer.

Similar to the EfficientNet backbone, the EfficientNet -
Litemodels2 are designed forworking onmobile CPU,GPU,
and EdgeTPU, but still maintain a comparable accuracy
compared to quantized version of some popular image classi-
fication models. EfficientNet-Lite architectures do not apply

2 https://bit.ly/3nBUzGo.
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Fig. 1 The efficientNet-B0 architecture

squeeze-and-excite function like the original backbone, but
use themodificationofRectifiedLinearUnit, namelyRELU6
function, instead of Sigmoid Linear Units (SiLU). We opted
for EfficientNet -Lite4, the largest variant, which achieved
80.4% ImageNet top-1 accuracy, while still running in real
time, e.g., 30ms/image on a Pixel 4 CPU. Within a CNN,
different optimization functions can be used to speed up the
learning process. In the scope of this paper, three different
optimization functions, namely, SGD, ADAM, and SLS, are
incorporated into our evaluation.

3.2 Transfer learning

An important requirement for deep neural networks is to
acquire enough data for the training process. Nevertheless,
labeled data can be obtained by manual annotation, which
requires time and human labor. Thus, transfer learning has
been adopted as a practical solution to overcome the lack
of data, since it allows for the re-use of weights and biases
trained using large datasets. With respect to using only ran-
dom weights, transfer learning brings a better performance
in terms of effectiveness and efficiency, even when the tar-
get domain is quite different from the original one where the
weights are obtained (Huang et al. 2017). In the scope of this
work, we consider three learning strategies as follows.

– ImageNet: We import pre-trained weights from the Ima-
geNet dataset (Russakovsky et al. 2015), which consists
of more than 14 million images, covering various cate-
gories;

Fig. 2 System architecture

– Adversarial propagation (AdvProp) (Xie et al. 2019):
Adversarial propagationhas beenproposed as an enhanced
training scheme, and it treats adversarial examples as
additional examples, with the ultimate aim ofminimizing
overfitting;

– Noisy Student (NS) (Xie et al. 2019): This aims at boost-
ing up ImageNet classificationNoisy Student training by:
(i) extending the trainee/student equal to or larger than
the trainer/teacher, so as to force the trainee learn better
on a large dataset, and (ii) adding noise to the student,
thus enabling it to learn more.

3.3 Architecture

The conceived system is shown in Fig. 2 and there are two
main phases, namely training and testing. The architecture
allows for the inclusion of weights pre-trained using other
datasets, e.g., ImageNet (Russakovsky et al. 2015).

Input images 1 are already labeled and they are trans-
formed into a feature vector, which is then handled by the
Extractor component 2 . During training, an input image is
augmented with rotation and one resized crop, as well as hor-
izontal flippingwith a random change. The rotation is done to
change at least 30% of the input image. The resulting image
is then rescaled to fit into a frame of size 224× 224, and fed
as training data. The feature vectors and their labels are used
to train the system by means of the Weights Calculator

component 3 . Pre-trained weights 4 from other datasets
can be imported to deploy transfer learning.

The resulting trained parameters can then be used to
classify unlabeled weeds images. The testing phase (or
deployment) can be performed on lightweight devices, e.g.,
laptops or smartphones. Each time, when an unknown input
weed image 5 is put into the system, it will be extracted
to build a feature vector using Feature Extractor 2 . The
feature tensor is then fed to the neural networks 6 which
run the classification engine to label the input image 7 . The
final result is a label that classifies the input weed image into
a certain category 8 .
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4 Evaluationmaterials andmethods

In this section, we explain in detail the experiments to eval-
uate the proposed approach as well as to compare it with
two existing studies. First, the research questions to study
the systems’ characteristics are enumerated in Sect. 4.1. Sec-
tion4.2 gives an overview of the DeepWeeds dataset (Olsen
2020), which has been exploited as input data for the eval-
uation. The experimental settings are described in Sect. 4.3,
while Sect. 4.4 presents the metrics utilized to measure the
prediction performance.

4.1 Research questions

By performing a series of experiments on the given dataset,
we attempt to answer three research questions pertinent to
this work:

– RQ1:Which optimization function brings a better classi-
fication performance for EfficientNet -B4? We examine
different EfficientNet -B4 configurations to find the one
that obtains the best prediction accuracy.

– RQ2:Which optimization function brings a better classi-
fication performance for EfficientNet -B4 Lite? Similarly,
we perform experiments on the EfficientNet -Lite4 net-
work, aiming to determine the setting that brings the best
prediction accuracy on the given dataset.

– RQ3: How does the proposed approach perform com-
pared to the baselines? Finally, we are interested in
understanding if our proposed approach achieves a better
prediction performance compared to two state-of-the-art
baselines (Olsen et al. 2019a; dos Santos Ferreira et al.
2019).

4.2 Dataset and baselines

The DeepWeeds dataset was collected using a ground-based
weed control robot (Olsen 2020). There are 17,509 images
in total with nine categories of weeds, which are summarized
in Fig. 3. Among them, eight categories are real weeds, while
the Negative category is made of different images rather than
weeds, i.e., soil and vegetation. Figure 4a–i depicts some
representative examples of the categories from the original
dataset. By plain eyes, it is difficult to distinguish the weeds
from each other. In this respect, an automatic mechanism to
detect weeds is highly desirable.

To better study the performance of our proposed approach
in relation to state-of-the-art studies, we compare Efficient-
Net -B4 and EfficientNet -Lite with two baselines as follows.
The first one is built based on ResNet-50 , a convolutional
neural network originally designed and implemented by the
creators of theDeepWeeds dataset to articulate their contribu-

Fig. 3 A summary of the DeepWeeds dataset (Olsen 2020)

tions. The tool works on top of the TensorFlow framework,3

and its source code is available online (Olsen 2020). The
second baseline is a tool developed by dos Santos Ferreira
et al. (dos Santos Ferreira et al. 2019), which is based on the
Inception-V3 deep neural network.

4.3 Experimental settings

For all the experiments, we split the original dataset into
three independent parts, i.e., 80% for training, 10% for val-
idation, and 10% for testing. Moreover, we applied various
data augmentation techniques as follows. Images are trans-
formed using rotate, blur, random noise, horizontal flip, and
vertical flip exploiting an existing tool.4 The parameters and
their corresponding values are listed in Table 1. The ultimate
aim of the augmentation process is to enrich the dataset to
feed the recommendation engine.

We adopted a recent implementation (Wightman 2019a)
of EfficientNet and EfficientNet -Lite4 which was built on
top of the PyTorch framework.5 We also imported pre-trained
weights from the ImageNet dataset (Russakovsky et al. 2015)
as well as usingNS andAdvProp (cf. Sect. 3.2), with the final
aim of speeding up and increasing the effectiveness of the
learning process. We trained on a server with the following
configurations: Intel�Xeon�CPUE5-2678v3@2.50GHz
× 12 cores, 96GiB RAM, NVIDIA GeForce GTX 1080Ti,
Operating System Ubuntu 20.04.1 LTS.

Table 2 depicts the experimental configurations for Effi-
cientNet -B4, EfficientNet-Lite4 as well as for the two
baselines, i.e., ResNet-50 and Inception-V3 . The # Params
column corresponds to the number of parameters needed to
store the weights and biases of the network. The # MAC
column measures the computational complexity, counted as

3 https://www.tensorflow.org/.
4 https://github.com/tomahim/py-image-dataset-generator.
5 https://pytorch.org.
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Fig. 4 Real weed images (extracted from the original dataset (Olsen 2020))

Table 1 Augmentation parameters

No Parameter Description Value

0 DEFAULT_ROTATE_PROBABILITY The probability to rotate 0.5

1 DEFAULT_ROTATE_MAX_LEFT_DEGREE The maximum left rotating degree 25

2 DEFAULT_ROTATE_MAX_RIGHT_DEGREE The maximum right rotating degree 25

3 DEFAULT_BLUR_PROBABILITY The probability to blur an image 0.1

4 DEFAULT_RANDOM_NOISE_PROBABILITY The probability to add random noise 0.5

5 DEFAULT_HORIZONTAL_FLIP_PROBABILITY The probability to flip horizontally 0.3

6 DEFAULT_VERTICAL_FLIP_PROBABILITY The probability to flip vertically 0.3
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Table 2 Experimental
configurations

No # Params (M) # MAC (B) File size (MB) Optimizer Learning

EfficientNet -B4 1 17.57 2.10 141.4 SGD ImageNet

2 Noisy student

3 AdvProp

4 211.8 ADAM ImageNet

5 Noisy student

6 AdvProp

7 71.0 SLS ImageNet

8 Noisy student

9 AdvProp

Lite4 10 11.74 1.32 94.6 SGD ImageNet

11 141.5 ADAM

12 47.6 SLS

RN-50 23.61 3.88 277.2 ADAM ImageNet

IN-V3 21.8 2.85 256.8 ADAM ImageNet

the number of multiply-accumulate operation. While both
EfficientNet -B4 and EfficientNet -Lite4 need less than 20
millions of parameters and 2.10G MAC, ResNet-50 and
Inception-V3 are larger in size, i.e., they have more than
21.80 millions of parameters and 2.85G MAC. Correspond-
ingly, theFile size used to store the parameters (inMB) varies
depending on the number of parameters. We also use three
different optimizers in our evaluation, i.e., SGD, ADAM,
and SLS. For EfficientNet -B4, we combine three transfer
learning strategies introduce in Sect. 3.2, i.e., ImageNet, NS,
and AdvProp. While for EfficientNet -Lite4, we can use only
weights pre-trained from the ImageNet dataset.

4.4 Evaluationmetrics

Given a set of weeds images, we have their corresponding
labels, i.e., G = (G1,G2, ..,GN ). By running a classifier,
weobtain a set of predicted labels, i.e., C = (C1,C2, ..,CN ).
We compare the two sets to measure the prediction perfor-
mance, exploiting the followingmetrics:accuracy,precision,
recall, and F1 score, which are defined as follows.

Accuracy: The metric is measured as the ratio of number
of correct prediction to the total number items

accuracy =
∑N

i matchi
∑N

i |Gi |
× 100%. (1)

Precision and Recall: Precision asserts the number cor-
rectly predicted instances, whereas recall expresses the
ability to find all relevant instances in the dataset. Themetrics
are computed using the following formula:

precisioni = matchi
|Ci | (2)

recalli = matchi
|Gi | . (3)

F1score (F-Measure): F1-score is computed as the har-
monic mean of Precision and Recall as follows:

F1 = 2 · precisioni · recalli
precisioni + recalli

. (4)

In the next section, we analyze the experimental results
by answering the research questions in Sect. 4.1.

5 Experimental results

We report and analyze the results obtained by conducting a
series of experiments on the given dataset in Sects. 5.1, 5.2,
and 5.3. Afterward, Sect. 5.5 discusses the probable threats
that may adversely impact on the validity of our findings.

5.1 RQ1:Which optimization function brings a better
classification performance for EfficientNet -B4?

We study the performance by calculating precision, recall,
and F1 scores for EfficientNet -B4, exploiting three optimiza-
tion functions, i.e., SGD, ADAM, and SLS. The obtained
results are shown in Table 3. To facilitate the reading, we
compare the performance category-wise, and use different
colors to mark the maximum values for each metric. In par-
ticular, the light red, light gray, and light green colors are
used to highlight the maximum precision, maximum recall,
and maximum F1, respectively.

The EfficientNet family uses either SGD, ADAM, or SLS
(Vaswani et al. 2019) as the loss function. The number of
epochs for the training phase is 120 iterations. Moreover,
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a start learning rate of 0.001 with rate decay of 10−1 after
every 30 epochs is set for SGD and ADAM. In fact, SLS
does not use learning rate, and its number of batch sizes is
smaller than that of SGD and ADAM. Although SLS helps
to converge faster in terms of numbers of training epochs, the
total time for training is not significantly reduced due to the
number of batch size settings and SLS seems not to achieve
a saturated prediction performance on the independent test
set. Due to these reasons, the file sizes of trained weights
using SLS optimizer are smaller than those of using either
SGDorADAM(see Table 2). Though SLS optimization does
not obtain the best performance, it is still useful to build a
baseline for further experimental benchmark.

Overall, the table demonstrates that using theADAMopti-
mization function yields a mediocre performance, compared
to its counterparts. To be concrete, we can see that ADAM
enables to achieve the maximum recall score only for some
categories, e.g., R=1.00 for Category Parkinsonia, Parthe-
nium, Prickly Acacia; Meanwhile, it does not help bring any
maximum values for Precision and F1. In contrast, compared
to ADAM, the SLS optimizer contributes to a much better
prediction, i.e., it allows EfficientNet -B4 to yield a good
performance in terms of Recall for many categories. More-
over, using SLS also is also beneficial to the Precision and
F1 scores.

In comparison to the others, the SGD optimization func-
tion brings the best performance with respect to all the
evaluation metrics. As we can see in the table, most of the
maximum Precision scores are obtained using SGD, i.e.,
there are several cellsmarkedwith the light red color, demon-
strating themost superior values. Similarly, for othermetrics,
i.e., Recall and F1, SGDdemonstrates its superiority by help-
ing EfficientNet -B4 achieve the best predictions, compared
to ADAM and SLS. Especially, by Recall, we can see that
SGD enables EfficientNet -B4 to yield a maximum perfor-
mance by many categories.

Altogether, the results in RQ1 reveals an interesting out-
come as follows. TheADAMoptimizer has beenwidely used
in various classification tasks; however, as we show in this
evaluation, at least for weed classification, it cannot gain the
upper hand compared to the other functions.

Answer to RQ1. Training EfficientNet -B4 with the SGD opti-
mizer brings the best prediction performance on the given dataset.

5.2 RQ2:Which optimization function brings a better
classification performance for EfficientNet -B4
Lite?

The precision, recall, and F1 scores obtained using Efficient-
Net -Lite4 are reported in Table 4. Similar to RQ1, we also
use the same set of colors to highlight the maximum values
for the quality metrics, i.e., Precision, Recall, and F1.

The table shows that training EfficientNet -Lite4 with
the ADAM optimization function brings a mediocre per-
formance, compared to using SGD and SLS. Running
EfficientNet -Lite 4 with SLS is beneficial to the final classi-
fication, as this configuration brings a good performance in
terms of Precision and Recall for various categories. Overall,
since most of the colored cells are related to SGD, we con-
clude that it is themost suitable optimization for this network
configuration, since it brings the maximum values for all the
evaluation metrics. In particular, with respect to recall, the
combination of EfficientNet -Lite4 and SGD yields the max-
imum score, i.e., 1.00 for eight among nine weed categories.
Concerning theF1 metric, SGDalso helpsEfficientNet -Lite4
get the maximum value by all the categories.

To further study the performance of the SGD function,
we show in Fig. 5a–d the confusion matrices for running
EfficientNet and EfficientNet -Lite4 with various transfer
learning strategies. The figures show that training Efficient-
Net -B4withNSandAdvPropbrings a superior performance,
compared to other configurations. To be concrete, by both
configurations, we obtain correct predictions for all the weed
categories, i.e., accuracy is equal to 1.00. Only by the Neg-
atives category, there are some miss predictions. Altogether,
this demonstrates that using the SGD optimizer is beneficial
to the final outcome.

Answer to RQ 2. The SGD optimization function is also bene-
ficial to weed classification as it helps EfficientNet -Lite4 obtain
the best prediction performance on the given dataset.

5.3 RQ3: Howdoes the proposed approach perform
compared to the baselines?

Transfer learning has shown to bring benefits to the classi-
fication with deep neural networks (Thenmozhi and Reddy
2019; Duong et al. 2020). In this work, we investigate if the
weights pre-trained obtained by various learning algorithms
are beneficial to the recognition of weeds. We ran the net-
works, i.e., EfficientNet -B4, EfficientNet -Lite4, ResNet-50
and Inception-V3 on the given dataset and obtained a set of
categories as results.We computed the evaluation metrics for
each of the systems following the descriptions in Sect. 4.4.
Table 5 reports the accuracy obtained by all the systems.

In relation to the two baselines, our approach gains amuch
better performance in terms of accuracy. To be concrete,
the first one (Olsen et al. 2019a) obtained 96.08% with the
best configuration using ResNet-50 , while the second base-
line (dos Santos Ferreira et al. 2019) obtained a maximum
accuracy of 94.96% using the VGG16 deep neural network.
In particular, using EfficientNet -B4 with the SGD function
andweights pre-trainedwithAdvProp andNoisy Student, we
get 99.26% as the prediction accuracy, the maximum score
compared to others.
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Table 4 Precision, Recall, and F1-score using EfficientNet -Lite4 with different optimizers

Categories

Chinee apple Lantana Negative Parkinsonia Parthenium Prickly acacia Rubber vine Siam weed Snake weed

SGD P 0.965 0.986 0.999 0.990 0.995 0.972 0.975 0.981 0. 985

R 0.995 1.000 0.982 1.000 1.000 1.000 1.000 1.000 1.000

F1 0.980 0.993 0.990 0.995 0.997 0.986 0.987 0.990 0.992

ADAM P 0.902 0.963 0.994 0.976 0.975 0.950 0.935 0.972 0.961

R 0.986 0.990 0.958 1.000 0.990 0.981 1.000 0.995 0.985

F1 0.942 0.976 0.976 0.988 0.983 0.965 0.966 0.983 0.973

SLS P 0.965 0.986 0.997 0.990 0.995 0.963 0.975 0.986 0.976

R 0.986 1.000 0.980 1.000 0.995 1.000 1.000 1.000 1.000

F1 0.9758 0.993 0.989 0.995 0.995 0.981 0.987 0.993 0.987

Fig. 5 Confusion matrices EfficientNet -B4 and EfficientNet -Lite4 with SGD
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Table 5 Accuracy for
EfficientNet -B4, EfficientNet
-Lite4, ResNet-50 , and
Inception-V3 (%)

Network Optimizer Transfer learning Accuracy (%)

EfficientNet -B4 SGD ImageNet 98.46

EfficientNet -B4 SGD AdvProp 99.26

EfficientNet -B4 SGD Noisy student 99.26

EfficientNet -B4 ADAM ImageNet 98.03

EfficientNet -B4 ADAM AdvProp 97.86

EfficientNet -B4 ADAM Noisy student 98.26

EfficientNet -B4 SLS ImageNet 98.94

EfficientNet -B4 SLS AdvProp 98.89

EfficientNet -B4 SLS Noisy student 99.03

EfficientNet -Lite4 SGD ImageNet 99.06

EfficientNet -Lite4 ADAM ImageNet 97.40

EfficientNet -Lite4 SLS ImageNet 98.89

RN-50 (Olsen et al. 2019a) ADAM ImageNet 96.08

IN-V3 (dos Santos Ferreira et al. 2019) ADAM ImageNet 94.96

Table 6 Precision, Recall, and F1-score (using the ADAM optimization function)

Categories

Chinee apple Lantana Negative Parkinsonia Parthenium Prickly acacia Rubber vine Siam weed Snake weed

B4 P 0.965 0.981 0.996 0.985 0.980 0.950 0.957 0.934 0.957

R 0.986 0.976 0.968 1.000 1.000 0.995 0.995 1.000 0.995

F1 0.975 0.978 0.982 0.992 0.990 0.972 0.975 0.966 0.975

Lite4 P 0.902 0.963 0.994 0.976 0.975 0.950 0.935 0.972 0.961

R 0.986 0.990 0.958 1.000 0.990 0.981 1.000 0.995 0.985

F1 0.942 0.976 0.976 0.988 0.983 0.965 0.966 0.983 0.973

RN-50 P 0.932 0.954 0.973 0.979 0.972 0.896 0.985 0.936 0.923

R 0.863 0.973 0.971 0.986 0.972 0.967 0.951 0.967 0.917

F1 0.896 0.964 0.972 0.983 0.972 0.930 0.968 0.951 0.920

IN-V3 P 0.950 0.958 0.972 0.993 0.916 0.916 1.000 0.838 0.864

R 0.832 0.921 0.966 0.959 0.972 0.934 0.923 0.986 0.924

F1 0.887 0.939 0.969 0.975 0.943 0.925 0.960 0.906 0.893

Table 7 Timing performance Configuration # of images Inference time (milliseconds) Speed (images/second)

EfficientNet-B4 21,375 33,668 635

EfficientNet_Lite4 21,375 27,321 782

ConvNext_Atto 21,375 21,495 994

ConvNext_Femto 21,375 21,517 993

ConvNext_Pico 21,375 21,559 991

ConvNext_Nano 21,375 21,668 987

CoatNet_Nano_RW_224 21,375 27,338 782

GCViT_XXTiny 21,375 30,828 693

ResNet-50 21,375 25,581 836

Inception-V3 21,375 21,928 975
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Table 8 Summary of recent state-of-the-art algorithms

Configuration # of Param. (M) # of MAC Trained weight size (MB) Acc. on ImageNet-1K (%) Acc. on DeepWeeds
test set (%)

ConvNeXt_Atto 3.70 551.16M 13.5 75.7 98.66

ConvNeXt_Femto 5.22 784.22M 19.4 77.5 99.11

ConvNeXt_Pico 9.05 1.37G 32.4 79.5 99.00

ConvNeXt_Nano 15.59 2.45G 59.9 80.9 99.11

CoAtNet_Nano_RW_224 15.00 2.28G 58.6 81.7 97.72

GCViT_XXTiny 12 1.94G 46.0 79.8 99.34

To further compare the approaches, from the predicted
categories, we calculated the precision, recall, and F1 scores
following Eqs. (2), (3), and (4), respectively. The final results
are shown in Table 6 and we also use the same colors in RQ1

tomark themaximumvalues. From the table, it is evident that
EfficientNet -B4 is the best classifier among others, as most
of the colored cells are concentrated on the rows representing
the evaluation metrics for this configuration. Both baselines
obtain an inferior performance compared to EfficientNet -B4
and EfficientNet -Lite4 with respect to precision, recall, and
F1.

For instance, Inception-V3 gets two maximum precision
scores for Category 3 and 6, and ResNet-50 gains only one
maximum recall value. In contrast,we can see thatmost of the
best predictions are achieved usingEfficientNet -B4.Also, by
EfficientNet -Lite4, there are maximum scores for precision,
recall, and F1.

Table 7 depicts the timing performance of the proposed
approach in comparison with the baselines. Among oth-
ers, ResNet-50 is far from optimal as it can predict the
results for 836 images per second. Inception-V3 is quite effi-
cient, as it can generate predictions for 975 images in 1 s.
However, ConvNext_Femto and ConvNext_Atto are more
efficient compared to Inception-V3 as they return 993 and
994 predictions within a second, respectively.

Answer to RQ3. Our proposed approach considerably outper-
forms the two baselines in all the considered test configurations
with respect to both prediction accuracy and timing efficiency.

5.4 Ablation study

To study the generalizability of our approach, we conduct
more experiments using state-of-the-art backbones includ-
ing the ConvNeXt family (Liu et al. 2022), CoAtNet (Dai
et al. 2021), and GCViT (Hatamizadeh et al. 2022) on the
DeepWeeds dataset. An Nvidia 1080Ti is not suitable for
real deployment because of its energy consumption. We
carried out more experiments on edge and very light archi-
tectures, including ConvNeXt_Atto, ConvNeXt_Femto, and

this allows us to bring more choices to deploy the research
result on devices with limited computational resources.

The supplement experiments are implemented using the
latest version of the timm codebase (Wightman 2019b).6

These configurations are summarized in Table 8. For all
the model settings, we use a transfer learning strategy with
trained weights from ImageNet-1K and the SGD optimiza-
tion function. The experimental results of the models on the
independent test set are shown in Fig. 6. Considering the
ConvNeXt family, the most optimistic performance belongs
to the ConvNeXt_Femto (see Fig. 6b), while it obtains the
accuracy of 99.11%, which is equal to an accuracy of
ConvNetXt_Nano (see Fig. 6d), but smaller than the Con-
vNeXt_Nano in terms of hyperparameter numbers, MAC,
file size of trained weight. The equal accuracy seems to be
saturated prediction performance using ConvNeXt variant.

Obviously, training and inference cost for ConvNeXt_
Femto are cheaper than that of ConvNeXt_Nano. Con-
vNeXt_Pico obtains the accuracy of 99.00%, while the
smallest architecture ConvNeXt_Atto brings an accuracy
of 98.66% (see Fig. 6a). Furthermore, GCViT_XXTiny
achieves the maximum accuracy of 99.34% on the indepen-
dent test set (see Fig. 6f. As shown in Fig. 6e, the second
biggest model CoAtNet_Nano_RW_224 gives a baseline
accuracy of 97.72%. This suggests that the synergy of archi-
tectures and typical datasets needs to be further investigated
in future work.

5.5 Threats to validity

This section explains the probable threats to internal and
external validity of our evaluation as follows.
Internal validity. These are internal factors that could influ-
ence the evaluation. A probable threat is the comparison with
the baselines. Such a threat isminimized, sincewe ran experi-
ments using the original implementations, aswell as executed

6 We gratefully acknowledge the models on top of original backbones,
including ConvNeXt_Atto, ConvNeXt_Femto, ConvNeXt_Pico, and
ConvNeXt_Nano, CoAtNet_Nano_RW_224, and GCViT_XXTiny
built by Ross Wightman.
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Fig. 6 Confusion matrices of recently state-of-the-art models on the independent test set of DeepWeeds
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the three systems on the same dataset, and compare them
using the same set of metrics.
External validity. The threat to external validity of the
approach is related to the generalizability of our findings,
i.e., whether they would still be valid outside the scope of
this study. We moderated the threat by evaluating Efficient-
Net and EfficientNet -Lite4 using a dataset collected in situ,
which covers different categories ofweeds. This aims at eval-
uating the feasibility of the approach in real-world settings.
Construct validity. The threats are pertinent to the experi-
mental configurations presented in the paper, with respect to
the simulated scenario to evaluate the system. We conducted
the evaluation using a training set and a test set, which might
not reflect well a real-world usage. To aim for a reliable com-
parison, we used the same settings to evaluate and compare
the systems.
Conclusion validity. This is related to the factors that may
influence the obtained outcome. The evaluation metrics,
namely accuracy, precision, recall, and F1 score, might pose
a threat to conclusion validity. To tackle the issue, we used
the same metrics for comparing our proposed approach with
the two baselines.

6 Conclusions and future work

In this paper, we proposed a solution to weeds classifi-
cation exploiting EfficientNet -B4 and EfficientNet -Lite4
as the engine, together with various transfer learning tech-
niques. Our proposed approach has been validated on a
real-world dataset. Through the empirical evaluation, we
see that the conceived framework outperforms two well-
established baselines in terms of various quality metrics. In
this respect, we concluded that the combination of Efficient-
Net and transfer learning brings a substantial improvement in
performance compared to using ResNet-50 and Inception-
V3. Interestingly, we found out that the ADAM optimizer
function, which has been widely used in deep neural net-
works, does not gain the upper hand compared to the SLS
and SGD functions. We come to the conclusion that the SGD
optimizer function is the most suitable one for EfficientNet,
when it comes to weed classification. Altogether, we con-
tribute to an advancement in the classification of weeds in
real-world scenarios.

We plan to deploy the system on a robot to detect weeds
from lively captured images. Such a robot is beneficial to
farmers in Vietnam as it helps them automatically find and
eliminateweeds on rice fields.We are also going to extend the
evaluation by considering additional weed datasets, as well
as compare EfficientNet and EfficientNet -Lite4 with other
neural network approaches. Last but not least, we will select
the most network model and export to Android, making it an
independent tool suitable to work on a smartphone.
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