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Abstract
The Inventory Routing Problem (IRP) is a combinatorial optimization problem that combines routing decisions with inventory
management. In this paper, an approach to solving the IRP is studied, which aims at using an external knowledge source
(a known good solution or user interaction) to improve the results attained by an evolutionary algorithm solving an IRP
instance. The proposed method improves the best solution found by the evolutionary algorithm by modifying schedules for
some of the retailers according to those present in the known good solution or to schedules provided by a domain expert. The
experiments shown that to improve the optimization results it suffices to perform a few repetitions of the knowledge import
procedure. This observation motivates further research on user-interactive optimization algorithms for the IRP, because the
number of interactions needed to improve the results can easily be handled by the user.

Keywords Combinatorial optimization · Knowledge-based optimization · Transportation optimization

1 Introduction

The Inventory Routing Problem (IRP) (Bertazzi and Sper-
anza 2012; Dantzig and Ramser 1959) is an extension of
popular transportation problems on graphs, such as the Vehi-
cle Routing Problem (VRP) (Laporte 2009), combining
routing optimization with inventory management optimiza-
tion (Aghezzaf et al. 2006; Archetti et al. 2007). The range of
applications includes perishable goods delivery (Alkaabneh
et al. 2020; Mirzaei and Seifi 2015), fuel delivery (Popović
et al. 2012), maritime transport (De et al. 2017) and trans-
portation of hazardous items (Timajchi et al. 2019). Many
formulations and extensions of the regular IRP were recently
studied in the literature (Archetti and Ljubić 2022), but the
most common version of the IRP focuses on planning the
distribution of a single product provided by a single supplier
to a given number of retailers. The supplier produces a given,
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constant quantity of the product each day, and the retailers
sell varying quantities of this product. Limited storage space
is available both at the supplier and the retailers. Storage
costs are calculated per unit of the product per day at a rate
varying from location to location. The objective in the IRP
is to optimize the inventory and transportation costs under
a number of constraints on the capacity of a fleet of vehicles
delivering goods, costs and limits of local inventories, etc.
A solution to the IRP is a delivery schedule for a planning
horizon of T days along with routes for vehicles delivering
the product.

Some recent extensions concern continuous time issues.
The paper by Lagos et al. (2022) proposes an approach based
on dynamic discretization of the continuous time. In Lagos
et al. (2020), a continuous time version of the IRP is con-
sidered. It extends the IRP with evaluating the retailer’s
storage capacity and product inventory at the time of the
delivery. This continuous-time IRP is solved using simple
time discretizations in combination with integer program-
ming models. In Touzout et al. (2022), the Time-Dependent
IRP (TD-IRP) was introduced that extends the routing part
of the problem by making the travel time between two loca-
tions depend on the departure time instead of being constant
as in the regular IRP. In Skalnes et al. (2022), time varying
demands were investigated and a branch-and-cut algorithm
based on a new mathematical formulation was introduced.
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In Agra et al. (2022), a continuous time version of the IRP
was studiedwith a single vehicle responsible for the transport
from a set of suppliers to a set of retailers and two models:
a location-event model and a vehicle-event model were pro-
posed. Even though, in most cases, a finite planning horizon
is considered, an infinite-horizon IRP has been formulated
as early as 1985 (Blumenfeld et al. 1985; Burns et al. 1985)
as an economic order quantity (EOQ) model.

Another group of extensions concerns closed-loop ver-
sions of the regular IRP. The paper by De and Giri (2020)
addresses a few distinct environmental policies for carbon
emission regulations and proposes an approach based on
mixed integer nonlinear programming. The paper by Dev
et al. (2017) studies inventory and production planning in
a closed-loop system concerning both manufacturing and
remanufacturing. It investigates a few inventory and produc-
tion planning models and a discrete event simulation.

In Yu et al. (2022), a new variant of IRP, namely Multi-
Vehicle Cyclic Inventory Routing Problem (MV-CIRP), was
introduced. It tries to find the subset of retailers, the number
of vehicles used, and the corresponding cycle time and route
sequence in order to minimize the total cost. The paper by
Yu et al. (2022) proposes amixed-integer nonlinear program-
ming model and a Simulated Annealing algorithm to solve
it.

In Sifaleras and Konstantaras (2020), several generaliza-
tions of the IRP were discussed, including the multi-product
case and the case with capacity constraints. This paper
presents solving the IRP in the context of Variable Neigh-
borhood Search (VNS).

Many formulations of the IRP are deterministic, but the
version of the problem with non-deterministic lead times
(Roldán et al. 2017) as well as the variant with stochastic
demands (Bertazzi et al. 2013) have also been studied. In
Mousavi et al. (2022), a stochastic production routing prob-
lemwas introduced and discussed in the context of perishable
products. This paper also addresses the uncertain demand and
aims to optimize also the costs of wasted products as well as
introduces penalties for non-fresh products. For solving such
a problem, a matheuristic algorithm was proposed.

Some other extensions of the IRP address also returnable
transport items (Iassinovskaia et al. 2017), where the supplier
is also in charge of collecting the empty returnable transport
items for reuse in the next cycles, as well as storage replen-
ishment routing problem (Çelik et al. 2022), where storage
replenishment operations require the transportation of items
to given item slots in the storage area. Moreover, Malladi and
Sowlati (2018) discuss sustainability aspects of the IRP.

Besides the extensions of the regular IRP aiming at opti-
mizing a single objective function, some multi-objective
approaches were also proposed. The paper by Rabbani et al.
(2021) introduces a multi-objective optimization approach
for solid waste management, focusing on recycling and

waste-to-energy technologies, where the objective functions
try to minimize the total net cost, greenhouse gas emissions,
and total waste collection and treatment time.

Recent approaches to the IRP found in the literature
are based on various algorithmic methods. A number of
them have been based on integer programming and methods
such as the branch-and-cut algorithm (Archetti et al. 2007).
Some of them use heuristics and metaheuristics (Bard and
Nananukul 2009; Hiassat et al. 2017; Lipinski and Michalak
2018; Wu et al. 2021) or iterative metaheuristics (Vadseth
et al. 2021). The paper by Mahjoob et al. (2022) uses genetic
algorithms (GA) for solving a multi-product, multi-period
inventory routing problem. Hybrid methods have also been
proposed, such as (Diabat et al. 2017) combining simulated
annealing with direct search or (Liu and Chen 2011) with
tabu search. Hybrid algorithms combining simulation and
heuristics were proposed in Juan et al. (2014) and Juan et al.
(2015).

In this paper, the approach used to solve the IRP is
a metaheuristic optimization algorithm optimizing the deliv-
ery schedules. Key points summarizing the contents of this
paper are:

– The paper studies the possibility of importing knowledge
from an external source in order to improve the optimiza-
tion results. Knowledge can be imported from a known
good solution (for example, when a certain organization
of deliveries is established at a company) or by interact-
ing with the user (if a practitioner in the field wants to
interactively improve the solutions). In the context of this
study, knowledge imported into the optimization process
is represented as schedules for individual retailers, which
are either copied from a known good solution or are pro-
vided by the user.

– A hybrid optimization algorithm is used which com-
bines evolutionary optimization of delivery schedules
with optimization of routes using the Concorde TSP
Solver (William 2020).

– Feasibility-preserving genetic operators (crossover,
mutation) are used, which ensure that newly generated
solutions are feasible and thus the population always con-
tains feasible solutions only.

– Apart from well-known benchmarks proposed in the
paper by Archetti et al. (2007), hard IRP instances
evolved in the paper byMichalak (2021b) are used. These
hard instances were obtained by running an evolutionary
algorithm which evolved IRP instances with the goal of
making these instances harder, that is, maximizing the
solving time obtained using state-of-the-art mathemati-
cal problem solvers such as CPLEX. The solving times
increased, with respect to the instances from the paper
by Archetti et al. (2007), from 65.22 up to 100327.92
times (depending on the IRP instance solved) (Michalak
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2021b). Therefore, these hard instances can be consid-
ered difficult to solve using state-of-the-art mathematical
problem solvers.

– The evolutionary algorithm using knowledge import pro-
posed in this paper is not likely to deteriorate the results
(a worse result was only observed in 4 cases out of
720). In about 50% of tested cases, the knowledge import
improved the optimization results and in the remaining
cases the results were not statistically different for the
algorithm with and without the knowledge import.

– For the instances proposed in the paper by Archetti et al.
(2007) the knowledge import mechanism improved the
results in about 66% of cases in a scenario with only one
knowledge import, in which 10 changes of the sched-
ules for individual retailers were attempted. For theHard
instances evolved in the paper by Michalak (2021b) the
knowledge import improved the results in about 16% of
cases and never made the results worse. This means, that
if the user can be expected to provide 10 good sched-
ules for individual retailers in just one interactive session
during the entire algorithm’s runtime, the optimization
results can be improved without the risk of degrading
the performance of the proposed method. Therefore, the
workload of the user should not be too high, and the
proposed approach appears to be suitable for designing
user-interactive optimization methods for the IRP.

– For theHard instances evolved in the paper by Michalak
(2021b) the knowledge-based EA presented in this paper
attained the best results among all the tested methods
within the running time limit of maxt = 3600s (1h). This
shows that the proposed method can be effectively used
for solving hard IRP instances for which mathematical
programming methods require a very long running time,
and known metaheuristic methods are not competitive to
the one proposed here.

The rest of this paper is structured as follows. Section2
presents the formulation of the IRP studied in this paper.
Section3 discusses the optimization algorithms used in this
paper to solve the IRP. Section4 presents the experiments
and results. Section5 concludes the paper.

2 The inventory routing problem
formulation

In this paper, a single-depot, single-commodity and single-
vehicle version of the IRPwith the up-to-level replenishment
policy presented by Archetti et al. (2007) is studied. A sin-
gle commodity is delivered from one supplier (depot) to n
retailers with one vehicle with capacity C . The deliveries
have to be planned within a horizon of H consecutive time
periods (days). Variables rs,t for s = 0, . . . , n, t = 1, . . . , H

t = 1: 1 2 7 5 3
t = 2: 6 7 8 4 9
t = 3: 5 7

Fig. 1 The optimal solution to the hard3n10 IRP instance generated in
the paper by Michalak (2021b)

represent the production at the supplier and sales at the retail-
ers. The index s = 0 is assigned to the supplier, so r0,t
is the production and rs,t for s > 0 are the sales on day
t . Inventory levels at the supplier are represented by vari-
ables Bt , t = 1, . . . , H . There is no upper limit on Bt ,
which means that the supplier always has enough storage
capacity for the produced goods, and the lower bound is
∀t = 1, . . . , H : Bt ≥ 0, which means that stock-out at
the supplier is not allowed. Inventory levels at the retailers
are represented by variables Is,t and the minimum and max-
imum inventory levels denoted Ls and Us are constant in
time, but potentially different for every retailer. Therefore,
the inventory level constraints are represented by inequali-
ties:

∀s = 1, . . . , n,∀t = 1, . . . , H : Ls ≤ Is,t ≤ Us . (1)

Following the work of Archetti et al. (2007) we set ∀s =
1, . . . , n : Ls = 0, which means that no minimum inventory
levels are required at the retailers, except for the no stock-out
requirement. A solution to the IRP consists of the routes for
the vehicleπt and the delivery sizes xs,t for s = 1, . . . , n, t =
1, . . . , H . Each route πt is a permutation of a subset of the n
retailers— those, which are visited on day t . Figure1 shows
the optimal solution to the hard3n10 IRP instance generated
in the paper by Michalak (2021b).

The tour of the vehicle always starts and ends at the sup-
plier, so the supplier does not have to be explicitly included in
πt , but the transportation cost (6) includes the costs of driving
from the supplier to the first retailer in πt and from the last
retailer inπt back to the supplier. In this paper, the up-to-level
replenishment policy is used, so only the routes (permuta-
tions) πt are used to represent solutions and the delivery
sizes are calculated as:

xs,t =
{
Us − Is,t if s ∈ πt

0 if s /∈ πt
, (2)

The maximum vehicle capacity C cannot be exceeded by
all the goods delivered on each day:

∀t = 1, . . . , H :
n∑

s=1

xs,t ≤ C . (3)

Location-specific inventory costs hs , s = 0, . . . , n, are
assumed to be constant in time and the overall storage costs
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are the costs of storing the commodity until the next planning
horizon arrives:

H+1∑
t=1

h0Bt +
n∑

s=1

H+1∑
t=1

hs Is,t . (4)

Transportation costs are calculated using costs ci, j of trav-
eling between each pair of points i, j = 0, . . . , n. In this
paper, these costs are calculated as rounded Euclidean dis-
tances between locations given as coordinates as, bs ∈ R

2,
s = 0, . . . , n:

ci, j =
[√

(a j − ai )2 + (b j − bi )2
]

, (5)

where [·] denotes the operation of rounding a given number
to the nearest integer. The cost c(πt ) of completing a given
route πt = [πt,1, . . . , πt,k] is:

c(πt ) = c0,πt,1 +
k−1∑
i=1

cπt,i ,πt,i+1 + cπt,k ,0 . (6)

As mentioned above, when the up-to-level replenishment
policy is used, a solution to the IRP is fully described by
a sequence of routes {πt }t=1,...,H . To evaluate such solution,
the deliveries xs,t for each day have to be calculated using Eq.
(2). Given the initial inventory levels Is′,0, deliveries xs,t , and
production/consumptions rs,t , the inventory levels Bt and Is,t
are determined. The evaluation of the solution is obtained by
adding the costs of all routes πt , t = 1, . . . , H calculated
using Eq. (6) and the inventory costs calculated using Eq.
(4).

In order not to clutter the paper, for the mathematical for-
mulation suitable forMIP solvers readers are referred to Eqs.
(1–16) in the work of Archetti et al. (2007).

Denoting M = 1, . . . , n, M′ = M ∪ {0} and assuming
that the production and sales are constant in time: ∀s′ =
0, . . . , n,∀t : rs′,t = r ′

s an instance of the IRP considered in
this paper can be defined as a tuple of the following values:

I = 〈n, H ,C, as′ , bs′ , rs′ , Ls,Us, Is′,0, hs′ 〉s∈M,s′∈M′ ,(7)

where n—the number of retailers, H—the planning hori-
zon,C—the vehicle capacity, as′ , bs′—the coordinates of the
locations (the supplier and the retailers), rs′—the production
(at the supplier for s′ = 0) and sales (at the retailers for
s′ > 0), Ls—the lower inventory levels at the retailers,Us—
the upper inventory levels at the retailers, Is′,0—the initial
inventory levels at the supplier and retailers, hs′—location-
specific inventory costs at the supplier and retailers.

The IRP is an NP-hard problem, because it is a general-
ization of the Traveling Salesperson Problem (TSP), which
is obtained from the IRP by setting H = 1,C = ∞, I0,0 ≥ n,

Is,0 = 0 and rs = 1 for s = 1, . . . , n, and hs = 0 for
s = 0, . . . , n. For these settings, only the transportation costs
are considered and the vehicle has to visit all the retailers (and
thus also the supplier) on the same day.

In the discussion in subsequent sections the following ter-
minology will be used:

A schedule is a sequence of days on which a given retailer
is visited. For example, for the solution shown in Fig. 1 the
schedule for retailer 1 is [1], for retailer 5 it is [1, 3], and for
retailer 7 it is [1, 2, 3].

A route is a sequence of retailers visited on a given day.
For example, for the solution shown in Fig. 1 the route for
day 1 is [1, 2, 7, 5, 3].

A solution consists of H routes, one per each day within
the planning horizon. The optimal solution to the hard3n10
IRP instance (with H = 3) generated in the paper by Micha-
lak (2021b) is shown in Fig. 1.

3 Knowledge-based optimization for the IRP

The optimization algorithm proposed in this paper is a hybrid
algorithm combining an evolutionary algorithm (EA) with
the Concorde TSP Solver (William 2020) which optimizes
the routes. The evolutionary algorithm is based on the clas-
sical genetic algorithm scheme with a recursive heuristic
used for initializing the population and feasibility-preserving
genetic operators. This algorithm involves a knowledge
import step, which improves the best solution found by the
EAbyuser interaction or by importing a knowngooddelivery
schedule for one of the retailers. In the following sections, the
details of the proposed method are presented. An introduc-
torySect. 3.1 lists procedures used in the proposedmethod. In
Sect. 3.2 the heuristic used for obtaining the base solution for
population initialization is described. Section3.3 discusses
the details of the optimization algorithm. Section3.4 presents
the mechanism for importing knowledge into the optimiza-
tion process.

3.1 Procedures used in the proposedmethod

The optimization algorithmused in this paper is an evolution-
ary algorithm (Algorithm 4) based on the classical genetic
algorithm scheme. In this algorithm, the SolveTSP procedure
is used for optimizing the routes in each solution using the
Concorde TSP Solver (William 2020). The ImportKnowl-
edge procedure (Algorithm 5) improves the best solution
found by the EA by user interaction or by importing infor-
mation from a known good solution.
Procedures used for population initialization are:

BaseSolution (Algorithm 1)— the recursive heuristic for
generating the base solution.
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AddRetailerToSolution (Algorithm 2) called recursively n
times in the BaseSolution procedure to add schedules for n
retailers in a random order to the base solution.

GeneratePossibleSchedules (Algorithm 3) used in the
AddRetailerToSolution procedure for recursively generating
all possible delivery schedules for a given retailer which do
not cause the vehicle to be overloaded.

FeasibleDateChangeMutation—a mutation operator pro-
posed in the paper by Michalak (2021a), which moves
retailers between different days, ensuring that the solution
remains feasible.
Procedures used by the main loop of the evolutionary algo-
rithm are:

Evaluate—evaluates a given solution by adding the costs
of all routes πt , t = 1, . . . , H calculated using equation (6)
and the inventory costs calculated using equation (4). After
this procedure is called for a solution x , the evaluation (the
total cost) of this solution can be obtained by referring to the
attribute x .Eval.

Reduce—reduces the union of the current population
(Npop solutions) and the offspring generated by the genetic
operators (Npop new solutions) back to the required popu-
lation size Npop − 1 (leaving room for a copy of the best
specimen).

Reproduce—applies the crossover andmutation operators
to obtain the next population from the current one.

CopyBestSpecimen—creates a copy of the best specimen
from a given population (i.e. the solution with the lowest
cost).

FindWorstSpecimen—finds the index in the population at
which the worst specimen can be found (i.e. the solution with
the highest cost).
Procedures used for manipulating schedules for individual
retailers are:

AddRetailerDays—adds the specified retailer s to the
solution x on days given in a schedule S. For example if x is
the solution presented in Fig. 1, then AddRetailerDays(x , 2,
[2, 3]) produces a solution:

t = 1: 1 2 7 5 3
t = 2: 6 7 8 4 9 2
t = 3: 5 7 2

Note, that the routes with the added retailer are not optimized
until the SolveTSP procedure is called for the solution x .

GetKnownDays—imports knowledge from an external
source by either copying a schedule for a certain retailer s∗
from a known good solution or by consulting the user and
asking for a proposed schedule for that retailer. Either way,
a schedule for the retailer s∗ (a sequence of days on which
this retailer should be visited) is returned.

Algorithm 1: The BaseSolution procedure - the recur-
sive heuristic for generating the base solution used for
initializing the population in the evolutionary algorithm.

Inputs:
I - An IRP instance defined as in the equation

(7).

Output:
The base solution generated by this
heuristic.

// Start with an empty solution - H empty routes.
x := {[], [], . . . , []}

// Vehicle loads for the H days are initially zero.
V := [0, 0, . . . , 0]

// A random permutation of n retailers.
π := RandPerm(I.n)

// Call the AddRetailerToSolution procedure (Algo-
// rithm 2) which recursively builds the solution.
xbase := AddRetailerToSolution(I, x , V , π , 0)

// Return the generated base solution.
return xbase

GetRetailerDays—returns the days on which a given
retailer is visited in a given solution. For example, if x is
the solution presented in Fig. 1, then GetRetailerDays(x , 5)
returns [1, 3].

SortSchedules—sorts schedules generated for a retailer
by the GeneratePossibleSchedules procedure (Algorithm 3),
placing shorter schedules (with fewer delivery days) first.
Schedules of equal length (the same number of delivery days)
are sorted by placing those with earlier delivery days first.

SupplyAtTheLatestDate—generates a schedule for
a retailer using the Supply at the Latest Date (SLD) heuristic
previously used in the papers (Lipinski and Michalak 2018,
2019; Michalak 2021a), which determines the latest possible
days at which the deliveries have to be made to a given
retailer in order to avoid stockout.

If processing elements of a given set in a random order is
necessary, the RandPerm procedure is used, which generates
a random permutation of a given length.

3.2 Recursive heuristic for generating the base
solution

The recursive heuristic is used to obtain the base solution
which is used in the evolutionary algorithm to initialize
the population. The initial population consists of the base
solution and its mutated copies. The recursive heuristic
implemented in the BaseSolution procedure (Algorithm 1)
generates the base solution by adding schedules for n retailers
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Algorithm 2: The AddRetailerToSolution procedure.
Inputs:

I - An IRP instance defined as in the equation (7).
x - A partial solution (a sequence of H incomplete routes).
V - Vehicle loads on H days of the planning horizon calculated for the incomplete routes in x .
π - A random permutation which determines the order in which to add retailers to the solution.
i - The retailer to add (an index used to select an element from π).

Output:
A full solution (a sequence of H complete routes).

// The retailer to add selected from the permutation π
s := π[i]

// The day on which the initial inventory runs out for retailer s.

d0 :=
⌊I.Is,0−I.Ls

I.rs

⌋
+ 1;

// Deliveries are only needed if the initial inventory is not enough.
if d0 < H then

// Generate all possible delivery schedules for the retailer s.
// Each schedule is a set of days on which the retailer s is visited.
J := GeneratePossibleSchedules(I, s, ∅, 1, V , I0,0, Is,0)
if |J | = 0 then

return null

// Sort the schedules, placing shorter schedules (with fewer delivery days) first.
// Schedules of equal length are sorted by placing those with earlier delivery days first.
SortSchedules(J )

if i < I.n then
for j := 1, . . . , |J | do // Try the schedules in the sorted order.

x ′ := x ; V ′ := V ; q := Is,0
for t := 1, . . . , H do

if t ∈ J [ j] then
x ′[t] := x ′[t] ∪ {s} // Add the retailer s to the route for day t.
q ′ := Us − q // The quantity delivered on day t.
q := q + q ′ // The inventory level set to Us .
V ′[t] := V ′[t] + q ′ // Increase the vehicle load on day t. Note, that schedules

// generated by the GeneratePossibleSchedules procedure
// never exceed the vehicle capacity.

q := q − rs

// Recurse to add the next retailer.
x ′′ := AddRetailerToSolution(I, x ′, V ′, π , i + 1)
if x ′′ = null then

return x ′′

else
// Retailer s is the last one - just add the first schedule generated for s.
for t ∈ J [1] do // For each day t in the schedule J [1]

x[t] := x[t] ∪ {s} // add the retailer s to the route for day t.

return x

else
// No deliveries needed...
if i < I.n then

// ... and we can proceed to the next retailer.
return AddRetailerToSolution(I, x , V , π , i + 1)

else
// ... and s is the last retailer - the solution is complete.
return x

in a random order using n recursive calls to the AddRetail-
erToSolution procedure (Algorithm 2) which is started with
an empty solution and a random permutation which deter-
mines the order in which schedules for retailers are added.
In the AddRetailerToSolution procedure the GeneratePossi-
bleSchedules procedure (Algorithm 3) is used for recursively
generating all possible delivery schedules for a given retailer
which do not cause the vehicle to be overloaded.

3.3 Optimization algorithm

In this paper, a hybrid optimization algorithm is used which
combines evolutionary optimization of delivery schedules
with optimization of routes using the Concorde TSP Solver
(William 2020). The algorithm uses feasible crossover and
mutation operators described by Michalak (2021a) which
ensure that only feasible solutions are generated. The genetic
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Algorithm 3: The GeneratePossibleSchedules procedure.
Inputs:

I - An IRP instance defined as in the equation (7).
s - The retailer for which to generate schedules.
D - A partial schedule for retailer s (days assigned to s so far).
t - The day which is considered to be added to D.

When t > 1, days 1, . . . , t − 1 were already considered for addition to D.
V - Vehicle loads on H days of the planning horizon.
i0 - The inventory level at the supplier at the beginning of day t .
is - The inventory level at the retailer s at the beginning of day t .

Output:
A set of generated schedules for retailer s.
Each schedule is a set of days on which the retailer s is visited.

// If t is the next day after the planning horizon then D is a full schedule for retailer s.
// This schedule can be added to the set of possible schedules if no stockout at the supplier occurs.
if t = I.H + 1 then

if i0 ≥ 0 then
return {D}

else
return ∅

// If stockout at the supplier occurs at day t then D is not a valid partial schedule.
if i0 < V [t] then

return ∅

// Possible schedules will be added recursively to J .
J := ∅

// Schedules without day t can be added if there is no stockout at retailer s on day t.
if is ≥ I.rs + I.Ls then

J := J∪ GeneratePossibleSchedules(I, s, D, t + 1, V , i0 + I.r0 − V [t], is − I.rs )

// Schedules with day t can be added if there is no stockout at the supplier and vehicle capacity is not exceeded on day t.
q ′ := I.Us − is // The quantity required to make the inventory full at retailer s.
if (V [t] + q ′ ≤ i0) ∧ (V [t] + q ′ ≤ I.C) then

J := J∪ GeneratePossibleSchedules(I, s, D ∪ {t}, t + 1, V , i0 + I.r0 − V [t] − q ′, is − I.rs + q ′)

// The result is the set of schedules generated recursively with and without day t.
return J

operators used in this paper are the following (for details
readers are referred to the paper by Michalak (2021a)):

Feasible Retailer Schedules Crossover which works by
uniformly mixing delivery schedules for individual retailers
obtained from two parent solutions.

Feasible Date Change Mutationwhich considers retailers
in a random order selecting, for each retailer, one date when
it is visited, and moving this retailer to some other feasible
date.

Feasible Add Or Remove Retailer Mutation which ran-
domly applies one feasible change to the mutated solution:
an addition or removal of a retailer.

Because the population initialization procedure generates
only feasible solutions and genetic operators preserve the

feasibility, no mechanisms for handling infeasible solutions,
such as repair operators, are needed in the proposed algo-
rithm. The most important characteristics of the algorithm
used in this paper are:

– Population initialized by generating the base solution
using a recursive heuristic described in Sect. 3.2 which
is subsequently mutated using the Feasible Date Change
Mutation operator. Such population initializationmethod
ensures that the initial population consists only of feasi-
ble solutions.

– Feasibility-preserving genetic operators (crossover,
mutation), which ensure that newly generated solutions
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Algorithm 4: The optimization algorithm used in this
paper.

Inputs:
I - An IRP instance defined as in the equation

(7).
Npop - Population size.
maxFE - Stopping condition: the maximum num-

ber of solution evaluations.
Nimp - The number of knowledge imports to per-

form during the algorithm’s run.
Natt - The number of attempts to improve the

solution in each knowledge import.
Output:

xbest - The best solution found by the algorithm.

// Generate the base solution.
xbase := BaseSolution(I)
SolveTSP(xbase)
Evaluate(xbase); Neval := 1

// Initialize the population using the base solution
// and its mutated copies.
P := {xbase}
for p := 1, . . . , Npop − 1 do

x := FeasibleDateChangeMutation(xbase)
SolveTSP(x)
Evaluate(x); Neval := Neval + 1
P := P ∪ {x}

xbest := CopyBestSpecimen(P)

// The main loop
g := 1
imp := 1
do

// Knowledge import performed at equal intervals

if Neval ≥ imp
Nimp+1 maxFE then

ximp := ImportKnowledge(I, xbest , Natt )
if ximp .Eval < xbest .Eval then

iworst := FindWorstSpecimen(P)
P[iworst ] := ximp

imp := imp + 1

// Reproduction (crossover, mutation)
P ′ := Reproduce(P)
for x ∈ P ′ do

SolveTSP(x)
Evaluate(x); Neval := Neval + 1

// Reduction of the population size
P := Reduce(P ∪ P ′, Npop − 1)
P := P ∪ {xbest }
xbest := CopyBestSpecimen(P)

// Next generation
g := g + 1

while Neval < maxFE
xbest := CopyBestSpecimen(P)
return xbest

Algorithm 5: The ImportKnowledge procedure.

Inputs:
I - An IRP instance defined as in the equation

(7).
x0 - The solution to improve.
Natt - The number of attempts to improve the

solution.
Output:

x∗ - An improved solution.

// The best improved solution found by the algorithm.
x∗ := x0

// A random permutation used to select retailers
// without repetitions.
π∗ := RandPerm(I.n)

// Take each retailer in turn as the one for which
// the schedule is taken from the knowledge source.
for i := 1, . . . , Natt do

s∗ := π∗[i]
// Start with an empty solution - H empty routes.
x := {[], [], . . . , []}
// First, add the schedule for retailer s∗ from
// the knowledge source.
S := GetKnownDays(s∗)
AddRetailerDays(x , s∗, S)

// Add the schedules for other retailers from x0
// in a random order.
π := RandPerm(I.n)
for j := 1, . . . , I.n do

s := π [ j]
if s = s∗ then

S := GetRetailerDays(x0, s)
AddRetailerDays(x , s, S)

SolveTSP(x)
Evaluate(x)
if x .Eval < x∗.Eval then

x∗ := x

return x∗

are feasible and thus the population always contains only
feasible solutions.

– Fitness calculated based on the solution costs normalized
to [0, 1]. That is f i tness(x) = 1 − Norm( f (x), 0, 1),
where the Norm function normalizes the solution costs
in the current population to [0, 1]. The evolutionary algo-
rithm tries to maximize f i tness(x) thereby minimizing
the cost f (x).

– Elitism mechanism, preserving the best solution found
so far.

– Mating pool selection based on a binary tournament with
respect to the fitness.

– Hybridization with the Concorde TSP Solver (William
2020). The evolutionary algorithm optimizes delivery
schedules, that is, decides which retailers are visited on
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which days. The optimization of the route of the vehicle
on each day is done by the Concorde solver.

The working of the optimization algorithm is shown in
Algorithm 4.

3.4 Knowledge import

The knowledge import improves the best solution found so
far by the evolutionary algorithm xbest by incorporating infor-
mation from an external knowledge source, which can be
user interaction or a known good solution to the solved prob-
lem instance. It is performed by changing schedules (days
on which the retailers are visited) for individual retailers in
the xbest solution to those provided by the knowledge source.
The knowledge import is implemented as the ImportKnowl-
edge procedure (Algorithm 5), which performs Natt attempts
to improve the xbest solution by:

1. Selecting one of the retailers s∗ ∈ M randomly without
repetitions.

2. Getting a schedule for the retailer s∗ from the exter-
nal knowledge source. This step is performed by the
GetKnownDays procedure called in Algorithm 5, which
either copies the schedule for the retailer s∗ from a known
good solution or consults the user and asks for a proposed
schedule for that retailer.

3. Copying the schedules for all the retailers in M\{s∗}
from the solution xbest. If adding a schedule from xbest
for a certain retailer causes the solution to be infeasible
the schedule for this retailer is generated using the Sup-
plyAtTheLatestDate heuristic instead.

From the Natt attempts to improve the solution the best
one x∗ is selected (in Algorithm 5) and, if it is better than
xbest, it replaces the worst solution in the EA population (in
Algorithm 4). This approach is adopted in order to protect
the diversity of the population. Because both x∗ and xbest are
kept, both the information generated by the evolutionary opti-
mizer and coming from the external knowledge source can
be used to generate new solutions in the evolving population.
The worst solution in the population, which is replaced by
x∗, would probably be removed by the selection mechanism
anyway, so it can be assumed that no valuable information is
lost because of this replacement.

4 Experiments and results

The experiments presented in this paper were aimed at deter-
mining if importing knowledge from an external source can
be beneficial for the optimization process. It was assumed
that the knowledge import can be performed using a known

good solution to the problem (e.g. establishedbypractitioners
in the field) or by user interaction. In both cases the import
is performed by modifying schedules for some retailers in
the best solution found by the evolutionary algorithm. This
modification can be performed by the user or by setting the
days on which these retailers are visited to those which are
assigned to these retailers in a known good solution.

In the experiments, the parameters of the evolutionary
algorithm were tuned (Sect. 4.1), the running times of the
evolutionary algorithm solving the hardest IRP instance
obtained in the paper by Michalak (2021b) were analyzed
and compared to the running times of the CPLEX solver
(Sect. 4.2), and the effectiveness of the proposed knowledge
import method was tested (Sect. 4.3). In Sect. 4.4 the pro-
posed method was compared to metaheuristics used in the
literature to solve the IRP and to the mathematical program-
ming model proposed in the paper by Archetti et al. (2007)
in which the Archetti 2007 LC and Archetti 2007 HC IRP
instances were provided.

4.1 Parameter tuning

In this paper, an evolutionary algorithmdescribed in Sect. 3 is
used for solving the IRP. This algorithm is parameterized by
setting the population size Npop, crossover probability Pcross,
and mutation probability Pmut. In order to ensure the best
performance of the optimization algorithm, these parameters
were tuned using the grid search approach. The values of the
parameters were selected from the sets of candidate values:
Npop ∈ {50, 100, 200, 500}, Pcross ∈ {0.5, 0.6, 0.7, 0.8, 0.9,
1.0}, Pmut ∈ {0.02, 0.04, 0.06, 0.08, 0.10}. Apart from these
three numerical parameters, the Reduce procedure used in
Algorithm 4 can work in one of four modes:

– Elitism—The best solutions are selected from the union
P ∪ P ′ of the current population P and the offspring P ′.

– Fitness—Solutions are selected from the union P ∪ P ′
of the current population P and the offspring P ′ using
the roulette-wheel selection with the probabilities pro-
portional to the fitness.

– New—Only the offspring P ′ are kept.
– Rank—Solutions are selected from the union P ∪ P ′
of the current population P and the offspring P ′ using
roulette-wheel selection with the probabilities propor-
tional to the rank calculated with respect to the increasing
fitness. The solution with the worst (lowest) fitness gets
a rank of 1, and the solution with the best (highest) fit-
ness gets a rank of |P ∪ P ′|, where |P ∪ P ′| denotes the
number of solutions in the current population P and the
offspring P ′ population taken together. In the case of two
solutions with the same fitness, two consecutive ranks are
assigned at random, so one solution gets a rank r and the
other one r+1. After the ranks are assigned, the roulette-
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Table 1 Parameters of the
distribution of the running times
observed in the
parameter-tuning phase of the
experiments

Parameter Time (s)

Min 3637.0

Max 23448.0

Median 6430.5

Mean 7434.9

SD 3270.6

wheel selection is performed, in which each solution has
the probability of being selected proportional to its rank.

For each reduction mode and a triple of the parameters
Npop, Pcross, and Pmut, 10 runs of the test were performed
using the IRP instance hard4n35 constructed in the paper
by Michalak (2021b). This instance was selected because it
was the hardest one found in that paper, that is, it required the
longest solving timeusing theCPLEXsolver. The parameters
for which the best (lowest) average cost of 5049.338 was
obtained were selected. The best settings were: the Elitism
reduction mode, Npop = 200, Pcross = 0.8, Pmut = 0.1.

4.2 Running times

The solving timeusing theCPLEXsolver for the IRP instance
hard4n35 reported in the paper by Michalak (2021b) was
354681.28 s (more than 4 days) on a machine with the Intel
Xeon E5-2670v3 (Haswell) CPUs running at 2.3 GHz. The
optimal cost attained within this running time was 5043.55.
During the parameter tuning phase of the experiments pre-
sented in Sect. 4.1, 480 runs of the evolutionary algorithm
were performed (4 reduction modes × 4 population sizes ×
6 crossover probabilities × 5 mutation rates). Parameters of
the distribution of the running times observed in these 480
runs on a machine with the same specification (i.e. the Intel
Xeon E5-2670v3 (Haswell) CPUs running at 2.3 GHz) are
presented in Table 1. In Fig. 2 the histogram of the running
times is presented. Clearly, the running times of the optimiza-
tion algorithm studied in this paper are competitive to those
of the CPLEX solver. Themaximum running time for the EA
is less than 7% of the running time for CPLEX (23448.0 s).
The majority of timings is much lower than that.

4.3 Experiments with knowledge import

The knowledge import mechanism was tested using the
optimization algorithm presented in Algorithm 4 with the
parameters tuned in Sect. 4.1. The number of knowledge
imports was set to Nimp = 0, 1, 2, 5, and 10. The num-
ber of attempts to improve the solution in each knowledge
import was set to Natt = 10 and Natt = I.n. The constant
value Natt = 10 is a reasonable choice for a user-interactive
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Fig. 2 The histogram of the running times observed in the parameter-
tuning phase of the experiments

approach, because with such setting the user has to suggest
10 new schedules for different retailers, which is not overly
time consuming. The setting Natt = I.n can be a good
choice for importing knowledge from a known good solu-
tion, because it allows trying to import the schedule for
each of the retailers in turn. With these settings, the knowl-
edge import can be expected to have a small impact on the
algorithm’s running time, because Nimp · Natt = 350 new
solutions are imported for the maximal values of Nimp = 10
and Natt = I.n = 35, which is 3.5% of the stopping criterion
value of maxFE = 10000 solution evaluations.

The experiments were performed using three sets of IRP
instances:

– Archetti 2007 LC—IRP instances with the planning hori-
zon H = 6 and low inventory costs proposed in the paper
by Archetti et al. (2007). This set of IRP instances con-
tains 5 instances for each number of retailers n = 5, 10,
15, 20, 25, and 30.

– Archetti 2007HC—IRP instanceswith the planning hori-
zon H = 6 andhigh inventory costs proposed in the paper
by Archetti et al. (2007). This set of IRP instances con-
tains 5 instances for each number of retailers n = 5, 10,
15, 20, 25, and 30.

– Hard—IRP instances with the planning horizon H =
3 evolved in the paper by Michalak (2021b) from the
Archetti 2007 LC instances with the planning horizon
H = 3. This set of IRP instances contains 5 instances
for each number of retailers n = 10, 15, 20, 25, 30, and
35. These instanceswere generated using an evolutionary
algorithm in such a way that the solving time with state-
of-the-art mathematical problem solvers was very long.
The solving times using the CPLEX solver on a machine
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Table 2 A comparison of the
results obtained using the
knowledge import to the results
obtained without the knowledge
import

Dataset Archetti 2007 LC Archetti 2007 HC Hard All
Natt 10 I.n 10 I.n 10 I.n

Num. worse (−) 0 0 2 2 0 0 4

Num. equal (=) 39 37 43 41 100 93 353

Num. better (+) 81 83 75 77 20 27 363

with the Intel Xeon E5-2670v3 (Haswell) CPUs running
at 2.3 GHz reported in the paper by Michalak (2021b)
ranged from238.93 s (for the hard4n10 instancewith n =
10 retailers) to 354681.28 s (for the hard4n35 instance
with n = 35 retailers). The solving times for the Hard
instances increased, with respect to Archetti 2007 LC,
instances from 65.22 up to 100327.92 times (depending
on the IRP instance solved). Therefore theHard instances
can be considered difficult to solve using state-of-the-art
mathematical problem solvers.

For each problem instance and the pair of parameters Nimp

and Natt the optimization algorithm was run 200 times. In
order to ensure repeatability of the experiments, the sched-
ules for retailers were imported from optimal solutions to
these problem instances found by the CPLEX solver instead
of user interactions. A summary of the results is presented
in Table 2. In order to test if the knowledge import affected
the optimization results, the Friedman test was applied to the
results obtained for each dataset and each value of Natt with
groups ("treatments") representing different values of Nimp.
The null hypothesis of this test is that the medians of the opti-
mization results are equal across all groups (values of Nimp).
The results of the Friedman test are presented in Table 3.
Basedon lowp-values obtained in this test it canbe concluded
that there are statistically significant differences of optimiza-
tion results among different values of Nimp. Detailed results
are presented in Tables 4, 5, 6, 7, 8, 9 in which median values
obtained in 200 runs of the optimization algorithmare shown.
The column Nimp = 0 contains results obtained without using
the knowledge import, and columns with Nimp > 0 contain
results obtained when a given number of knowledge imports
was performed. Apart from numerical results, these tables
present the results of a statistical comparisonperformedusing
the Wilcoxon statistical test (Rey and Neuhäuser 2011) in
which the null hypothesis states the equality of medians. The
sign ’(+)’ is used tomark those results obtained for Nimp > 0
which are significantly better than the result obtained for the
same IRP instance without using the knowledge import at the
significance level α = 0.05. The sign ’(=)’ is used to mark
those results for which the Wilcoxon test produced a p-value
larger than 0.05. The sign ’(−)’ is used to mark those results
obtained for Nimp > 0 which are significantly worse than the
result obtained for the same IRP instance without using the
knowledge import at the significance level α = 0.05. The

Table 3 Results of the Friedman statistical test with groups ("treat-
ments") representing different values of Nimp

Dataset Natt Test statistic p value

Archetti 2007 LC 10 3764.8 < 2.2 · 10−16

I.n 4515.2 < 2.2 · 10−16

Archetti 2007 HC 10 2985.9 < 2.2 · 10−16

I.n 3417.3 < 2.2 · 10−16

Hard 10 427.7 < 2.2 · 10−16

I.n 578.1 < 2.2 · 10−16

number of the outcomes of the statistical test is presented at
the bottom of each table and is summarized in Table 2.

From the obtained results the following conclusions can
be drawn:

– As shown in Table 2, the knowledge import approach
managed to improve the results in about 50% of tested
cases (IRP instances and values of Nimp and Natt).

– The knowledge import approach is not likely to deterio-
rate the optimization results. From 720 tested cases only
in 4 cases a deterioration of the results was observed
(Table 2).

– TheHard dataset contains instances forwhich it is indeed
hard to improve the optimization results. Nevertheless,
the knowledge import never deteriorated the results for
this dataset, andwas able to improve them in 16%of cases
for Natt = 10 and in about 22% of cases for Natt = I.n
(Table 2).

– For the Archetti 2007 instances, increasing Nimp does not
seem to influence the optimization results (Tables 4, 5,
6, 7. For these instances increasing Natt makes a small
change in the results: the number of better results
increased by two between Tables 4 and 5, and between
Tables 6 and 7.

– On the contrary, the number of better results obtained for
the Hard instances increases with increasing Nimp and
also increases for Natt = I.n compared to Natt = 10
(Tables 8 and 9).
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Table 4 Results for the Archetti
2007 LC dataset and Natt = 10

Instance name Nimp
0 1 2 5 10

abs1n5 3348.24 3348.24 (=) 3348.24 (=) 3348.24 (=) 3348.24 (=)

abs1n10 4894.11 4894.11 (=) 4894.11 (=) 4894.11 (=) 4894.11 (=)

abs1n15 6367.52 6313.71 (+) 6283.83 (+) 6219.71 (+) 6163.71 (+)

abs1n20 7108.61 7084.74 (+) 7075.75 (+) 7028.07 (+) 7028.07 (+)

abs1n25 8311.55 8265.80 (+) 8252.51 (+) 8206.39 (+) 8203.31 (+)

abs1n30 9934.90 9903.97 (+) 9881.97 (+) 9819.76 (+) 9753.40 (+)

abs2n5 2722.60 2722.60 (=) 2722.60 (=) 2722.60 (=) 2722.60 (=)

abs2n10 5773.87 5442.87 (+) 5442.87 (+) 5442.87 (+) 5442.87 (+)

abs2n15 6205.53 6184.53 (+) 6162.16 (+) 6161.16 (+) 6162.16 (+)

abs2n20 6789.76 6762.88 (=) 6753.08 (=) 6751.59 (=) 6719.26 (+)

abs2n25 8120.26 8033.94 (+) 8026.94 (+) 8026.94 (+) 8026.94 (+)

abs2n30 8873.98 8706.76 (+) 8584.98 (+) 8548.29 (+) 8548.29 (+)

abs3n5 4810.00 4810.00 (=) 4810.00 (=) 4810.00 (=) 4810.00 (=)

abs3n10 4877.53 4765.42 (+) 4654.25 (+) 4652.53 (+) 4652.53 (+)

abs3n15 6729.53 6686.53 (+) 6719.11 (=) 6698.03 (+) 6686.53 (+)

abs3n20 8025.03 7967.72 (+) 7893.26 (+) 7828.93 (+) 7802.04 (+)

abs3n25 9091.65 8960.13 (+) 8911.98 (+) 8720.13 (+) 8560.61 (+)

abs3n30 9339.63 9245.37 (+) 9183.83 (+) 9035.33 (+) 8843.91 (+)

abs4n5 3318.18 3318.18 (=) 3318.18 (=) 3318.18 (=) 3318.18 (=)

abs4n10 5487.71 5242.16 (+) 5242.16 (+) 5242.16 (+) 5242.16 (+)

abs4n15 6251.72 6251.72 (=) 6251.72 (=) 6251.72 (=) 6251.72 (=)

abs4n20 8313.22 8260.00 (+) 8241.05 (+) 8162.68 (+) 8162.62 (+)

abs4n25 8378.20 8279.20 (+) 8255.51 (+) 8249.36 (+) 8249.21 (+)

abs4n30 8777.00 8742.42 (+) 8652.58 (+) 8652.58 (+) 8652.58 (+)

abs5n5 2421.01 2421.01 (=) 2421.01 (=) 2419.67 (=) 2419.67 (+)

abs5n10 5116.79 5116.79 (=) 5126.73 (=) 5126.73 (=) 5126.73 (=)

abs5n15 5654.30 5654.30 (=) 5654.30 (=) 5654.30 (=) 5654.30 (=)

abs5n20 7958.80 7863.09 (+) 7846.09 (+) 7846.09 (+) 7846.09 (+)

abs5n25 8426.00 8368.02 (+) 8283.37 (+) 8285.07 (+) 8202.14 (+)

abs5n30 8492.44 8423.32 (+) 8384.74 (+) 8298.24 (+) 8282.06 (+)

Number of worse results (−): 0 0 0 0

Number of equal results (=): 10 11 10 8

Number of better results (+): 20 19 20 22

4.4 Comparison to other optimizationmethods

Experiments described in this section were aimed at com-
paring the evolutionary algorithm with knowledge import
proposed in this paper to other methods used in the literature
to solve the IRP. The methods studied in this section were as
follows:

Ant Colony Optimization (ACO) proposed in the paper by
Tatsis et al. (2013) for a multi-vehicle IRP, which can eas-
ily be adapted to the single-vehicle problem studied in this
paper. In the aforementioned paper, a variable pit denotes
the position of retailer i ∈ M in the route used on day
t ∈ {1, . . . , H}. The ACO algorithm holds pheromone val-

ues τit(l) for l ∈ 0, 1, . . . , n which are used for calculating
the probability that pit is set to the value l:

P(pit = l) = τi t (l)∑n
k=0 τi t (k)

. (8)

These probabilities are used to either exclude the retailer
from the route (if pit = 0), or to choose the position l = pit
for retailer i in the route for day t (if pit = 0). For the details
of the ACOmethod readers are referred to the paper by Tatsis
et al. (2013). Because preliminary experiments shown that
the ACO method produced mostly infeasible solutions for
the problem instances studied in this paper, a repair method
was added consisting of the following two steps:
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Table 5 Results for the Archetti
2007 LC dataset and Natt = I.n

Instance name Nimp
0 1 2 5 10

abs1n5 3348.24 3348.24 (=) 3348.24 (=) 3348.24 (=) 3348.24 (=)

abs1n10 4894.11 4894.11 (=) 4894.11 (=) 4894.11 (=) 4894.11 (=)

abs1n15 6367.52 6313.71 (+) 6238.03 (+) 6163.71 (+) 6163.71 (+)

abs1n20 7108.61 7084.74 (+) 7060.74 (+) 7000.46 (+) 6999.88 (+)

abs1n25 8311.55 8242.28 (+) 8203.31 (+) 8200.93 (+) 8200.93 (+)

abs1n30 9934.90 9874.45 (+) 9848.37 (+) 9762.36 (+) 9689.46 (+)

abs2n5 2722.60 2722.60 (=) 2722.60 (=) 2722.60 (=) 2722.60 (=)

abs2n10 5773.87 5442.87 (+) 5442.87 (+) 5442.87 (+) 5442.87 (+)

abs2n15 6205.53 6182.17 (+) 6162.16 (+) 6160.56 (+) 6162.16 (+)

abs2n20 6789.76 6760.05 (=) 6708.78 (+) 6708.78 (+) 6716.33 (+)

abs2n25 8120.26 8033.94 (+) 8026.94 (+) 8026.94 (+) 8026.94 (+)

abs2n30 8873.98 8570.98 (+) 8496.98 (+) 8496.98 (+) 8496.98 (+)

abs3n5 4810.00 4810.00 (=) 4810.00 (=) 4810.00 (=) 4810.00 (=)

abs3n10 4877.53 4765.42 (+) 4652.53 (+) 4652.53 (+) 4652.53 (+)

abs3n15 6729.53 6686.53 (+) 6696.55 (+) 6628.68 (+) 6657.06 (+)

abs3n20 8025.03 7951.60 (+) 7875.97 (+) 7820.10 (+) 7792.03 (+)

abs3n25 9091.65 8924.13 (+) 8855.40 (+) 8532.13 (+) 8532.13 (+)

abs3n30 9339.63 9174.00 (+) 9089.63 (+) 8808.70 (+) 8771.48 (+)

abs4n5 3318.18 3318.18 (=) 3318.18 (=) 3318.18 (=) 3318.18 (=)

abs4n10 5487.71 5242.16 (+) 5242.16 (+) 5242.16 (+) 5242.16 (+)

abs4n15 6251.72 6251.72 (=) 6251.72 (=) 6251.72 (=) 6251.72 (=)

abs4n20 8313.22 8256.00 (+) 8195.68 (+) 8161.91 (+) 8161.91 (+)

abs4n25 8378.20 8279.20 (+) 8077.81 (+) 8077.81 (+) 8077.81 (+)

abs4n30 8777.00 8652.58 (+) 8652.58 (+) 8652.58 (+) 8652.58 (+)

abs5n5 2421.01 2421.01 (=) 2421.01 (=) 2421.01 (=) 2421.01 (=)

abs5n10 5116.79 5126.73 (=) 5111.79 (=) 5111.79 (=) 5126.73 (=)

abs5n15 5654.30 5654.30 (=) 5654.30 (=) 5654.30 (=) 5654.30 (=)

abs5n20 7958.80 7846.09 (+) 7846.09 (+) 7846.09 (+) 7846.09 (+)

abs5n25 8426.00 8353.37 (+) 8223.94 (+) 8213.99 (+) 8129.67 (+)

abs5n30 8492.44 8380.58 (+) 8338.82 (+) 8280.59 (+) 8282.06 (+)

Number of worse results (−): 0 0 0 0

Number of equal results (=): 10 9 9 9

Number of better results (+): 20 21 21 21

1. For t ∈ {1, . . . , H}, while the vehicle is overloaded
(that is, the capacity C is exceeded), select randomly one
retailer from the route for day t and remove it.

2. For t ∈ {1, . . . , H}, check all retailers in a random order
without repetitions and if there is a stockout at retailer i
replan the schedule for this retailer using the Supply at
the Latest Date (SLD) heuristic (Lipinski and Michalak
2018, 2019; Michalak 2021a).

Mathematical programming model (CPLEX) proposed in
the paper by Archetti et al. (2007) in which the IRP instances
Archetti 2007 LC and Archetti 2007 HC were provided. This
model was used for solving the IRP using the CPLEX solver.

Population-Based Simulated Annealing (PBSA) used for
solving the IRP, among others, in the paper by Shaabani and
Kamalabadi (2016). In order to ensure the feasibility of solu-
tions in the population, the population was initialized in the
same way as for the evolutionary algorithm—by generat-
ing the base solution using a recursive heuristic described
in Sect. 3.2 and obtaining mutated copies using the Feasible
Date Change Mutation operator. New solutions in subse-
quent generations were generated using the Feasible Date
Change Mutation and Feasible Add Or Remove Retailer
Mutation operators.

Population-Based Tabu Search (PBTS). The Tabu Search
algorithm was used for solving the IRP, among others, in
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Table 6 Results for the Archetti
2007 HC dataset and Natt = 10

Instance name Nimp
0 1 2 5 10

abs1n5 5955.82 5955.82 (=) 5955.82 (=) 5955.82 (=) 5955.82 (=)

abs1n10 9251.54 9233.45 (+) 9233.45 (+) 9233.45 (+) 9233.45 (+)

abs1n15 12985.26 12826.62 (+) 12760.24 (+) 12270.32 (+) 12250.00 (+)

abs1n20 15275.38 15272.99 (+) 15267.96 (+) 15268.03 (+) 15283.17 (−)

abs1n25 16752.00 16722.64 (+) 16697.47 (+) 16657.74 (+) 16650.11 (+)

abs1n30 24776.02 24742.80 (+) 24746.22 (+) 24696.44 (+) 24632.83 (+)

abs2n5 5045.91 5047.79 (=) 5047.79 (=) 5047.79 (=) 5045.91 (=)

abs2n10 9101.58 9101.58 (=) 9101.58 (=) 9101.58 (=) 9101.58 (=)

abs2n15 12635.03 12594.77 (+) 12554.36 (+) 12544.77 (+) 12436.90 (+)

abs2n20 15344.19 15308.50 (=) 15307.01 (=) 15269.50 (+) 15273.02 (+)

abs2n25 17424.68 17361.24 (+) 17354.24 (+) 17350.68 (+) 17354.24 (+)

abs2n30 21188.30 21026.87 (+) 20966.68 (+) 20906.34 (+) 20881.82 (+)

abs3n5 6990.28 6990.28 (=) 6990.28 (=) 6990.28 (=) 6990.28 (=)

abs3n10 8734.81 8734.81 (=) 8734.81 (=) 8734.81 (=) 8642.19 (+)

abs3n15 14175.77 14147.70 (+) 14144.59 (+) 14157.58 (+) 14157.58 (=)

abs3n20 15563.87 15501.40 (+) 15471.50 (+) 15396.45 (+) 15372.18 (+)

abs3n25 19346.34 19312.11 (=) 19259.19 (+) 19129.46 (+) 19061.79 (+)

abs3n30 24430.80 24367.87 (+) 24316.85 (+) 24142.98 (+) 23953.66 (+)

abs4n5 5226.16 5226.16 (=) 5226.16 (=) 5226.16 (=) 5226.16 (=)

abs4n10 9161.98 9138.40 (+) 8930.71 (+) 8930.71 (+) 8930.71 (+)

abs4n15 11374.17 11329.00 (=) 11336.25 (=) 11329.00 (=) 11329.00 (=)

abs4n20 15390.66 15359.27 (+) 15325.87 (+) 15269.46 (+) 15262.19 (+)

abs4n25 17133.41 17074.17 (+) 17057.13 (+) 17054.99 (+) 17028.49 (+)

abs4n30 18837.14 18791.66 (+) 18734.95 (+) 18733.09 (+) 18728.33 (+)

abs5n5 4593.05 4581.66 (=) 4581.66 (=) 4581.66 (=) 4581.66 (=)

abs5n10 10066.76 10066.76 (=) 10066.76 (=) 10074.49 (=) 10066.76 (=)

abs5n15 10721.92 10721.92 (=) 10721.92 (=) 10721.92 (=) 10721.92 (=)

abs5n20 16617.78 16548.52 (+) 16531.25 (+) 16520.25 (+) 16520.25 (+)

abs5n25 19914.88 19920.35 (−) 19903.24 (+) 19780.86 (+) 19776.60 (+)

abs5n30 20071.81 20029.43 (+) 19992.20 (+) 19920.43 (+) 19882.79 (+)

Number of worse results (−): 1 0 0 1

Number of equal results (=): 12 11 10 10

Number of better results (+): 17 19 20 19

papers byAlinaghian et al. (2021) and byMaghfiroh andRedi
(2022). Similarly as for PBSA, the population was initialized
by generating the base solution using a recursive heuristic
described in Sect. 3.2 and obtaining mutated copies using
the Feasible Date Change Mutation operator. In subsequent
generations, new solutions were generated using theFeasible
DateChangeMutation andFeasible AddOrRemoveRetailer
Mutation operators.

Particle Swarm Optimization (PSO). The PSO method
was used for solving the IRP, among others, in papers by
Mousavi et al. (2014) and by Wang et al. (2019). Solutions
in this PSO algorithm were encoded as real vectors of length
H ∗n with n elements for each day t ∈ {1, . . . , H}. The route

for day t was obtained from a solution x ∈ R
H∗n by adding

retailers to the route in the descending order of the values of
the elements x[(t−1)∗n+1], . . . , x[(t−1)∗n+n] until no
more retailers could be added because of the vehicle capac-
ity constraint. The same repair procedure as for ACO was
used, because without it the PSO method generated mostly
infeasible solutions.

Parameter tuningTheACO, PBSA, PBTS and PSOmeth-
ods require setting some parameters, which were tuned using
the same approach as described in Sect. 4.1. Because the tests
involved algorithms based on different principles, the run-
ning time limit of maxt = 3600s was used as the stopping
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Table 7 Results for the Archetti
2007 HC dataset and Natt = I.n

Instance name Nimp
0 1 2 5 10

abs1n5 5955.82 5955.82 (=) 5955.82 (=) 5955.82 (=) 5955.82 (=)

abs1n10 9251.54 9233.45 (+) 9233.45 (+) 9233.45 (+) 9233.45 (+)

abs1n15 12985.26 12812.78 (+) 12554.10 (+) 12249.68 (+) 12230.48 (+)

abs1n20 15275.38 15272.99 (+) 15273.37 (+) 15283.03 (−) 15283.17 (−)

abs1n25 16752.00 16678.79 (+) 16660.18 (+) 16651.01 (+) 16651.90 (+)

abs1n30 24776.02 24743.35 (+) 24712.96 (+) 24635.13 (+) 24525.63 (+)

abs2n5 5045.91 5045.91 (=) 5045.91 (=) 5047.79 (=) 5047.79 (=)

abs2n10 9101.58 9101.58 (=) 9101.58 (=) 9101.58 (=) 9101.58 (=)

abs2n15 12635.03 12564.51 (+) 12544.77 (+) 12537.73 (+) 12335.08 (+)

abs2n20 15344.19 15281.38 (+) 15284.53 (+) 15265.35 (+) 15273.33 (+)

abs2n25 17424.68 17354.24 (+) 17350.68 (+) 17350.68 (+) 17354.24 (+)

abs2n30 21188.30 20900.09 (+) 20831.50 (+) 20831.50 (+) 20831.50 (+)

abs3n5 6990.28 6990.28 (=) 6990.28 (=) 6990.28 (=) 6990.28 (=)

abs3n10 8734.81 8734.81 (=) 8734.81 (=) 8734.81 (=) 8734.81 (=)

abs3n15 14175.77 14158.81 (+) 14197.18 (=) 14142.59 (+) 14157.58 (=)

abs3n20 15563.87 15504.35 (+) 15433.46 (+) 15375.45 (+) 15367.24 (+)

abs3n25 19346.34 19268.04 (+) 19105.38 (+) 19018.93 (+) 19043.17 (+)

abs3n30 24430.80 24319.57 (+) 24229.18 (+) 23935.29 (+) 23900.10 (+)

abs4n5 5226.16 5226.16 (=) 5226.16 (=) 5226.16 (=) 5226.16 (=)

abs4n10 9161.98 9138.40 (+) 8930.71 (+) 8930.71 (+) 8930.71 (+)

abs4n15 11374.17 11329.21 (=) 11333.06 (=) 11333.06 (=) 11329.00 (+)

abs4n20 15390.66 15357.67 (+) 15298.29 (+) 15261.42 (+) 15257.19 (+)

abs4n25 17133.41 17046.66 (+) 17023.80 (+) 16890.75 (+) 16890.75 (+)

abs4n30 18837.14 18733.02 (+) 18733.35 (+) 18733.02 (+) 18734.95 (+)

abs5n5 4593.05 4581.66 (=) 4581.66 (=) 4593.05 (=) 4581.66 (=)

abs5n10 10066.76 10066.76 (=) 10066.76 (=) 10066.76 (=) 10072.49 (=)

abs5n15 10721.92 10721.92 (=) 10721.92 (=) 10721.92 (=) 10721.92 (=)

abs5n20 16617.78 16520.25 (+) 16520.25 (+) 16520.25 (+) 16520.25 (+)

abs5n25 19914.88 19805.34 (+) 19906.60 (+) 19754.56 (+) 19668.79 (+)

abs5n30 20071.81 19979.09 (+) 19935.51 (+) 19877.49 (+) 19883.25 (+)

Number of worse results (−): 0 0 1 1

Number of equal results (=): 10 11 10 10

Number of better results (+): 20 19 19 19

criterion instead of the number of solution evaluations. The
candidate values for these parameters were as follows:

– For all algorithms: the population size Npop ∈ {50, 100,
200, 500}

– For ACO: the pheromone evaporation rate Rev ∈ {0.001,
0.002, 0.005, 0.010}, which controls how fast the algo-
rithm “forgets” the previous state, the pheromone incre-
ment�τ ∈ {0.01, 0.02, 0.05, 0.10, 0.20}, which controls
how fast the algorithm incorporates new information
from good solutions, and the pheromone restart fre-
quency νre ∈ {0.02, 0.05, 0.10, 0.20, 0.50}, which
controls how often the pheromones are reset to initial

values (with the value νre = 0.1, for example, meaning
that the reset occurs every 10% of the algorithm running
time).

– For PBSA: the selection scheme usedwhen selecting par-
ents for generating new solutions. In the Same scheme,
each solution xi , i = 1, . . . , Npop in the existing popula-
tion is used as a parent for generating a new solution using
mutation and if the new solution is better than xi , then
xi is replaced with the new one. In the Random scheme
when trying to generate a new solution to replace xi ,
the parent solution is selected randomly from the whole
population, which helps disseminating information about
good solutions in the population.
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Table 8 Results for the Hard
dataset and Natt = 10

Instance name Nimp
0 1 2 5 10

hard1n10 5982.16 5982.16 (=) 5982.16 (=) 5982.16 (=) 5982.16 (=)

hard1n15 5835.34 5835.34 (=) 5835.34 (=) 5835.34 (=) 5835.34 (=)

hard1n20 8030.17 8030.17 (=) 8030.17 (=) 8030.17 (=) 8030.17 (=)

hard1n25 9228.18 9228.18 (=) 9228.31 (=) 9223.00 (=) 9223.00 (=)

hard1n30 5939.37 5942.53 (=) 5939.11 (=) 5931.77 (=) 5938.92 (=)

hard1n35 5918.51 5918.18 (+) 5918.06 (+) 5917.44 (+) 5917.19 (+)

hard2n10 5912.57 5913.25 (=) 5911.89 (=) 5911.89 (=) 5911.89 (=)

hard2n15 7682.56 7682.56 (=) 7682.56 (=) 7682.56 (=) 7682.56 (=)

hard2n20 6950.62 6950.62 (=) 6950.62 (=) 6950.62 (=) 6950.62 (=)

hard2n25 5241.90 5241.90 (=) 5241.90 (=) 5241.90 (=) 5241.90 (=)

hard2n30 9574.90 9573.54 (+) 9573.54 (+) 9573.54 (+) 9573.54 (+)

hard2n35 9488.66 9471.81 (=) 9486.15 (=) 9476.33 (=) 9486.15 (=)

hard3n10 7164.72 7164.72 (=) 7164.72 (=) 7164.72 (=) 7164.72 (=)

hard3n15 5958.00 5958.00 (=) 5958.00 (=) 5958.00 (=) 5958.00 (=)

hard3n20 9535.86 9535.86 (=) 9535.86 (=) 9535.86 (=) 9535.86 (=)

hard3n25 6276.03 6282.64 (=) 6274.61 (=) 6273.89 (+) 6273.89 (=)

hard3n30 8965.83 8965.83 (=) 8965.83 (=) 8948.87 (+) 8948.87 (+)

hard3n35 5673.66 5663.46 (+) 5658.52 (+) 5650.46 (+) 5650.46 (+)

hard4n10 7091.61 7091.61 (=) 7091.61 (=) 7091.61 (=) 7091.61 (=)

hard4n15 6824.70 6824.70 (=) 6824.70 (=) 6824.70 (=) 6824.70 (=)

hard4n20 8381.88 8381.88 (=) 8381.88 (=) 8381.88 (=) 8381.88 (=)

hard4n25 7657.89 7657.89 (=) 7657.89 (=) 7657.89 (=) 7657.89 (=)

hard4n30 11419.86 11419.97 (=) 11419.86 (=) 11419.97 (=) 11419.86 (=)

hard4n35 5053.19 5053.03 (=) 5051.00 (+) 5049.51 (+) 5045.12 (+)

hard5n10 5131.55 5131.55 (=) 5131.55 (=) 5131.55 (=) 5131.55 (=)

hard5n15 6951.92 6951.92 (=) 6951.92 (=) 6951.92 (=) 6951.92 (=)

hard5n20 4935.14 4935.14 (=) 4935.14 (=) 4935.14 (=) 4935.14 (=)

hard5n25 10734.47 10734.47 (=) 10734.47 (=) 10734.47 (=) 10734.47 (=)

hard5n30 5466.25 5466.25 (=) 5466.25 (=) 5465.78 (+) 5465.78 (+)

hard5n35 5715.46 5714.43 (=) 5715.62 (=) 5714.28 (=) 5715.20 (=)

Number of worse results (−): 0 0 0 0

Number of equal results (=): 27 26 23 24

Number of better results (+): 3 4 7 6

– For PBTS: the selection scheme used when selecting
parents for generating new solutions, which can be Ran-
dom or Same similarly as for PBSA, the number of
candidate solutions generated in each algorithm itera-
tion Nnew ∈ {10, 20, 50, 100}, and the tabu list length
Ntabu ∈ {100, 200, 500, 1000, 2000, 5000, 10000}.

– For PSO: the inertia weight w ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
the cognitive coefficient φp ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
and the social coefficient φg ∈ {1.0, 1.5, 2.0, 2.5, 3.0}.

The best parameter settings for each method were deter-
mined to be:

– For ACO: the population size Npop = 500, the
pheromone evaporation rate Rev = 0.002, the pheromone
increment �τ = 0.10, and the pheromone restart fre-
quency νre = 0.05.

– For PBSA: the population size Npop = 200, and the Ran-
dom parent selection scheme

– For PBTS: the population size Npop = 200, the Random
parent selection scheme, the number of candidate solu-
tions generated in each algorithm iteration Nnew = 20,
and the tabu list length Ntabu = 200.

– For PSO: the population size Npop = 50, the inertia
weight w = 0.8, the cognitive coefficient φp = 1.0, and
the social coefficient φg = 1.5.
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Table 9 Results for the Hard
dataset and Natt = I.n

Instance name Nimp
0 1 2 5 10

hard1n10 5982.16 5982.16 (=) 5982.16 (=) 5982.16 (=) 5982.16 (=)

hard1n15 5835.34 5835.34 (=) 5835.34 (=) 5835.34 (=) 5835.34 (=)

hard1n20 8030.17 8030.17 (=) 8030.17 (=) 8030.17 (=) 8030.17 (=)

hard1n25 9228.18 9229.00 (=) 9228.18 (=) 9223.00 (=) 9223.00 (=)

hard1n30 5939.37 5943.30 (=) 5932.73 (=) 5932.96 (=) 5939.24 (=)

hard1n35 5918.51 5917.63 (+) 5917.33 (+) 5917.19 (+) 5917.19 (+)

hard2n10 5912.57 5911.89 (=) 5911.89 (=) 5911.89 (=) 5911.89 (=)

hard2n15 7682.56 7682.56 (=) 7682.56 (=) 7682.56 (=) 7682.56 (=)

hard2n20 6950.62 6950.62 (=) 6950.62 (=) 6950.62 (=) 6950.62 (=)

hard2n25 5241.90 5241.90 (=) 5241.90 (=) 5241.90 (=) 5241.90 (=)

hard2n30 9574.90 9573.54 (+) 9573.54 (+) 9573.54 (+) 9568.57 (+)

hard2n35 9488.66 9486.15 (=) 9478.74 (=) 9456.06 (=) 9454.88 (+)

hard3n10 7164.72 7164.72 (=) 7164.72 (=) 7164.72 (=) 7164.72 (=)

hard3n15 5958.00 5958.00 (=) 5958 (=) 5958.00 (=) 5958.00 (=)

hard3n20 9535.86 9535.86 (=) 9535.86 (=) 9535.86 (=) 9535.86 (=)

hard3n25 6276.03 6274.61 (=) 6274.61 (=) 6273.89 (=) 6273.89 (+)

hard3n30 8965.83 8948.87 (+) 8948.87 (+) 8948.87 (+) 8948.87 (+)

hard3n35 5673.66 5650.46 (+) 5650.46 (+) 5650.46 (+) 5650.46 (+)

hard4n10 7091.61 7091.61 (=) 7091.61 (=) 7091.61 (=) 7091.61 (=)

hard4n15 6824.70 6824.70 (=) 6824.70 (=) 6824.70 (=) 6824.70 (=)

hard4n20 8381.88 8381.88 (=) 8381.88 (=) 8381.88 (=) 8381.88 (=)

hard4n25 7657.89 7657.89 (=) 7657.89 (=) 7647.16 (=) 7657.89 (=)

hard4n30 11419.86 11419.86 (=) 11419.86 (=) 11419.97 (=) 11419.97 (=)

hard4n35 5053.19 5049.43 (+) 5050.92 (=) 5045.12 (+) 5044.42 (+)

hard5n10 5131.55 5131.55 (=) 5131.55 (=) 5131.55 (=) 5131.55 (=)

hard5n15 6951.92 6951.92 (=) 6951.92 (=) 6951.92 (=) 6951.92 (=)

hard5n20 4935.14 4935.14 (=) 4935.14 (=) 4935.14 (=) 4935.14 (=)

hard5n25 10734.47 10734.47 (=) 10734.47 (=) 10734.47 (=) 10734.47 (=)

hard5n30 5466.25 5466.25 (=) 5465.78 (+) 5465.78 (+) 5465.78 (+)

hard5n35 5715.46 5714.28 (=) 5714.28 (+) 5714.28 (+) 5714.28 (+)

Number of worse results (−): 0 0 0 0

Number of equal results (=): 25 24 23 21

Number of better results (+): 5 6 7 9

The ACO, CPLEX, PBSA, PBTS and PSO methods were
compared to the evolutionary algorithm with knowledge
import proposed in this paper with the parameters obtained
in Sect. 4.1: the Elitism reduction mode, Npop = 200, Pcross
= 0.8, Pmut = 0.1. The number of knowledge imports was
set to Nimp = 1 and the number of attempts to improve the
solution in each knowledge import set to Natt = 10.

Method comparison Tested methods, with the parameter
settings listed above,were compared by running eachmethod
30 times for each IRP instance used in this paper: 30 Archetti
2007 LC instances, 30 Archetti 2007 HC instances, and 30
Hard instances. In order to test if the choice of the opti-
mization method affected the quality of the solutions, the

Friedman test was applied to the results obtained for each
dataset and each optimization method. The null hypothesis
of this test is that the medians of the optimization results are
equal across all groups (optimization methods). The results
of the Friedman test are presented in Table 10. Based on
low p-values obtained in this test it can be concluded that
there are statistically significant differences of solution qual-
ity among different optimization methods. Detailed results
are presented in Tables 11, 12, 13 in which median values
obtained in 30 runs of the optimization methods are shown.

In the column Knowledge-based EA, the results attained
by the method proposed in this paper are presented. The
following columns contain the results attained by the com-

123



16976 K. Michalak, P. Lipinski

Table 10 Results of the Friedman statistical test with groups (“treat-
ments”) representing different optimization methods

Dataset Test statistic p value

Archetti 2007 LC 2421.6 < 2.2 · 10−16

Archetti 2007 HC 2244.9 < 2.2 · 10−16

Hard 2028.3 < 2.2 · 10−16

parison methods: ACO, CPLEX, PBSA, PBTS and PSO
described at the beginning of this section. The sign ’(+)’
is used to mark those results obtained by comparison meth-
ods which are significantly better than the result obtained

for the same IRP instance using the knowledge-based EA
at the significance level α = 0.05. The sign ’(=)’ is used
to mark those results for which the Wilcoxon test produced
a p-value larger than 0.05. The sign ’(−)’ is used to mark
those results obtained by comparison methods which are sig-
nificantly worse than the result obtained for the same IRP
instance using the knowledge-based EA at the significance
level α = 0.05. The footer of each table shows the number
of times each comparison method attained a worse, equal,
or better result in comparison to the knowledge-based EA.
From the obtained results the following conclusions can be
drawn:

Table 11 Method comparison for the Archetti 2007 LC dataset

Instance name Algorithm
Knowledge-based EA ACO CPLEX PBSA PBTS PSO

abs1n5 3348.24 3361.39 (=) 3335.24 (=) 3350.67 (=) 3350.67 (−) 3350.67 (=)

abs1n10 4894.11 4894.11 (=) 4499.25 (+) 4894.11 (=) 4894.11 (=) 4888.85 (=)

abs1n15 6259.48 6388.71 (−) 5462.68 (+) 6388.71 (−) 6388.71 (−) 5976.74 (+)

abs1n20 7085.58 7109.45 (−) 6704.09 (+) 7109.45 (−) 7109.45 (−) 7327.77 (−)

abs1n25 8309.05 8842.79 (−) 7095.86 (+) 8711.05 (−) 8711.05 (−) 8469.56 (−)

abs1n30 9873.55 10499.80 (−) 10166.01 (=) 10367.54 (−) 10367.54 (−) 9707.17 (+)

abs2n5 2722.60 2793.47 (−) 2722.33 (+) 2739.83 (=) 2722.33 (=) 2740.33 (−)

abs2n10 5442.87 5773.87 (−) 5236.98 (+) 5773.87 (−) 5773.87 (−) 5937.93 (−)

abs2n15 6188.54 6689.75 (−) 5494.74 (+) 6691.65 (−) 6691.65 (−) 6195.51 (=)

abs2n20 6726.21 7511.99 (−) 6094.14 (+) 7475.22 (−) 7486.26 (−) 6798.37 (=)

abs2n25 8061.07 8121.94 (−) 8477.28 (−) 8121.94 (−) 8121.94 (−) 8409.53 (−)

abs2n30 8715.98 8875.98 (−) 8395.51 (+) 8875.98 (−) 8875.98 (−) 8989.88 (−)

abs3n5 4810.00 4810.00 (=) 4776.00 (+) 4810.00 (=) 4810.00 (=) 4843.00 (−)

abs3n10 4765.42 5173.07 (−) 4652.53 (=) 5173.07 (−) 5163.43 (−) 4877.53 (=)

abs3n15 6722.68 7361.69 (−) 6060.38 (+) 7299.74 (−) 7239.80 (−) 6865.59 (−)

abs3n20 7983.88 8554.13 (−) 6950.20 (+) 8577.53 (−) 8563.53 (−) 8131.10 (−)

abs3n25 8962.83 9723.92 (−) 8202.80 (+) 9742.52 (−) 9742.52 (−) 9115.80 (=)

abs3n30 9313.26 10046.80 (−) 8543.19 (+) 9823.01 (−) 9823.01 (−) 11084.46 (−)

abs4n5 3318.18 3389.66 (=) 3246.66 (=) 3318.18 (=) 3318.18 (=) 3389.66 (=)

abs4n10 5242.16 5487.71 (−) 5104.91 (+) 5487.71 (−) 5487.71 (−) 5440.46 (−)

abs4n15 6251.72 6252.60 (=) 5504.65 (+) 6252.60 (=) 6252.60 (=) 6448.69 (−)

abs4n20 8280.14 8364.53 (−) 7590.89 (+) 8364.53 (−) 8364.53 (−) 8549.66 (−)

abs4n25 8295.39 8378.20 (−) 7509.02 (+) 8378.20 (−) 8378.20 (−) 9170.21 (−)

abs4n30 8677.03 8777.03 (=) 7735.25 (+) 8777.03 (=) 8777.03 (=) 10724.31 (−)

abs5n5 2421.01 2561.84 (−) 2419.67 (=) 2498.52 (=) 2496.18 (=) 2546.11 (−)

abs5n10 5143.56 5212.79 (=) 4670.76 (+) 5212.79 (=) 5212.79 (=) 5129.01 (=)

abs5n15 5654.30 5654.30 (=) 5309.48 (+) 5654.30 (=) 5654.30 (=) 6052.77 (−)

abs5n20 7846.09 7959.40 (−) 7512.40 (+) 7959.40 (−) 7959.40 (−) 8297.21 (−)

abs5n25 8280.87 8959.27 (−) 7568.11 (+) 8901.43 (−) 8901.43 (−) 8524.30 (−)

abs5n30 8437.24 8862.82 (−) 8160.22 (=) 8824.32 (−) 8824.32 (−) 8589.42 (−)

Number of worse results (−): 22 1 20 21 20

Number of equal results (=): 8 6 10 9 8

Number of better results (+): 0 23 0 0 2
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Table 12 Method comparison for the Archetti 2007 HC dataset

Instance name Algorithm
Knowledge-based EA ACO CPLEX PBSA PBTS PSO

abs1n5 3348.24 3361.39 (=) 3335.24 (=) 3350.67 (=) 3350.67 (−) 3350.67 (=)

abs1n10 4894.11 4894.11 (=) 4499.25 (+) 4894.11 (=) 4894.11 (=) 4888.85 (=)

abs1n15 6259.48 6388.71 (−) 5462.68 (+) 6388.71 (−) 6388.71 (−) 5976.74 (+)

abs1n20 7085.58 7109.45 (−) 6704.09 (+) 7109.45 (−) 7109.45 (−) 7327.77 (−)

abs1n25 8309.05 8842.79 (−) 7095.86 (+) 8711.05 (−) 8711.05 (−) 8469.56 (−)

abs1n30 9873.55 10499.80 (−) 10166.01 (=) 10367.54 (−) 10367.54 (−) 9707.17 (+)

abs2n5 2722.60 2793.47 (−) 2722.33 (+) 2739.83 (=) 2722.33 (=) 2740.33 (−)

abs2n10 5442.87 5773.87 (−) 5236.98 (+) 5773.87 (−) 5773.87 (−) 5937.93 (−)

abs2n15 6188.54 6689.75 (−) 5494.74 (+) 6691.65 (−) 6691.65 (−) 6195.51 (=)

abs2n20 6726.21 7511.99 (−) 6094.14 (+) 7475.22 (−) 7486.26 (−) 6798.37 (=)

abs2n25 8061.07 8121.94 (−) 8477.28 (−) 8121.94 (−) 8121.94 (−) 8409.53 (−)

abs2n30 8715.98 8875.98 (−) 8395.51 (+) 8875.98 (−) 8875.98 (−) 8989.88 (−)

abs3n5 4810.00 4810.00 (=) 4776.00 (+) 4810.00 (=) 4810.00 (=) 4843.00 (−)

abs3n10 4765.42 5173.07 (−) 4652.53 (=) 5173.07 (−) 5163.43 (−) 4877.53 (=)

abs3n15 6722.68 7361.69 (−) 6060.38 (+) 7299.74 (−) 7239.80 (−) 6865.59 (−)

abs3n20 7983.88 8554.13 (−) 6950.20 (+) 8577.53 (−) 8563.53 (−) 8131.10 (−)

abs3n25 8962.83 9723.92 (−) 8202.80 (+) 9742.52 (−) 9742.52 (−) 9115.80 (=)

abs3n30 9313.26 10046.80 (−) 8543.19 (+) 9823.01 (−) 9823.01 (−) 11084.46 (−)

abs4n5 3318.18 3389.66 (=) 3246.66 (=) 3318.18 (=) 3318.18 (=) 3389.66 (=)

abs4n10 5242.16 5487.71 (−) 5104.91 (+) 5487.71 (−) 5487.71 (−) 5440.46 (−)

abs4n15 6251.72 6252.60 (=) 5504.65 (+) 6252.60 (=) 6252.60 (=) 6448.69 (−)

abs4n20 8280.14 8364.53 (−) 7590.89 (+) 8364.53 (−) 8364.53 (−) 8549.66 (−)

abs4n25 8295.39 8378.20 (−) 7509.02 (+) 8378.20 (−) 8378.20 (−) 9170.21 (−)

abs4n30 8677.03 8777.03 (=) 7735.25 (+) 8777.03 (=) 8777.03 (=) 10724.31 (−)

abs5n5 2421.01 2561.84 (−) 2419.67 (=) 2498.52 (=) 2496.18 (=) 2546.11 (−)

abs5n10 5143.56 5212.79 (=) 4670.76 (+) 5212.79 (=) 5212.79 (=) 5129.01 (=)

abs5n15 5654.30 5654.30 (=) 5309.48 (+) 5654.30 (=) 5654.30 (=) 6052.77 (−)

abs5n20 7846.09 7959.40 (−) 7512.40 (+) 7959.40 (−) 7959.40 (−) 8297.21 (−)

abs5n25 8280.87 8959.27 (−) 7568.11 (+) 8901.43 (−) 8901.43 (−) 8524.30 (−)

abs5n30 8437.24 8862.82 (−) 8160.22 (=) 8824.32 (−) 8824.32 (−) 8589.42 (−)

Number of worse results (−): 22 1 20 21 20

Number of equal results (=): 8 6 10 9 8

Number of better results (+): 0 23 0 0 2

– The knowledge-based EA proposed in this paper is the
best performing metaheuristic algorithm among the ones
tested in the experiments. It was never outperformed
by ACO nor by PBSA and was outperformed in 2
of 30 tests on the Archetti 2007 LC dataset by PSO,
in 2 of 30 tests on the Archetti 2007 HC dataset by
PSO again, and 1 of 30 tests on the Hard dataset by
PBTS.

– For the Archetti 2007 LC and Archetti 2007 HC datasets,
all metaheuristic algorithms were outperformed by the
mathematical programming model (CPLEX), which
attained the best result in 23 of 30 tests (in the case

of both datasets). This is not surprising, because this
mathematical model was proposed in the same paper
by Archetti et al. (2007) in which these IRP instances
were provided, so it is undoubtedly well suited for
them.

– For the Hard dataset the knowledge-based EA pro-
posed in this paper is the best optimization algorithm
of all the tested methods. It outperformed the math-
ematical programming model (CPLEX) in 24 of 30
tests with the remaining 6 resulting in a draw. The
CPLEX method never attained a result better than the
knowledge-based EA on the Hard dataset. ACO, PBSA,
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Table 13 Method comparison for the Hard dataset

Instance name Algorithm

Knowledge-based EA ACO CPLEX PBSA PBTS PSO

hard1n10 5982.16 6001.78 (−) 5982.16 (=) 5982.16 (=) 5982.16 (=) 5990.41 (−)

hard1n15 5839.34 5960.01 (−) 5870.59 (−) 5942.59 (−) 5957.57 (−) 5866.85 (=)

hard1n20 8030.17 8287.53 (−) 8154.94 (−) 8178.24 (−) 8236.34 (−) 7995.11 (=)

hard1n25 9211.59 9759.42 (−) 9623.67 (−) 9554.60 (−) 9619.90 (−) 9239.59 (=)

hard1n30 5938.02 6247.63 (−) 6116.10 (−) 6145.01 (−) 6153.98 (−) 5980.74 (−)

hard1n35 5918.20 6062.27 (−) 6000.35 (−) 6062.27 (−) 6062.27 (−) 5956.52 (−)

hard2n10 5913.25 5925.64 (−) 5911.11 (=) 5911.11 (=) 5911.11 (=) 5911.11 (=)

hard2n15 7682.56 7725.91 (−) 7709.48 (=) 7687.84 (−) 7718.74 (−) 7683.56 (−)

hard2n20 6950.62 7309.95 (−) 7062.35 (−) 7172.59 (−) 7209.77 (−) 7029.64 (−)

hard2n25 5241.90 5370.39 (−) 5277.29 (−) 5309.48 (−) 5324.66 (−) 5241.90 (=)

hard2n30 9574.90 9930.73 (−) 9760.15 (−) 9835.55 (−) 9868.75 (−) 9571.57 (=)

hard2n35 9486.15 9849.61 (−) 9930.01 (−) 9771.97 (−) 9799.69 (−) 9534.49 (−)

hard3n10 7164.72 7176.22 (−) 7164.72 (=) 7164.72 (=) 7167.02 (=) 7184.91 (−)

hard3n15 5958.00 6011.49 (−) 6001.75 (−) 5963.41 (−) 5963.49 (−) 5988.34 (=)

hard3n20 9535.86 9757.45 (−) 9682.51 (−) 9653.92 (−) 9619.02 (−) 10860.03 (−)

hard3n25 6275.31 6451.35 (−) 6374.73 (−) 6370.38 (−) 6365.16 (−) 6301.60 (−)

hard3n30 8954.85 9383.99 (−) 9336.51 (−) 9383.99 (−) 9381.45 (−) 8965.83 (=)

hard3n35 5658.52 5928.44 (−) 5791.98 (−) 5928.44 (−) 5928.44 (−) 5686.92 (−)

hard4n10 7091.61 7102.59 (=) 7091.61 (=) 7091.61 (=) 7101.93 (=) 7102.11 (=)

hard4n15 6824.70 6865.36 (−) 6830.85 (−) 6815.92 (=) 6815.92 (+) 6830.64 (−)

hard4n20 8381.88 8446.70 (−) 8455.95 (−) 8421.95 (−) 8395.58 (−) 8730.72 (−)

hard4n25 7674.69 8245.05 (−) 7755.14 (−) 7992.47 (−) 8087.86 (−) 7710.09 (=)

hard4n30 11419.97 11581.73 (−) 11824.83 (−) 11610.95 (−) 11620.17 (−) 11420.01 (=)

hard4n35 5056.25 5698.86 (−) 5413.32 (−) 5557.66 (−) 5633.74 (−) 5062.40 (=)

hard5n10 5131.55 5156.85 (−) 5131.55 (=) 5131.55 (=) 5149.36 (=) 5131.55 (=)

hard5n15 6951.92 7068.16 (−) 7033.92 (−) 6989.35 (−) 6999.06 (−) 6978.16 (=)

hard5n20 4935.14 5162.83 (−) 5013.63 (−) 4982.84 (−) 4990.32 (−) 5006.66 (−)

hard5n25 10734.47 11039.89 (−) 11051.74 (−) 10883.11 (−) 10950.99 (−) 10739.21 (=)

hard5n30 5466.25 5693.29 (−) 5557.05 (−) 5663.32 (−) 5655.72 (−) 5486.22 (−)

hard5n35 5720.19 6343.24 (−) 5857.00 (−) 6143.85 (−) 6219.82 (−) 5826.61 (−)

Number of worse results (−): 29 24 24 24 15

Number of equal results (=): 1 6 6 5 15

Number of better results (+): 0 0 0 1 0

and PBTS performed poorly in comparison to the pro-
posed knowledge-based EA attaining worse results in at
least 24 of 30 tests. PSO attained worse results in 15
of 30 tests, while in the remaining 15 tests it attained
results equal to the knowledge-based EA. However, sim-
ilarly as ACO, CPLEX, and PBSA it never attained
results better than the knowledge-based EA. The only
method that outperformed the knowledge-based EA on
the Hard dataset was PBTS, and it was in just 1 of 30
tests.

5 Conclusion

In this paper, evolutionary optimization using an external
knowledge source was proposed for the Inventory Routing
Problem (IRP). During optimization, the algorithm performs
Nimp knowledge imports which modify schedules for indi-
vidual retailers in the best solution xbest found so far by the
evolutionary algorithm. In each import, at most Natt attempts
to improve the solution are performed. In each attempt, one
retailer is randomly selected (without repetitions) and the
schedule for this retailer is imported to xbest from the knowl-
edge source. From the Natt attempts to improve the solution
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the best one x∗ is selected and if it is better than xbest it
replaces theworst solution in the EA population. The knowl-
edge can be imported from either a known good solution to
the optimization problem, or by interacting with the user. In
the former case the schedules for the selected retailers are
copied from the known good solution, and in the latter case
the user is expected to modify these schedules according to
his/her expertise in the problem domain.

In the experiments, in which the evolutionary algorithm
using the knowledge import mechanism was compared to an
algorithm not using this mechanism, it was observed that the
knowledge import mechanism was not likely to deteriorate
the results (a worse result was only observed in 4 cases out
of 720). In about 50% of tested cases the knowledge import
improved the optimization results and in the remaining cases
the results were not statistically different for the algorithm
with and without the knowledge import. For the Hard IRP
instances proposed in the paper by Michalak (2021b) the
knowledge import mechanism never deteriorated the results,
and it was able to improve the results in 16–22% of cases
(depending on the number of attempts to improve the solution
in each knowledge import Natt). These IRP instances seem to
be indeed very hard to tackle. For the IRP instances proposed
in the paper by Archetti et al. (2007) the knowledge import
mechanism improved the results in about 66% of cases. For
the Archetti 2007 LC dataset this rate of improvement was
observed for Nimp = 1 and Natt = 10. This means, that if
the user can be expected to provide 10 good schedules for
individual retailers in one interactive session during the entire
algorithm’s runtime the optimization results can be improved
in about 66% of cases. Therefore, the workload of the user
should not be too high, and the proposed approach appears to
be suitable for designing user-interactive optimization meth-
ods for the IRP.

In the experiments, in which the knowledge-based EA
was compared to other optimization methods (ACO, PBSA,
PBTS, PSO, and a mathematical programming model solved
using CPLEX), it outperformed all the metaheuristics. The
CPLEX-basedmethod performed better than the knowledge-
based EA on the Archetti 2007 LC and Archetti 2007 HC
datasets. On the other hand, on the Hard instances the
knowledge-based EA performed better than all comparison
methods including the mathematical programming model.

To sum up, the proposed knowledge import mechanism
can be used to improve optimization results by either import-
ing knowledge from a known good solution to the IRP
instance, or by interacting with the user, who can modify
the best solution found by the optimization algorithm. This
aspect of the proposed method can be used to the benefit of
practitioners, who have the required know-how to improve
the delivery schedules orwant to follow good practices estab-
lished at their company. Another advantage of the proposed
method is that it is able to improve the results for very hard

IRP instances. In the experiments, it was found to be the best-
performing optimization method for the Hard instances. On
the other hand, it turned out not to be competitive to the
mathematical programming model on easier IRP instances,
but this is an observation true for all the testedmetaheuristics.

A certain limitation of the presented work is that it did
not address more complex variants of the IRP, but, given the
large variety of inventory routing problems studied in the lit-
erature, each versionwould require a separate extensive study
and discussion of the results in a dedicated paper. Therefore,
adapting the proposed method to various types of the IRP
used in practical applications was left for future work.
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