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Abstract
Solving the energy management (EM) problem in microgrids with the incorporation of demand response programs helps in

achieving technical and economic advantages and enhancing the load curve characteristics. The EM problem, with its large

number of constraints, is considered as a nonlinear optimization problem. Artificial rabbits optimization has an exceptional

performance, however there is no single algorithm can solve all engineering problem. So, this paper proposes a modified

version of artificial rabbits optimization algorithm, called QARO, by quantum mechanics based on Monte Carlo method to

determine the optimal scheduling for MG resources effectively. The main objective is minimization of the daily operating

cost with the maximization of MG operator (MGO) benefit. The operating cost includes the conventional diesel generator

operating cost and the cost of power transactions with the grid. The performance of the proposed algorithm is assessed

using different standard benchmark test functions. A ranking order for the test function based on the average value and

Tied rank technique, Wilcoxon’s rank test based on median value, and Anova Kruskal–Wallis test showed that QARO

achieved best results on the most functions and outperforms all other compared technique. The obtained results of the

proposed QARO are compared with those obtained by employing well-known and newly-developed algorithms. Moreover,

the proposed QARO is used to solve two case studies of day-ahead EM problem in MG, then the obtained results are also

compared with other well-known optimization techniques, the results demonstrate the effectiveness of QARO in reducing

the operating cost and maximization the MGO benefit.

Keywords Quantum mechanism � Optimization � Energy management � Demand response � Artificial rabbits optimization �
Microgrid

1 Introduction

Microgrids (MGs) are small-scale networks, which consist

of renewable energy sources (RES), conventional genera-

tion sources, energy storage systems (ESS), and control-

lable/non-controllable loads (Lasseter and Microgrids

2002; Shivam and Dahiya 2018). The flexible operation of

MGs resources enables the possibility of using various

optimization techniques to achieve technical, environ-

mental and economic benefits (Phani Raghav et al. 2022).

Energy management systems (EMS) are required for MGs

to achieve objectives, such as minimization of operating

costs, reduced losses, and improved reliability. These

objectives depend on the efficient management of resour-

ces, flexible loads, and energy transactions with the grid

(Parisio et al. 2014). MG’s energy management (EM)
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recently received great attention for MG’s resources opti-

mal operation.

Different structures have been proposed for EMS uti-

lizing a variety of optimization algorithms and energy

sources. To reduce the operating cost in MG, a multi-ob-

jective genetic algorithm (MOGA) is employed in Torkan

et al. (2022). Ref. Aguila-Leon et al. (2022), a Particle

swarm optimization (PSO) algorithm is employed to

incorporate the RESs to the EMS of the MG efficiently. A

developed manta ray foraging optimization (DMRFO) in

Dong et al. (2022) is used to reduce the operating cost and

emissions in the MG. For MG capacity planning, Ref.

Bukar et al. (2022) employed seven different optimization

algorithms: grey wolf optimization (GWO), dragonfly

algorithm (DFA), cuckoo search algorithm (CSA), the

grasshopper optimization algorithm (GOA), Salp swarm

algorithm (SSA), ant lion optimization (ALO), and PSO.

By integrating intelligent technologies in MGs, com-

munication may be created between MG consumers and

the EMS, as well as between the EMS and the main grid.

Thus, Demand response programs (DRP) can contribute

significantly to cost savings (Rahimiyan et al. 2014).Also,

the use of DRP can enhance the load curve by allowing the

positive contribution of the customers (Palensky and

Dietrich 2011). DR is defined as changing customers’

power consumption in response to fluctuating electricity

prices or incentive payments (Aalami et al. 2010). There

are two different categories of DR: Incentive-based DR

(IDR) and price-based DR (Jordehi 2019). Numerous

studies have been conducted on the efficient implementa-

tion of DR into and its contribution to the demand–supply

balance, grid reliability, and performance, particularly in

MG with its distributed generation (DG) sources. Robert

et al. (2018) and Parisio et al. (2014) examined the effec-

tiveness of integrating DR with MG in order to achieve

environmental and economic benefits. In Shehzad Hassan

et al. (2019) PDR is incorporated in the EMS of the MG,

using PSO the MG’s profit is maximized for different

pricing strategies. In Faria et al. (2013), to reduce the MG’s

operating cost PSO algorithm was employed in EMS for

achieving optimal scheduling to the DR and MG. A genetic

algorithm (GA) is used in Wang et al. (2018) for optimal

scheduling of MG’s resources with a PDR program. Also,

GA is embedded in the EMS of MG for reduction of the

operating cost in Arif et al. (2014). A combination of

modified PSO and differential Evolutionary (DE) algorithm

with IDR is used to solve the problem of EM and planning

in Sedighizadeh et al. (2019). In Soroudi et al. (2016), a

PDR is developed for the minimization of power losses in

MG. Based on real-time pricing, Ref. presented Yu and

Hong (2016) a DR for the optimal EM. Different DRP

types are employed in the EMS of Multi-Microgrid the

problem is solved using linear programming with mixed

integer liner programing (MILP) mathematical models in

Nguyen et al. (2018). To reduce the operating cost and to

maximize the operator benefit is the EM problem solved

using Honey Badger Optimizer (HBA) in Alamir et al.

(2022b) and using Alamir et al. (2022a) Artificial Hum-

mingbird Algorithm (AHA).

According to the aforementioned studies, various opti-

mization techniques have been employed to solve different

engineering problems effectively, particularly for different

EMS objectives. So these researches revealed a chance for

establishing new and improved optimization strategies for

solving specific problems. Also, thanks to the No-Free-

Lunch (NFL) theorem (Wolpert and Macready 1997),

which state that ‘‘there are no metaheuristic optimization

algorithms capable of addressing all optimization problems

and guarantee the same performance’’. These two previ-

ously mentioned reasons clarify our motivation to propose

the Quantum Artificial Rabbits Optimization (QARO) as an

improved version of Artificial rabbits optimization (Wang

et al. 2022) which was chosen owing to their exceptional

performance in solving a variety of mathematical and

engineering design problems. A summary comparison for

the related work is shown in Table 1.

The objective of this paper is to introduce a QARO

algorithm based on the quantum mechanics to enhance the

conventional ARO. The second objective is to optimize the

MG operation taking incentive DR into account and com-

paring to other optimization metaheuristics.

The following are the principal contributions of this

work to the investigation, as mentioned earlier:

1. A Quantum Artificial Rabbits Optimization is proposed

to enhance the performance of the original ARO

algorithm and to solve the EM problem in MG. A

quantum mechanics by employing the Monte Carlo

method is used to prevent premature convergence to

local minimum.

2. Considering the demand response program, the EM

problem in MG is solved by employing the proposed

QARO algorithm. And its performance is compared

with well-known and newly developed algorithms to

solve the EM problem.

The rest of this paper is structured as follows: Sect. 2

presents the modeling of the Grid-connected Microgrid

with modeling of DRP. Section 3 discusses the EM opti-

mization problem modeling; Sect. 4 focuses on the tradi-

tional ARO and the proposed QARO algorithms. The

obtained simulation results are presented in Sect. 5. Finally,

the paper is concluded in Sect. 6.
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2 Problem formulation

The proposed grid-connected MG scheme is shown in

Fig. 1, which consists of Dispatchable conventional sour-

ces such as conventional diesel generator (CDG), renew-

able sources such as Photovoltaic (PV), Wind Turbine

(WT), and responsive residential customers (RC) as

described below. The MG is assumed to have a connection

to the Utility Grid (UG) with the possibility of two way

energy transactions.

Table 1 Summary for the related work

Refs. Formulation Objectives Proposed

optimization

technique

DR MG

benefit

Faria et al. (2013) Single-objective

PSO

Operating cost minimization 8 4 8

Arif et al. (2014), Wang

et al. (2018)

Single-objective

GA

Operating cost minimization 8 4 8

Soroudi et al. (2016) Robust Optimization technique Single-objective

Power losses minimization

8 4 8

Yu and Hong (2016) A one-leader, N-follower

Stackelberg game

Minimize the load during high energy

prices

4 4 8

Nguyen et al. (2018) MILP Operating cost minimization 8 4 8

Shehzad Hassan et al.

(2019)

Single-objective

PSO

Profit maximization for customers 8 4 8

Sedighizadeh et al.

(2019)

PSO and differential

Evolutionary

Multi-objective

Cost and emissions minimization

8 4 8

Torkan et al. (2022) Multi-objective (GA)

MOGA

Operating cost minimization

Emissions minimization

8 4 8

Dong et al. (2022) Multi-objective

DMRFO

Operating cost minimization

Emissions minimization

8 –

Bukar et al. (2022) Single-objective

GWO, DFA, CSA, GOA, SSA,

ALO, and PSO

MG capacity planning based on net-

present cost minimization

8 8 –

Alamir et al. (2022a, b) Multi-objective

HBA and AHA

Cost minimization

Benefit maximization

8 4 4

This paper Multi-objective

QARO

Cost minimization

Benefit maximization

4 4 4

Microgrid Energy Management  

Residential customers 

Solar PV system

Wind System

Diesel Generator

Main GridFig. 1 The overall scheme of

the grid-connected MG
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2.1 Utility grid power transaction

If we denote the amount of power transaction with the UG

at any time interval t as PUGt
, then the Locational Marginal

Prices (LMP’s) (ctÞ (Nwulu and Fahrioglu 2013) is

employed to express the cost of power transaction

CUG PUGt
ð Þ as:

CUG PUGt
ð Þ ¼ ct � PUGt

ð1Þ

2.2 Generation model

a. WT model

WT output power is Probabilistic in its nature; the

generated power (Pwindt ) is entirely dependent on wind

speed ðvhubtÞ at the hub height hhub, Wind speed can be

calculated based on the reference wind speed (vreftÞ at the
reference height href as Tazvinga et al. (2014):

vhubt ¼ vreft
hhub
href

� �b

ð2Þ

where b is the power law exponent in the range of 1
7
.

The WT hourly generated power is given as:

Pwindt ¼ 0:5nwpairCpAvhubt ð3Þ

where A is the swept area by the rotor; nw is the efficiency

of WT; pair air density; Cp is the power coefficient of the

turbine.

b. Solar PV model

The hourly generated power from PV solar array

depends on the incident solar irradiation on the PV array

IPvt (kW h/m2) and it is expressed as Tazvinga et al. (2013):

PPVt ¼ gPVAcIPvt ð4Þ

Also, solar power depends on the efficiency of the solar

array (gpvÞ, and the PV array area Ac (Tazvinga et al.

2013).

c. CDG and load model

The CDG is considered as an essential generation source

in MGs. The output power of these CDGs can be adjusted

flexibly by the operator. The fuel cost of CDG Ci PCDGi;t

� �
can be expressed by the quadratic model as:

Ci PCDGi;t

� �
¼ aipCDG

2
i;t þ biPCDGi;t

ð5Þ

where i is the CDG number; ai and bi are fuel cost

coefficients.

Usually, load is modelled by adding up the separate

customer loads. In this paper, customers are grouped

according to their participation in DRP.

2.3 Demand response model

If the customer type is h, which refers to its willingness to

participate in the DR program and Pcj;t is the amount of

consumption reduction; then customer’s j cost function

(Cj h;Pcj;t

� �
) can be expressed as Fahrioglu and Alvarado

(2000):

Start
Initialize the parameter of the 

problem and the QARO 
algorithm 

While 
t< T

Return best QARO 
positionEnd

Generate the initial position of 
the QARO algorithm

Evaluate the position of the 
initial population

Calculate the energy factor A.Choose a rabbit randomly and 
perform detour foraging

Calculate the fitness and update 
the positions Update the best solution found 

so far

Yes

No

If 
A > 1Yes

Generate d burrows and 
randomly pick one as hiding, 
and perform random hiding

No

modification

f(xi) > f(xnew1 )? xi=xnew1Calculate the solution xnew1

Fig. 2 Flowchart of QARO algorithm
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Cj h;Pcj;t

� �
¼ k1Pcj;t

2 þ k2Pcj;tð1� hÞ ð6Þ

where k1, and k2 are cost coefficients,

Then the benefit of the responsive customer is calculated

as:

B1;jðh; y;Pcj;t
¼ yj;t � ðk1P2

cj;t
þ k2Pcj;t

� k2Pcj;t
Þ;

for j ¼ 1; 2; . . .J
ð7Þ

where yj;t is the incentive payment that customer j receive.

Customers will participate in DR only in case that Bj � 0.

The benefit of MG from the participation of customer j

in DR program can be expressed as:

B2;j h; k;Pcj;t

� �
¼ kj;tPcj;t � yj;t ð8Þ

where kj;t is the cost of power interruption of customer j; its

value can be calculated based on the optimal power flow

analysis (Fahrioglu and Alvarado 2000).

So that the total benefit of MG is calculated based on (8)

for the entire interval T as:

B2 ¼
XJ
j¼1

XT
t¼1

kj;tPcj;t � yj;t ð9Þ

3 Energy management problem formulation

As mentioned previously, MG’s proposed architecture in

this paper consists of different types of generation sources,

as WT, PV, and CDG, and responsive customers with DRP.

Main objective of the EMS is to optimize the operation of

these generation sources. For this purpose of solving Multi-

objective optimization problems;

Following is a mathematical description of two objec-

tive functions.

3.1 Objective function

The EM problem in this paper is formulated as a multi-

objective problem as following:

(a) Minimization of the operating cost (f 1 xð ÞÞ; which is

the cost of power generation and the cost of power

transaction with the utility grid.

This mathematical representation of this objective

function can be described as follows:

minf 1 xð Þ ¼ min
XT
t¼1

XI

i¼1

Ci PCDGi;t

� �

þ
XT
t¼1

CUG PUGt
ð Þ ð10Þ

where I is the total number of CDG.

The first term of Eq. (10) is for CDG generation

cost minimization, while the second is for the power

transaction cost.

(b) Maximization of the MG operator benefit f 2 xð Þ
considering the DRP in EMS. This objective function

can be expressed as:

maxf 2 xð Þ ¼ max
XJ
j¼1

XT
t¼1

kj;tPcj;t � yj;t ð11Þ

Therefore, the mathematical model of the objec-

tive function for MG management is represented as:

minw1

XT
t¼1

XI

i¼1

Ci PCDGi;t

� �
þ
XT
t¼1

CUG PUGt
ð Þ

#"

þ w2

XJ
j¼1

XT
t¼1

yj;t � k
j;t
Pcj;t

#"

ð12Þ

With the following Equation should be satisfied:

w1 þ w2 ¼ 1 ð13Þ

where w1 and w2 are the weighting factors for the

first and second objective functions, respectively.

3.2 Constraints

The proposed operation of the EMS operation problem is

subjected to the following constraints:

3.2.1 Electrical load balance

For any time interval t the electrical load demand with

DRP should equal the summation of the total generated

power from PV, WT, CDGs and the power transacted with

Table 2 Parameter settings of the selected techniques

Algorithms Parameters setting

Common settings Population size: nPop = 50

Maximum iterations: Max_iter = 200

Number of independent runs: 20

GWO h (= 2 to 0)

EO No such parameter

SDO

ARO

QARO u ¼ 0; 1½ �; h ¼ 0; 1½ �
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the utility grid PUGt
. Thus, the electrical load balance can

be modelled as:

XI

i¼1

PCDGi;t
þ Pwindt þ PPVt þ PUGt

¼ PD;t �
XJ
j¼1

Pcj;t

ð14Þ

3.2.2 Dispatchable CDGs constraints

The output power from each CDG should be within its

minimum (PCDGi;min
Þ and maximum (PCDGi;max

Þ limits as it is

indicated in Eq. (15). Also constraint in (16) states that the

ramping up and down rate (DRiÞ limits should not be

violated.

PCDGi;min
�PCDGi;t

�PCDGi;max
ð15Þ

�DRi �PCDGi;tþ1
� PCDGi;t

�URi ð16Þ

3.2.3 Grid constraint

Power transaction with the utility constraints is as in

Eq. (17), which limits the power transaction below the

maximum limit ð�PUGmax
Þ .

�PUGmax
�PUGt

�PUGmax
ð17Þ

3.2.4 Demand response constraints

Based on (7), the function of benefit for responsive cus-

tomer is prolonged for the entire time horizon (1 day). This

ensures that the customer incentive during the day is

greater than what should be paid if electricity is consumed

rather than curtailed; this limitation is expressed as:

XT
t¼1

yj;t � ðk1Pcj;t
2 þ k2Pcj;t � k2Pcj;thj � 0 ð18Þ

Constraint (19) specifies the permitted amount of cus-

tomer j power curtailment, where PCMj
is the customer’s

daily power curtailment limit.

XT
t¼1

Pcj;t �PCMj
ð19Þ

The DRP is employed with consideration of the daily

budget limit (DBL) of the MG as in the following

Equation:

XT
t¼1

XJ
j¼1

yj;t �DBL ð20Þ
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4 Solution method

4.1 Original artificial rabbits optimization (ARO)

The original ARO mimics the foraging and hiding tactics

of actual rabbits, as well as their energy shrink leading to

transiting between these tactics (Wang et al. 2022).

(a) Detour foraging (exploration)

In detour foraging behavior of ARO, each individual in

the search space tends to update its location towards the

other search individual chosen randomly from the group

and add a perturbation. The following equation describe the

mathematical model of the detour foraging:

vi t þ 1ð Þ ¼ xj tð Þ þ R� xi tð Þ � xj tð Þ
� �

þ round 0:5� 0:05þ r1ð Þð Þ � n1; i; j
¼ 1; . . .:; j 6¼ i ð21:1Þ

R ¼ L� c ð21:2Þ

L ¼ ðe� e
t�1
Tð Þ2Þ � sinð2pr2Þ ð21:3Þ

c kð Þ ¼ 1 if k ¼¼ gðlÞ
0 else

k ¼ 1; . . .:; d and l ¼ 1; . . .:; ½r3; d�



ð21:4Þ
g ¼ randperm dð Þ; n1 �Nð0; 1Þ ð21:5Þ

(b) Random hiding (exploitation)

To escape from predators, a rabbit commonly digs some

holes nearby its nest for hiding. This equation is given in

this regard as:

bi;j tð Þ ¼ xi tð Þ þ H:g:xi tð Þ; i ¼ 1; . . .:; n and j ¼ 1; . . .:; d

ð22:1Þ

H ¼ T � t þ 1

T
:r4; n2 �Nð0; 1Þ ð22:2Þ

g kð Þ ¼ 1 if k ¼¼ j
0 else

k ¼ 1; . . .:; d



ð22:3Þ

The rabbits to be survive need to find a safe residence to

hide. So, they select randomly a hole from their holes for

hiding to escape from getting caught. This random hiding

tactic is modeled as below:

vi t þ 1ð Þ ¼ xi tð Þ þ R� r4 � bir tð Þ � xi tð Þð Þi ¼ 1; . . .:; n

ð23:1Þ

g kð Þ ¼ 1 if k ¼¼ ½r5 � d�
0 else

k ¼ 1; . . .:; d



ð23:2Þ

bi;r tð Þ ¼ xi tð Þ þ H:g:xi tð Þ ð23:3Þ

After detour foraging or p random hiding is reached, the

position update of the ith rabbit is:

xi t þ 1ð Þ ¼ xi tð Þf ðxi tð Þ� f ðvi t þ 1ð ÞÞ
vi t þ 1ð Þf ðxi tð Þ[ f ðvi t þ 1ð ÞÞ



ð24Þ

(c) Energy shrink (switch from exploration to

exploitation)

An energy factor is considered to model the switch from

exploration to exploitation phases. The energy factor in this

algorithm can be given as follows:

A tð Þ ¼ 4 1� t

T

� �
ð25Þ

4.2 Proposed QARO

Quantum mechanics are employed to enhance the con-

ventional ARO technique. This quantum model of an ARO

algorithm will be referred to as a QARO algorithm. The

quantum mechanics was used to develop the PSO algo-

rithm in Coelho (2008). In the quantum model, using

Monte Carlo method, the solution xnew1 can be calculated

as follows Elkasem et al. (2022):

If h� 0:5
xnew1 ¼ pþ a: Mbesti � Xij j: ln 1=uð Þ ð26Þ

Else

xnew1 ¼ p� a: Mbesti � Xij j: ln 1=uð Þ ð27Þ

End

where a is a design parameter, u and h are uniform

probability distribution in the range of [0, 1], Mbest rep-

resents the mean best of the population, and it is defined as

the mean of the global best positions. It is can be calculated

as follows El-Sattar et al. (2022):

Mbest ¼ 1

N

XN
l¼1

pg;lðiÞ ð28Þ

where g is the index of the best solution. The flowchart of

the proposed QARO algorithm is presented in Fig. 2.

Moreover, Algorithm 1 describes the QARO algorithm’s

pseudocode.
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4.3 Computational complexity analysis of QARO

Computational complexity provides a valuable tool for

assessing the effectiveness of algorithms in solving opti-

mization problems. The complexity of an algorithm is

influenced by several factors, including the number of

individuals involved (n), the dimensionality of the prob-

lem’s variables (d), and the maximum number of iterations

(T). In the case of QARO, the total computational com-

plexity can be expressed as follows:

OðQAROÞ ¼ Oðproblem definitionÞ þ OðinitializationÞ
þ Oðfunction evaluationÞ
þ OðPosition updating in detour foragingÞ
þ OðPosition updating in random hidingÞ
þ OðPosition updating in Quantum1Þ
þ OðPosition updating in Quantum2Þ

¼ O 1þ nþ Tnþ 1

2
Tnd þ 1

2
Tnd þ 1

2
Tnd þ 1

2
Tnd

� �

ffi Oð2Tnd þ Tnþ nÞ

5 Simulation results and discussion

Performance analysis of the QARO algorithm.

5.1 Benchmark functions

All techniques have been run under the similar situations so

that a reasonable assessment is made. The number of

search agents has been 50, while the maximum iteration

equal to 200, and independent runs is 20 times to avoid the

stochastic nature of the algorithms. The parameters speci-

fied in the original reference were employed for each

method. Table 2 displays the parameter configurations for

these techniques. These methods were compared using a

laptop with a 2.9 GHz frequency, and the operating system

used was Windows 10. The MATLAB 2016a platform was

used to execute the techniques. The competence and the

precision of the proposed QARO algorithm are evaluated

on 23 benchmark functions based on different statistical

measurements such as the best, average, median, worst

values, standard deviation (std) and rank for the solutions

achieved using the conventional ARO algorithm and other
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Table 4 The statistical results of 23 benchmark functions

Function QARO ARO SDO EO GWO

F1

Best 8.37E-50 1.59E-26 1.39E-55 2.38E-18 4.47E-12

Average 1.3E-47 1.07E-21 1.37E-51 1.69E-17 3.12E-11

Median 4.96E-48 4.68E-23 3.74E-54 1.09E-17 2.46E-11

Worst 6E-47 7.08E-21 8.43E-51 6.39E-17 8.73E-11

Std 1.8E-47 2.18E-21 2.74E-51 1.72E-17 2.31E-11

Rank 2 3 1 4 5

F2

Best 1.84E-27 1.34E-14 1.83E-29 5.21E-11 1.42E-07

Average 1.45E-26 1.15E-12 3.76E-25 1.63E-10 2.77E-07

Median 1.12E-26 1.22E-13 1.13E-26 1.42E-10 2.66E-07

Worst 7.39E-26 1.78E-11 3.98E-24 4.47E-10 4.78E-07

Std 1.57E-26 3.94E-12 9.1E-25 1.03E-10 9.9E-08

Rank 1 3 2 4 5

F3

Best 1.11E-22 4.28E-21 6.27E-46 7.16E-05 0.008462

Average 2.57E-15 5.08E-15 6.91E-34 0.012312 0.610441

Median 4.82E-17 6.99E-17 1.4E-39 0.001321 0.185412

Worst 3.46E-14 6.41E-14 1.38E-32 0.149211 3.567009

Std 7.86E-15 1.51E-14 3.09E-33 0.034853 0.827115

Rank 2 3 1 4 5

F4

Best 1.54E-18 8.35E-13 1.11E-26 1.78E-05 0.002608

Average 4.56E-17 2.6E-09 4.52E-23 0.000138 0.008

Median 3.07E-17 7.79E-10 1.14E-23 5.67E-05 0.007092

Worst 1.58E-16 2.28E-08 1.94E-22 0.000648 0.016667

Std 4.44E-17 5.09E-09 6.34E-23 0.000166 0.003845

Rank 2 3 1 4 5

F5

Best 0.353027 0.048127 27.90967 25.6266 25.92515

Average 9.945439 2.57084 28.65096 26.26018 27.18903

Median 4.827879 1.069097 28.74726 26.11165 27.09814

Worst 27.77828 16.26736 28.98699 27.83945 28.79035

Std 10.83826 3.783419 0.295026 0.498931 0.72182

Rank 2 1 5 3 4

F6

Best 0.016838 0.009568 0.039957 0.000201 0.252254

Average 0.034403 0.044563 2.568541 0.000497 0.647554

Median 0.031701 0.039666 2.038779 0.000417 0.611378

Worst 0.062803 0.098375 7.250251 0.001518 1.172757

Std 0.012711 0.026373 1.852701 0.000297 0.280888

Rank 2 3 5 1 4

F7

Best 3.6E-05 3.22E-05 8.66E-05 0.000243 0.001477

Average 0.000467 0.001407 0.002356 0.001908 0.004433

Median 0.000393 0.00115 0.001136 0.001826 0.003685

Worst 0.001337 0.003564 0.013813 0.005511 0.01033

Std 0.000311 0.001071 0.003331 0.001275 0.002554
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Table 4 (continued)

Function QARO ARO SDO EO GWO

Rank 1 2 4 3 5

F8

Best - 1763.41 - 9902.5 - 1655 - 1796.54 - 1495.31

Average - 1636.35 - 9268.23 - 1312.83 - 1743.05 - 1245.57

Median - 1664.54 - 9276.94 - 1385.86 - 1742.67 - 1224.18

Worst - 1378.02 - 7798.04 - 598.802 - 1681.91 -1123.85

Std 113.3716 494.4779 294.008 28.37994 104.0153

Rank 3 1 4 2 5

F9

Best 0 0 4.33E-30 5.68E-14 1.062467

Average 0 0 1.75E-22 0.049752 9.801018

Median 0 0 4.17E-25 1.14E-13 9.824713

Worst 0 0 3.02E-21 0.99503 24.96968

Std 0 0 6.75E-22 0.222496 5.565812

Rank 1 1 3 4 5

F10

Best 8.88E-16 3.29E-14 8.88E-16 20 20.76487

Average 0.183959 5.19E-12 8.88E-16 20.00003 20.92344

Median 8.88E-16 1.26E-12 8.88E-16 20 20.94465

Worst 3.679179 5.25E-11 8.88E-16 20.00065 21.06309

Std 0.822689 1.17E-11 0 0.000145 0.083433

Rank 3 2 1 4 5

F11

Best 0 0 0 0 6.56E-13

Average 0 0 0 1.39E-16 0.009891

Median 0 0 0 0 4.55E-12

Worst 0 0 0 2.22E-15 0.055407

Std 0 0 0 4.92E-16 0.015766

Rank 1 1 1 4 5

F12

Best 0.000481 0.000211 0.001152 5.41E-06 0.006066

Average 0.001037 0.002555 0.23467 1.46E-05 0.026151

Median 0.000968 0.002594 0.067805 1.46E-05 0.023474

Worst 0.002366 0.004551 1.492821 3.77E-05 0.047176

Std 0.000479 0.001218 0.352063 8.5E-06 0.013414

Rank 2 3 5 1 4

F13

Best 0.010677 0.005253 0.046216 0.000219 0.09955

Average 0.033325 0.038605 1.867552 0.039624 0.613832

Median 0.030899 0.020631 1.934246 0.001307 0.609981

Worst 0.068387 0.218513 2.999924 0.207579 1.044

Std 0.014292 0.051532 0.961284 0.072678 0.280029

Rank 1 2 5 3 4

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004

Average 0.998004 0.998004 3.494696 0.998004 3.892106

Median 0.998004 0.998004 1.495017 0.998004 2.982105

Worst 0.998004 0.998004 12.67051 0.998004 12.67051
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Table 4 (continued)

Function QARO ARO SDO EO GWO

Std 1.84E-16 2.97E-16 3.953203 1.84E-16 3.727681

Rank 2 2 4 1 5

F15

Best 0.000308 0.000308 0.000307 0.000308 0.00031

Average 0.000325 0.000441 0.00067 0.004398 0.003547

Median 0.000313 0.000404 0.000527 0.00035 0.000546

Worst 0.000405 0.000694 0.002121 0.020363 0.020363

Std 2.55E-05 0.000131 0.000473 0.008192 0.007255

Rank 1 2 3 5 4

F16

Best - 1.03163 - 1.03163 - 1.03163 - 1.03163 - 1.03163

Average - 1.03163 - 1.03163 - 1.03005 - 1.03163 - 1.03158

Median - 1.03163 - 1.03163 - 1.03163 - 1.03163 - 1.03163

Worst - 1.03163 - 1.03163 - 1.00046 - 1.03163 - 1.03063

Std 5.19E-13 2.5E-12 0.006966 1.76E-16 0.000223

Rank 2 3 5 1 4

F17

Best 0.397887 0.397887 0.397887 0.397887 0.397888

Average 0.397887 0.397887 0.397987 0.397887 0.397891

Median 0.397887 0.397887 0.397887 0.397887 0.397891

Worst 0.397887 0.397887 0.399795 0.397887 0.397897

Std 0 1.28E-10 0.000426 0 3.01E-06

Rank 1 3 5 1 4

F18

Best 3 3 3 3 3

Average 3 3 4.371758 3 3.000068

Median 3 3 3 3 3.000036

Worst 3 3 30.41145 3 3.000238

Std 1.49E-15 1.16E-15 6.129111 2.16E-15 6.53E-05

Rank 1 1 5 3 4

F19

Best - 0.30048 - 3.86278 - 0.30048 - 0.30048 - 0.30048

Average - 0.30048 - 3.86278 - 0.2893 - 0.30048 - 0.30048

Median - 0.30048 - 3.86278 - 0.30038 - 0.30048 - 0.30048

Worst - 0.30048 - 3.86278 - 0.19165 - 0.30048 -0.30048

Std 1.14E-16 3.73E-15 0.026531 1.14E-16 1.14E-16

Rank 2 1 5 2 2

F20

Best -3.322 -3.322 -3.322 -3.322 -3.32198

Average -3.32198 -3.31597 -3.09697 -3.20051 -3.22876

Median -3.322 -3.322 -3.2031 -3.322 -3.26239

Worst -3.3218 -3.2031 -0.89904 -1.84092 -2.84039

Std 4.68E-05 0.026567 0.550986 0.327557 0.125558

Rank 1 2 5 4 3

F21

Best - 10.1512 - 10.1532 - 10.1532 - 10.1532 - 10.1502

Average - 7.3638 - 10.1187 - 8.703 - 9.26724 - 8.51218

Median - 6.77544 - 10.1532 - 10.1532 - 10.1532 - 10.1413
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recent techniques such as the supply-demand-based opti-

mization (SDO) (Zhao et al. 2019), the Equilibrium opti-

mizer (EO) (Faramarzi et al. 2020), and the Grey wolf

optimizer (GWO) (Mirjalili et al. 2014).

These benchmark functions comprise three types of test

functions: unimodal, multimodal, and low-dimensional

multimodal test functions (Fan et al. 2021). The mathe-

matical formulation for these test functions can be found in

Table 3. The first group of test functions belongs to the

unimodal family, and contains only one global optimum,

without any local optima. These test functions are highly

suitable for evaluating algorithm convergence speed and

exploitation capabilities. The second group, which belongs

to the multimodal family, consists of test functions with

multiple local solutions in addition to the global optimum.

These test functions are useful for testing an algorithm’s

Fig. 3 Radar chart for ranks among all compared algorithms
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Fig. 4 Mean ranks obtained by tied rank test for 23 functions using

various algorithms

Table 4 (continued)

Function QARO ARO SDO EO GWO

Worst - 5.0552 - 9.81141 - 4.99677 - 2.63047 - 2.62918

Std 2.409973 0.090338 2.23952 2.210886 2.963153

Rank 5 1 3 2 4

F22

Best - 10.4029 - 10.4029 - 10.4029 - 10.4029 - 10.4024

Average - 9.19054 - 10.1364 - 8.45822 - 8.27887 - 10.0134

Median - 10.4025 - 10.4029 - 10.4029 - 10.4029 - 10.3959

Worst - 5.08767 - 5.07631 - 1.0677 - 5.08767 - 2.76526

Std 2.128761 1.191013 3.128689 2.668997 1.706042

Rank 3 1 4 5 2

F23

Best - 10.5364 - 10.5364 - 10.5364 - 10.5364 - 10.5348

Average - 10.2579 - 10.1522 - 7.90449 - 9.32552 - 9.74305

Median - 10.5364 - 10.5364 - 10.5357 - 10.5364 - 10.5274

Worst - 5.12848 - 3.83543 - 3.79083 - 3.83543 - 2.42135

Std 1.207807 1.502943 3.015319 2.502342 2.418464

Rank 1 2 5 4 3

Average rank 1.826087 2 3.565217 3 4.173913

Final ranking 1 2 4 3 5
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F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

Fig. 5 The convergence curves of all algorithms for 23 benchmark functions
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Fig. 5 continued
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F5 F6 F7 F8

F9 F10 F11 F12

Fig. 6 Boxplots for all algorithms for 23 benchmark functions
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Fig. 6 continued
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ability to avoid local optima and explore alternative solu-

tions. The composite test functions are a combination of

rotated, shifted, biased, and merged versions of various

unimodal and multimodal test functions.

5.1.1 Comparison simulation results

The comparisons for these algorithms are presented in

Table 4. From Table 4, it is noticed that the proposed

QARO algorithm achieves best results on the most of these

types of functions in all values. The comparison of tech-

niques in these functions is according to the average value.

These functions are compared based on their mean values

using a technique called Tied rank (TR). This rank-based

approach assigns ranks to the techniques according to their

average values, with the technique with the smallest

average value being allocated rank 1, and so on. The

technique with the lowest TR value is considered the most

effective compared to the other algorithms (El-Dabah et al.

2023; Wu et al. 2019). The statistical results of the tied

rank on 23 benchmark functions are shown in Table 4.

After Table 4 is inspected; the applied techniques are

sorted. It is seen from the ranking order that the QARO

algorithm outperforms the other compared techniques on

23 function problems. ARO and EO displays robust

effectiveness that are the second and third optimal. Fig-

ure 3 displays the ranking of all compared algorithms for

each function, using a radar chart. The average of these

ranks is presented in Fig. 4. Upon examining Fig. 4, it

becomes evident that QARO has the lowest average rank

value, implying that it ranks first among all algorithms.

This underscores QARO as the top-performing optimizer in

Table 5 Table Statistical comparisons of Wilcoxon signed-rank test for QARO versus ARO, SDO, EO, and GWO

Function QARO versus ARO QARO versus SDO QARO versus EO QARO versus GWO

R? R- p value H0 R? R- p value H0 R? R- p value H0 R? R- p value H0

F1 210 0 8.86E-05 No 0 210 8.86E-05 No 210 0 8.86E-05 No 210 0 8.86E-05 No

F2 210 0 8.86E-05 No 142 68 0.167184 Yes 210 0 8.86E-05 No 210 0 8.86E-05 No

F3 112 98 0.793839 Yes 0 210 8.86E-05 No 210 0 8.86E-05 No 210 0 8.86E-05 No

F4 210 0 8.86E-05 No 0 210 8.86E-05 No 210 0 8.86E-05 No 210 0 8.86E-05 No

F5 27 183 0.003592 No 210 0 8.86E-05 No 197 13 0.000593 No 203 7 0.000254 No

F6 147 63 0.116888 Yes 210 0 8.86E-05 No 0 210 8.86E-05 No 210 0 8.86E-05 No

F7 194 16 0.000892 No 186 24 0.002495 No 204 6 0.000219 No 210 0 8.86E-05 No

F8 0 210 8.86E-05 No 210 0 8.86E-05 No 11 199 0.000449 No 209 1 0.000103 No

F9 0 0 1 Yes 210 0 8.86E-05 No 210 0 7.61E-05 No 210 0 8.86E-05 No

F10 154 56 0.067355 Yes 0 15 0.0625 Yes 210 0 2.98E-05 No 210 0 8.86E-05 No

F11 0 0 1 Yes 0 0 1 Yes 21 0 0.03125 No 210 0 8.86E-05 No

F12 196 14 0.000681 No 210 0 8.86E-05 No 0 210 8.86E-05 No 210 0 8.86E-05 No

F13 76 134 0.278965 Yes 210 0 8.86E-05 No 75 135 0.262722 Yes 210 0 8.86E-05 No

F14 12 3 0.375 Yes 103.5 1.5 0.000366 No 0 6 0.25 Yes 210 0 8.86E-05 No

F15 193 17 0.001019 No 193 17 0.001019 No 180 30 0.005111 No 204 6 0.000219 No

F16 61.5 43.5 0.594238 Yes 70.5 49.5 0.570801 Yes 0 45 0.003906 No 210 0 8.86E-05 No

F17 153 0 0.000291 No 28 0 0.015625 No 0 0 1 Yes 210 0 8.86E-05 No

F18 18 48 0.226563 Yes 168.5 2.5 0.000286 No 64 56 1 Yes 210 0 8.86E-05 No

F19 0 210 3.67E-05 No 210 0 8.86E-05 No 0 0 1 Yes 0 0 1 Yes

F20 97 113 0.765198 Yes 200 10 0.00039 No 132 78 0.313463 Yes 195 15 0.00078 No

F21 10 200 0.00039 No 47 163 0.030365 No 30 180 0.005111 No 53 157 0.052222 Yes

F22 44 166 0.022769 No 115 95 0.708905 Yes 104 106 0.97022 Yes 98 112 0.793839 Yes

F23 57 153 0.073138 Yes 166 44 0.022769 No 68 142 0.167184 Yes 189 21 0.001713 No

w/t/I 12/11/

0

18/5/

0

15/8/0 20/3/

0

15758 N. Alamir et al.

123



Table 6 Anova Kruskal–Wallis test

Function Source Sum of square Degree of freedom Mean square Chi-sq Prob[Chi-sq

F1 Columns 80,000 4 20,000 95.05407 1.11E-19

Error 3321 95 34.95789 – –

Total 83,321 99 – – –

F2 Columns 76,019.6 4 19,004.9 90.32032 1.13E-18

Error 7305.4 95 76.89895 – –

Total 83,325 99 – – –

F3 Columns 75,427.4 4 18,856.85 89.61671 1.59E-18

Error 7897.6 95 83.13263 – –

Total 83,325 99 – – –

F4 Columns 80,000 4 20,000 95.0495 1.11E-19

Error 3325 95 35 – –

Total 83,325 99 – – –

F5 Columns 67,210.4 4 16,802.6 79.85394 1.87E-16

Error 16,114.6 95 169.6274 – –

Total 83,325 99 – – –

F6 Columns 73,091.3 4 18,272.83 86.84115 6.17E-18

Error 10,233.7 95 107.7232 – –

Total 83,325 99 – – –

F7 Columns 38,493.3 4 9623.325 45.73461 2.8E-09

Error 44,831.7 95 471.9126 – –

Total 83,325 99 – – –

F8 Columns 72,703.3 4 18,175.83 86.38016 7.73E-18

Error 10,621.7 95 111.8074 – –

Total 83,325 99 – – –

F9 Columns 76,000 4 19,000 96.5327 5.38E-20

Error 1942.5 95 20.44737 – –

Total 77,942.5 99 – – –

F10 Columns 73,353.1 4 18,338.28 91.70874 5.71E-19

Error 5831.9 95 61.38842 – –

Total 79,185 99 – – –

F11 Columns 42,160 4 10,540 84.23066 2.21E-17

Error 7392.5 95 77.81579 – –

Total 49,552.5 99 – – –

F12 Columns 72,315.5 4 18,078.88 85.91941 9.68E-18

Error 11,009.5 95 115.8895 – –

Total 83,325 99 – – –

F13 Columns 63,122.7 4 15,780.68 74.99727 2E-15

Error 20,202.3 95 212.6558 – –

Total 83,325 99 – – –

F14 Columns 51,081.2 4 12,770.3 64.21107 3.77E-13

Error 27,675.3 95 291.3189 – –

Total 78,756.5 99 – – –

F15 Columns 20,676.4 4 5169.1 24.56661 6.15E-05

Error 62,646.6 95 659.4379 – –

Total 83,323 99 – – –

F16 Columns 49,282.7 4 12,320.68 61.16204 1.65E-12

Error 30,488.8 95 320.9347 – –

Total 79,771.5 99 – – –
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the comparison, based on the tied rank approach. This

outcome further validates that our method can efficiently

discover the global optimum for various problems. It is

concluded from this discussion that the QARO technique

becomes an effective algorithm for solving these types of

problems. The convergence characteristics of these

algorithms for those functions are displayed in Fig. 5. For

more investigation on the performance of the proposed

algorithm, a boxplot of outcomes for each algorithm and

objective function is presented in Fig. 6 also displays that

the boxplots of proposed QARO algorithm for most of the

functions are narrow and among the smallest values.

5.1.2 Wilcoxon’s rank test results

The Wilcoxon signed-rank test is a nonparametric test used

to determine whether the median of a paired sample differs

significantly from a hypothesized value. It is commonly

used in situations where the data is not normally distributed

or the assumptions for a paired t test are not met. To

Table 6 (continued)

Function Source Sum of square Degree of freedom Mean square Chi-sq Prob[Chi-sq

F17 Columns 47,428.93 4 11,857.23 68.35383 5.05E-14

Error 21,264.58 95 223.8376 – –

Total 68,693.5 99 – – –

F18 Columns 59,551.25 4 14,887.81 71.31498 1.2E-14

Error 23,118.25 95 243.35 – –

Total 82,669.5 99 – – –

F19 Columns 64,000 4 16,000 97.15109 3.97E-20

Error 1218 95 12.82105 – –

Total 65,218 99 – – –

F20 Columns 31,231.6 4 7807.9 37.11687 1.7E-07

Error 52,070.9 95 548.1147 – –

Total 83,302.5 99 – – –

F21 Columns 36,674.1 4 9168.525 43.61925 7.7E-09

Error 46,562.9 95 490.1358 – –

Total 83,237 99 – – –

F22 Columns 15,575.6 4 3893.9 18.51611 0.000978

Error 67,702.4 95 712.6568 – –

Total 83,278 99 – – –

F23 Columns 29,166.8 4 7291.7 34.66985 5.43E-07

Error 54,119.2 95 569.6758 – –

Total 83,286 99 – – –

Table 7 Parameters of the three

CDG units (case study 1)
i Generation coefficients Limits

ai ($/kW
2 h) bi ($/KW h) Pi,min (KW) Pi,max (KW) DRi (KW/h) URi (KW/h)

1 0.06 0.5 0 4 3 3

2 0.03 0.25 0 6 5 5

3 0.04 0.3 0 9 8 8

Table 8 Customers data (Case study 1)

J hj K1,j K2,j PCMj

(kWh)

1 0 1.079 1.32 30

2 0.45 1.378 1.36 35

3 0.9 1.847 1.64 40
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compare the performance of any two algorithms, the Wil-

coxon signed rank test is carried out. This involves

gathering all fitness values over 30 runs of the objective for

both algorithms, computing the sum of ranks for runs in

which one algorithm outperforms the other, and calculating

the p value to determine the significance of the results.

Table 5 presents the results obtained using the Wilcoxon

signed rank test. The column H0 defines whether the null

hypothesis is valid or not. If H0 is valid with a significance

level of a = 0.05, the performance of two methods is sta-

tistically the same for the study case (Biswas et al. 2018;

Derrac et al. 2011).

To compare the performance of two algorithms, the

following steps were taken:

• Gathered all fitness values for both algorithms over 30

runs of the objective in a case study.

• Calculated R?, the sum of ranks for runs in which

algorithm ’A’ outperforms algorithm ’B’.

• Calculated R-, the sum of ranks for runs in which

algorithm ’B’ outperforms algorithm ’A’.

• Calculated the p value, which indicates the significance

of results in a statistical hypothesis test. A smaller

p value suggests stronger evidence against the null

hypothesis H0.

Table 5 shows that QARO outperforms all other com-

petitors for most functions, indicating a significant

improvement in performance.

5.1.3 Kruskal–Wallis statistical analysis of the results

The Kruskal–Wallis test is a widely recognized statistical

test that takes into account the overall rankings of multiple

variables across different datasets (Gupta et al. 2020). The

QARO algorithm exhibits a significantly better median

rank compared to the other groups, as indicated by the

ANOVA Kruskal–Wallis test results presented in Table 6.

The probability value verified by the chi-square test further

supports this finding. Based on the nonparametric tests

conducted, it can be inferred that the QARO algorithm

demonstrates greater precision and accuracy than the

algorithms it was compared against (Table 6).

5.2 Real-world application

This section presents the numerical analysis and result of

the proposed QARO to solve the EM problem to evaluate

its performance. QARO determines the optimal operating

conditions for the MG resources and the optimal schedul-

ing for DRP operation. The generation data for WT and

solar PV are given in Nwulu and Xia (2017), and it is

assumed that their operational cost is negligible. The cost

Table 9 Power interruptibility kj,t data for case study 1

Time (h) k1;t ($) k2;t t ($) k3;t ($)

t = 1 1.57 3.70 2.70

t = 2 1.4 2.70 1.90

t = 3 2.2 3.20 1.80

t = 4 3.76 2.60 1.90

t = 5 4.5 3.80 2.30

t = 6 4.7 1.70 0.70

t = 7 5.04 2.30 1.40

t = 8 5.35 1.50 0.50

t = 9 6.7 4.30 2.90

t = 10 6.16 4.60 1.60

t = 11 6.38 3.50 4.30

t = 12 6.82 4.20 4.80

t = 13 7.3 4.30 5.10

t = 14 7.8 6.30 5.40

t = 15 8.5 3.50 5.50

t = 16 7.1 5.30 6.10

t = 17 6.8 5.30 5.60

t = 18 6.3 6.10 6.30

t = 19 5.8 2.60 4.50

t = 20 4.2 3.60 4.20

t = 21 3.8 4.20 3.90

t = 22 3.01 3.80 3.20

t = 23 2.53 2.30 2.80

t = 24 1.42 3.80 4.20
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Fig. 7 Initial demand load and the power generated from PV and WT
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function’s coefficients of CDG are used in Alamir et al.

(2022a). To evaluate the performance of the proposed

QARO in solving the EMS problem, two different MG test

systems based on the proposed MG architecture shown in

Fig. 1 have been formulated and simulated.

Case Study 1

The grid-connected MG’s architecture in the first case

study consists of three CDG units, one WT unit, one Solar

PV unit, and three customers. The parameters of the three

CDGs, including fuel cost coefficients, generation limits,

and ramping up and down limits, are provided in Table 7.

Data of the three residential customers included cost

coefficients,hj, and the daily power curtailment are detailed

in Table 8. Power interruptibility (kj,t) for the three cus-

tomers is provided in Table 9. The hourly WT and PV

Table 10 Comparison of the

EM problem for case study 1
Technique Total operating cost ($)

Worst Best Mean STD

PSO (Moghaddam et al. 2011) 699.47 623.24 665.1084 15.96

JAYA (Warid et al. 2016) 804.37 689.77 743.8394 31.25

INFO (Ahmadianfar et al. 2022) 642.35 520.56 580.8188 31.607

SO (Hashim and Hussien 2022) 782.91 619.70 692.99 42.67

ARO (Wang et al. 2022) 566.05 523.92 540.5792 11.14

QARO 549.6943 517.065 530.9362 9.27

Bold value indicate the best results

105.61
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Fig. 8 The convergence characteristics of AQO and QARO
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Fig. 9 The power generated from CDG and transacted with the grid
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Fig. 10 The initial and final load and total curtailment for case study 1

Table 11 Comparison of the EM problem for case study 1

j Saving (kWh) Incentive ($)

1 29.99001 83.79387

2 34.98977 119.5918

3 39.99829 164.275

Total 104.97 367.6615
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power generation, as well as the initial load demand (PD;t)

are shown in Fig. 7. It is also assumed that MGO has

previous information about its own daily budget of $500.

All simulations were conducted on MATLAB 2021b on

an i7-2.9 GHz computer with 8 GB of RAM. The results of

30 independent runs of the proposed MG architecture are

compared using the proposed QARO, ARO (Wang et al.

2022), PSO (Moghaddam et al. 2011), JAYA (Warid et al.

2016), INFO (Ahmadianfar et al. 2022), and SO (Hashim

and Hussien 2022). The results are presented in Table 10.

The proposed QARO has the best performance in terms of

best, worst, mean and Standard deviation (STD) values.

The best results for each algorithm are compared, and the

results will be discussed. The convergence characteristics

of the original algorithm ARO and the proposed QARO are

shown in Fig. 8; it can be seen that the QARO has faster

convergence characteristics and better performance in

giving lower operating cost.

Using QARO, the power generated from the CDG units

for the whole interval is shown in Fig. 9. The load demand

before and after employing the DRP with the power cur-

tailed from all customers as a response to the DR are shown

in Fig. 10. A detailed customer curtailment and total

incentive are given in Table 11. A comparison for all

studied techniques in terms of total energy curtailment,

power transaction, and MG benefit is shown in Fig. 11.

Negative power transaction means the power sold to the

utility grid is higher than that bought from it. The total

curtailment during the day in case of using the proposed

QARO is equal to 104.97 kWh. From the figure, the MG

benefit is the highest in the case of QARO.

Case Study 2

To validate the scalability of the proposed QARO

algorithm, a second test system with a larger MG is sim-

ulated; in this test system, the MG consists of 10 CDG,

aggregated model for 10 WT units, aggregated model for

10 solar PV units, and seven residential consumers. The

CDGs’ fuel cost coefficients and generation limits are

given in Alamir et al. (2022a). The customers’ cost coef-

ficients,hj, and the daily power curtailment are detailed in

Table 12. The forecasted power from WT and PV units

(Nwulu and Xia 2017) as well as the daily power inter-

ruptibility values for each customer (Kim and Kim 2019)

are shown in Table 13.

In this case study simulated on MATLAB using differ-

ent optimization techniques, the best results for the inde-

pendent suns in each algorithm are compared; the total

operating cost for all studied techniques is shown in

Fig. 12; it can be noted that the proposed QARO achieved

best operating cost over all the other techniques.

-25
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95

115

Power transac�on (kWh) Total curtaiment (kWh) Benefit ($)

PSO

JAYA

INFO

SO

ARO

QARO

Fig. 11 Comparison of all

studied optimization techniques

for case study 1

Table 12 Customers data (Case study 2)

J h K1,j K2,j PCMj
(MWh)

1 0 1.847 11.64 180

2 0.14 1.378 11.63 230

3 0.26 1.079 11.32 310

4 0.37 0.9124 11.5 390

5 0.55 0.8794 11.21 440

6 0.84 1.378 11.63 530

7 1 1.5231 11.5 600
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Using QARO, the power generated from the CDG units

for the whole interval is shown in Fig. 13. Customers’

power curtailed and the incentive they get during the day

are shown in Figs. 14 and 15 respectively. The load

demand before and after employing the DRP with the sum

of power curtailed from all customers as a response to the

DR are shown in Fig. 16. A comparison for all studied

techniques in terms of total energy curtailment, power

transaction, and MG benefit is shown in Table 14. The total

curtailment during the day in case of using the proposed

QARO in case study 2 is equal to 2679.5 MWh. The MG’s

benefit using the proposed QARO algorithm is about

3000$, which is higher than that in the case of PSO, INFO,

SO, ARO.

Table 13 WT and PV output

power and customers’

interruptibility values (Case

study 2)

Time (h) WT (MW) PV (MW) k1,t ($) k2,t ($) k3,t ($) k4,t ($) k5,t ($) k6,t ($) k7,t ($)

t = 1 113.44 0 27.61 28.3 28.79 26.93 27.6 27.38 27.3

t = 2 112.55 0 29.41 30.07 30.53 28.79 29.44 29.21 29.15

t = 3 123.76 0 28.24 28.87 29.28 27.66 28.33 28.08 28.02

t = 4 127.21 0 26.69 28.76 32.64 27.66 28.32 27.56 27.85

t = 5 127.33 0 29.01 32.24 37.15 31.2 31.66 30.62 31.16

t = 6 141.44 0 33.96 36.67 90.65 35.38 35.99 35.11 35.49

t = 7 147.39 0 83.97 89.46 83.79 85.71 87.7 85.79 86.4

t = 8 155.38 79.94 81.1 82.88 114.11 79.06 81.06 80.41 80.18

t = 9 168.33 105.69 110.6 112.93 76.09 107.72 110.44 109.59 109.25

t = 10 165.28 136.18 74.12 75.43 80.56 72.4 73.95 73.49 73.28

t = 11 164.23 149.75 78.95 80.19 67.76 77.29 78.93 78.39 78.2

t = 12 160.32 150 66.85 67.55 48.63 65.75 66.67 66.42 66.28

t = 13 156.31 147.89 47.98 48.58 65.07 47.1 47.39 47.49 47.33

t = 14 152.3 145.92 66.82 67.74 49.69 65.55 66.74 66.37 66.22

t = 15 145.05 135.65 48.5 49.35 50.87 47.41 48.47 48.13 48

t = 16 134.8 118.36 49.21 50.28 70.29 49.94 49.19 49.45 49.53

t = 17 125.64 101.71 66.65 69.36 67.19 66.05 67.71 66.8 66.85

t = 18 114.2 77.68 61.49 66.57 58.25 59.59 66.24 62.44 62.76

t = 19 100.63 0 56.19 57.67 59.89 54.48 56.53 55.73 55.58

t = 20 85.95 0 57.92 59.38 48.31 55.58 57.98 57.16 56.91

t = 21 108.26 0 49.16 49.68 53.36 48.31 48.96 48.81 48.69

t = 22 116.38 0 54 54.38 54.84 53.46 53.63 53.7 53.6

t = 23 118.33 0 34.37 34.67 34.96 33.98 34.21 34.19 34.13

t = 24 115.38 0 30.3 30.71 31 29.89 30.2 30.13 30.07
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6 Conclusion

This paper proposes a modified QARO algorithm to

enhance the performance of the ARO algorithm by aug-

menting it with a quantum mechanism based on MCS

simulation. The modified algorithm is applied to solve the

EM problem of MG to minimize the operating costs and

maximize the MGO benefit. The performance of the

improved algorithm has been tested using 23 test bench

functions and comparison with well-known techniques

(e.g. SDO, EO, GWO and the original ARO), different

statistical assessment are performed. TR technique used to

rank the performance of algorithms based on the average

value, Wilcoxon’s rank test based on median value, and

Anova Kruskal–Wallis test are performed. These tests

demonstrated the effectiveness of the proposed algorithm.

The proposed QARO is employed to solve a day-ahead

EM problem in the MG. A comparison among the con-

vergence characteristics of the proposed QARO algorithm

and the original ARO algorithm proves the adequacy of the

proposed algorithm in solving the optimization problem.

The robustness of the proposed QARO has been validated

by comparing its performance on two different MG test

systems with other common techniques from the literature

(PSO, JAYA, INFO, SO, and the original ARO). The

proposed QARO achieved the best solution in the mean,

worst, and STD. The total curtailment is 104.97 kWh and

2679.5 MWh in case study 1 and 2, respectively, while the

highest benefit is achieved by QARO algorithm is $50 and

$3010 for the two cases, respectively.

The proposed QARO algorithm can be employed for

solving an extended probabilistic energy management

problem with considering the uncertainty in the renewable

generation, load and energy prices. The Ruidas et al.

(2023b) used PSO to optimize the inventory cost related to

the investments in reduction of emissions and green inno-

vation. The Quantum behaved PSO (QPSO) is used in

Ruidas et al. (2022) to optimize the economic production

quantity for production system while in Ruidas et al. (2021)

a new inventory cost called development cost is added to

the optimization process. Additional QPSO is applied in

Ruidas et al. (2023a) to derive the optimal profit in pro-

duction inventory model for high-tech products. The pro-

posed QARO can be employed to solve these problems and

compare its performance with the PSO and QPSO

algorithms.
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